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Abstract. In full waveform inversion (FWI) high-resolution subsurface model param-
eters are sought. FWI is normally treated as a nonlinear least-squares inverse problem,
in which the minimum of the corresponding misfit function is found by updating the
model parameters. When multiple elastic or acoustic properties are solved for, simple
gradient methods tend to confuse parameter classes. This is referred to as parameter
cross-talk; it leads to incorrect model solutions, poor convergence and strong depen-
dence on the scaling of the different parameter types. Determining step lengths in a
subspace domain, rather than directly in terms of gradients of different parameters, is
a potentially valuable approach to address this problem. The particular subspace used
can be defined over a span of different sets of data or different parameter classes, pro-
vided it involves a small number of vectors compared to those contained in the whole
model space. In a subspace method, the basis vectors are defined first, and a local min-
imum is found in the space spanned by these. We examine the application of the sub-
space method within acoustic FWI in determining simultaneously updates for velocity
and density. We first discuss the choice of basis vectors to construct the spanned space,
from linear updates by distinguishing only the contributions of different parameter
classes towards nonlinear updates by adding the contributions of higher-order pertur-
bations of each parameter class. The numerical character of FWI solutions generated
via subspace methods involving different basis vectors is then analyzed and compared
with traditional FWI methods. The subspace methods can provide better reconstruc-
tions of the model, especially for the velocity, as well as improved convergence rates,
while the computational costs are still comparable with the traditional FWI methods.
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1 Introduction

In full waveform inversion (FWI) [11, 25, 27], subsurface model parameters are deter-
mined by minimizing an objective function measuring the difference between predicted
data and recorded data, related through forward modelling. The forward modelling in-
volves wave propagation physics which can range from scalar acoustic, to acoustic, up
to viscoelastic anisotropic approximations, and beyond. Simultaneous inversion for dif-
ferent parameter classes (see, e.g., [3, 6, 16, 17, 19–21]), including for instance P-wave and
S-wave velocities, density, as well as the various attenuation and anisotropic parameters,
etc., are critical for a wide application of FWI in reservoir characterization. Similar to
the mono-parameter inversion under the scalar acoustic approximation, in which only
P-wave velocity is considered, in multi-parameter FWI a misfit function is set up to de-
scribe the distance between the recorded data and the predicted data, and FWI is treated
as a nonlinear least squares problem, which can be solved by gradient-based methods
or Newton-type methods. Multi-parameter inversion is more complicated than mono-
parameter inversion, because the additional parameter classes increase the ill-posedness
and the nonlinearity of the inverse problem. Different parameter classes can be more or
less coupled, and it may be difficult to distinguish the contribution of each parameter
class to changes in the data. Mitigating cross-talk between different parameter classes is
a key issue. Studies have shown that the Hessian operator contains some information
concerning the coupling between different parameter classes. Different ways of incorpo-
rating the inverse of the Hessian operator, especially in multi-parameter inversion, have
been proposed to better decouple different parameter classes in the inversion. These in-
clude preconditioning the gradient using the pseudo Hessian matrix [24], quasi-Newton
method, truncated Newton method [12–15, 18] and so on. Hierarchical strategies can be
applied to successively invert different parameter classes to mitigate the ill-posedness of
FWI [1, 2, 9]. In most cases involving incorporation of Hessian information, significant
increases in computational cost ensue.

In both gradient-based methods and Newton-type methods (see, e.g., [7,12,13,18,22,
27, 31]), a line search scaling the descent direction tends to be necessary for convergence.
One scalar is found for all parameter classes regardless of their contributions to the data.
To combat cross-talk, distinguishing between the contributions of each parameter class
during updating could be helpful in multi-parameter inversion.

Application of subspace methods in large-scale inverse problems was first discussed
by [10,23] as an approach to adjusting the update descent directions according to different
parameter classes’ contributions. Baumstein [5] showed that using an extended subspace
method in multi-parameter inversion can also help to mitigate cross-talk. In subspace
FWI, basis vectors are determined first, and the optimization problem is then solved in
this spanned space to minimize the quadratic approximation of the misfit function, with
only a few coefficients to be determined as compared to the traditional gradient-based or
Newton-type methods. Although projection of the full Hessian or Gauss-Newton Hes-
sian onto the subspace is needed for each iteration, the calculation is much cheaper com-
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pared to Newton-type methods.
In this study, we evaluate different basis vectors, constructed from the gradients

of two different acoustic parameter classes, and related Hessian-vector products (see,
e.g., [12, 18]), for their ability to construct better multi-parameter inversions. Our re-
sults are restricted to the acoustic approximation (with varying density) both for forward
modelling and inversion; however we expect our results to be by-and-large true for other
parameterizations and elastic extensions.

2 Full waveform inversion and subspace methods: review

We use the frequency-space domain acoustic wave equation to describe wave motion:

ω2

ρ(x)v2(x)
u(x,xs,ω)+∇·

(

1

ρ(x)
∇u(x,xs,ω)

)

= fs(ω)δ(x−xs), (2.1)

where ρ is the density and v is the velocity. Radiation patterns, or scattering patterns
(see, e.g., [3,19,26,28]) of v and ρ are plotted in Fig. 1. Compared to the radiation pattern
of v, which is isotropic, the radiation pattern of ρ decreases progressively from small
scattering angles, which are related to backward scattering, to large scattering angles,
which are related to forward scattering (see, e.g., [16, 27]). This is consistent with the
fact that a change of velocity affects the waves at all scattering angles, while a change in
density only has significant influence on the amplitudes of the precritical reflections at
small scattering angles. This is indicative of the possible difficulties of the reconstruction
of these two parameters, especially using only a small range of near-offset traces.
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Figure 1: Radiation patterns of velocity and density in acoustic FWI.
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Expressing model parameters of all types in one vector m, the source term as f(xs,ω)
and the forward modelling operator, which is the discretized impedance matrix, as
F(m,ω), a discretized form of the wave equation can be written in matrix form as

F(m,ω)u(m,xs,ω)= f(xs,ω), (2.2)

The forward modeling (2.2) describes a nonlinear relationship between the wavefield
u(m,xs,ω) and the model parameters m.

In FWI inversion is formulated as an optimization problem, in which a model m is
sought which minimizes the misfit functional φ(m)

φ(m)=
1

2 ∑
xs

∑
xg

∑
ω

∥

∥dobs(xs,xg,ω)−dsyn(m,xs,xg,ω)
∥

∥

2
=

1

2 ∑
xs

∑
xg

∑
ω

∥

∥∆d(m,xs,xg,ω)
∥

∥

2
,

(2.3)
where dobs(xs,xg,ω) are the observed data at receiver location xg for each source location
xs for one frequency ω, and dsyn(m,xs,xg,ω)=Ru(m,xs,ω) are the synthetic data gener-
ated by simulating wave propagation in the current model iterate m via (2.2), and sam-
pling the wavefield with an operator R to the receiver locations. ∆d(m,xs,xg,ω) are the
data residuals, which are defined as the difference between the observed and synthetic
data.

Expanding the misfit functional (2.3) up to second order around the vicinity of the
model m,

φ(m+δm)=φ(m)+〈g,δm〉+
1

2
〈Hδm,δm〉+O

(

‖δm‖3
)

, (2.4)

where g and H are the gradient and the Hessian operator of the misfit function, respec-
tively. Since the misfit functional is generally non-quadratic, Eq. (2.4) represents a local
quadratic approximation, in which the model can be iteratively updated:

mn+1=mn+αnδm. (2.5)

The perturbation can be determined by a descent direction, which is the negative of the
gradient in gradient-based methods, or it can be the solution of a Newton system, respec-
tively

δm=−g, or

δm=−H−1g.
(2.6)

In either case, all parameters are updated in their specific descent directions scaled by
a step-length α as in (2.5). This can be understood as a 1D subspace scheme, in which
the optimization of the misfit functional in the complete model space is replaced by a
1D optimization of φ in the descent direction. The step-length is a constant for each
parameter type; the update in each parameter is thus governed by the properties of the
overall descent direction at each iteration, rather than the specific features of its own
direction.
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Subspace methods can be used for single parameter FWI problems. For instance,
when the gradient associated with the current iteration and previous step information are
combined, as in conjugate gradient methods and limited memory quasi-Newton method,
a subspace of some lower dimension M is constructed within which the update vector
is found. However, this induces a trade-off between an increasing computational cost
per iteration and the possible decrease in number of iterations. In these methods, search
directions are defined within a lower dimensional space (at least 2), as compared to the
steepest descent method, which searches a 1D step-length in the full space (see, e.g.,
[32, 33]).

In the case of multi-parameter FWI, different datasets can be used to construct a sub-
space, and model space can also be divided into subspace. In this study, we consider
the partitioning of the gradient into contributions from each parameter. We analyze fre-
quency domain FWI in the acoustic approximation for both velocity and density, exam-
ining different subspaces.

Suppose that a model perturbation can be expressed in a space spanned by n basis
vectors {aj} as

δm=
n

∑
j=1

µjaj. (2.7)

Substituting Eq. (2.7) into the expansion of the misfit functional in (2.4) we obtain

φ(m+δm)=φ(m)+
n

∑
j=1

µj〈g,aj〉+
1

2

n

∑
j=1

n

∑
i=1

µjµi〈Haj,ai〉+··· . (2.8)

The coefficient µj for each basis vector aj can be found using

µj〈g,aj〉+
n

∑
i=1

µj〈Haj,ai〉≈0. (2.9)

Written in matrix form

ATg+ATHAµ≈0. (2.10)

The coefficients µ can then be determined from the projection of the gradient and the
Hessian onto the subspace in the form

µ=−
(

ATHA
)−1

ATg. (2.11)

Since the subspace is only n dimensions, ATHA is an n×n matrix and is generally simple
to invert. When the term related to the second-order partial derivative of the data respect
to the model parameters in the Hessian can be neglected, the Gauss-Newton Hessian can
be used in the equation to evaluate the coefficient.
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3 Choice of subspace basis vectors

3.1 Subspace basis vectors for linear updates

3.1.1 2D choice

We could straightforwardly choose the descent direction (e.g., the negative of the gradi-
ent) of each parameter as our subspace basis vectors. In this case, the descent direction
vector for each parameter is simply extended into the whole model space. For instance,
in the case of two parameters v and ρ, the basis vectors ai are the extension the gradients
of each parameter gv and gρ in the whole model space:

a1=

[

−gv

0

]

, a2=

[

0

−gρ

]

. (3.1)

In multiparameter FWI, when the position of model parameters are used before the pa-
rameter class to sort the elements in the Hessian matrix, the Hessian matrix has a block
structure with diagonal blocks Hvv and Hρρ, and off-diagonal blocks Hvρ and Hρv. The
Hessian matrix can be written as

H=

[

Hvv Hvρ

Hρv Hρρ

]

(3.2)

with coefficients µ given by

µ=

[

gT
v Hvvgv gT

v Hvρgρ

gT
ρ Hρvgv gT

ρ Hρρgρ

]−1[
gT

v gv

gT
ρ gρ

]

(3.3)

which, because it involves only Hessian-vector products (as in Hessian-free Newton
methods (see, e.g., [12, 18])), is easily calculated. In this case, two Hessian-vector pro-
duces are needed for each calculation of the coefficient, and a 2×2 matrix is inverted.
Compared to steepest descent methods, which involves a line search, and conjugate gra-
dient methods for linear problems, which within the inner loop of the truncated Gauss-
Newton method involves the calculation

µ=
〈g,g〉

〈Hg,g〉
, (3.4)

we observe several differences. The step lengths for the updates in each parameter type
are different, and the model is updated by the perturbation for each parameter class as

δv=−µvgv, δρ=−µρgρ. (3.5)
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3.1.2 4D choice

These basis vectors can be extended in ways which can ultimately be designed to prevent
leakage between gradient components. For instance, we can define

a1=

[

−gv

0

]

, a2=

[

−gρ

0

]

, a3=

[

0

−gv

]

, a4=

[

0

−gρ

]

. (3.6)

In this case,

µ=

















gT
v Hvvgv gT

v Hvvgρ gT
v Hvρgv gT

v Hvρgρ

gT
ρ Hvvgv gT

ρ Hvvgρ gT
ρ Hvρgv gT

ρ Hvρgρ

gT
v Hρvgv gT

v Hρvgρ gT
v Hρρgv gT

v Hρρgρ

gT
ρ Hρvgv gT

ρ Hρvgρ gT
ρ Hρρgv gT

ρ Hρρgρ

















−1












gT
v gv

gT
ρ gv

gT
v gρ

gT
ρ gρ













. (3.7)

Here four Hessian-vector products are required and a 4×4 matrix is inverted to calculate
the coefficients for four basis vectors. We note that this represents an increase in com-
putational cost, and so any increase in cross-talk suppression so derived is not “free”,
though it may be quite inexpensive.

3.1.3 6D choice

The rate of change of the descent vectors can also be used to construct basis vectors, as
discussed by [10], e.g.,

a1=

[

−gv

0

]

, a2=

[

0

−gρ

]

,

a3=

[

Hvv Hvρ

0 0

][

gv

0

]

, a4=

[

0 0

Hρv Hρρ

][

gv

0

]

,

a5=

[

Hvv Hvρ

0 0

][

0

gρ

]

, a6=

[

0 0

Hρv Hρρ

][

0

gρ

]

.

(3.8)

However, as pointed out in Baumstein’s study [5], when the misfit function is not locally
quadratic, curvature information obtained from the Hessian may be far from that of the
global minimum, and the coefficients so obtained may not lead to an improved search
direction. Also, when using the Hessian in the construction of the basis vectors, the
computational cost will tend upward, possibly dramatically.

3.2 Subspace basis vectors leading to nonlinear updates

When considering the second-order scattering in the Hessian operator as corrections to
the gradient (see, e.g., [4,7,22,30]), higher-order perturbations (see, e.g., [29]) can be used
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as the basis vectors in addition to the gradients for each parameter type. In which case,
not only the contributions of different parameter classes, but also the contributions of
higher-order perturbations from each parameter class, can be distinguished, with addi-
tional nonlinearity being added to each parameter class during each update. The full
Hessian can be decomposed as

H=H1+H2, (3.9)

where H1 contains the second-order partial derivative of the data with respect to the
model parameters, and H2 is the Gauss-Newton Hessian operator. Under this assump-
tion, the model perturbation can be modified from (2.5) to

δm=−H−1
2

(

g−H1H−1
2 g

)

. (3.10)

To calculate this model perturbation, the inverse of the Gauss-Newton Hessian H−1
2 is

needed. To avoid the high cost of direct calculation of this term, a quasi-Newton method
or truncated Newton method can be used. Suppose that the δm1 =−H−1

2 g is the per-
turbation obtained using a linearized inversion, e.g., a truncated Gauss-Newton method,
and also ignore the affect of the inverse of the Gauss-Newton Hessian H−1

2 outside the
bracket. The basis vectors can be a combination between the gradient vectors for each
parameter class and also its related higher-order perturbations:

a1=

[

−gv

0

]

, a2=

[

(H1δm1)v

0

]

, a3=

[

0

−gρ

]

, a4=

[

0

(H1δm1)ρ

]

. (3.11)

Compared to the 4D subspace constructed from the gradient vectors (3.6), one more
Hessian-vector H1δm1 is needed during the calculation of the coefficients.

To find the update using the subspace basis in Eq. (3.11), a perturbation model δm1 is
needed to form the basis vectors a2 and a4. The details of the calculation of this pertur-
bation model is critical to the whole nonlinear update, since cross-talk artifacts should be
removed by the inverse of Gauss-Newton Hessian operator when calculating this term.
However, the effect of the inverse of the Gauss-Newton Hessian operator outside the
bracket in (3.10) may not be ignored since cross-talk artefacts may still exist in the model
updates founded within subspace basis vectors (3.11). Therefore, directly using pertur-
bation model δm1 to construct the basis vectors could be a better choice to involve non-
linearity of each parameter class into each update

a1=

[

(δm1)v

0

]

, a2=

[

−H−1
2 (H1δm1)v

0

]

,

a3=

[

0

(δm1)ρ

]

, a4=

[

0

−H−1
2 (H1δm1)ρ

]

.

(3.12)

In this study, we use an l-BFGS approach to approximate the inverse of the Hessian
H−1

2 as a preconditioner for the descent direction to calculate the perturbation model
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δm1 in (3.11); a pseudo Hessian can also be used with the assumption that in the multi-
parameter case, each block in the Hessian for different parameter classes is roughly di-
agonal [8, 14, 24]. We use truncated Gauss-Newton method to calculate the perturbation
model δm1 in (3.12), while l-BFGS approach is used to approximate the inverse of the
Hessian H−1

2 as a preconditioner when needed. In cases where the basis vectors may
have cross-coupling with each other, when for instance we use gradients of different pa-
rameter classes (3.6), or when we use the Hessian to construct the basis vectors for each
parameter class as in (3.8) and (3.11), orthogonalizing the basis vectors may be needed to
avoid linear dependence:

â2=a2−
a1a2

a1a1
a1. (3.13)

4 Numerical examples

We test the application of the subspace method in both gradient-type and Newton-
type simultaneous FWI updates of velocity and density, in both transmission-type and
reflection-type scenarios. Steepest descent and truncated Newton methods are used, but
the line search components are replaced with the subspace methods discussed in the pre-
vious section.

4.1 Subspace methods in multi-parameter transmission FWI

4.1.1 The subspace method as a substitute for the line search

Fig. 2 shows true and initial models for both velocity and density, and the model is
50×100 grid nodes in size, with grid interval of 10 m in each direction; the main structural
components of the models are Gaussian balls. 49 sources are at the top of the model, with
the first source located at xs = 20 m, and 100 receivers are at the bottom of the model.
5 outer iterations are used for both the steepest descent and truncated Gauss-Newton
methods, where 10 CG iterations are used to solve the linearized inverse problem inside
the truncated Gauss-Newton methods. Three data frequencies, 8, 10 and 15 Hz, are used
for the inversion and the Gauss-Newton Hessian is used. We test both 2D and 4D sub-
space methods. The inversion results are plotted in Fig. 3. In Fig. 4 horizontal profiles
through the inverted velocity and density models at z=0.25 km are plotted. To compare
the convergence of the subspace FWI with the original FWI with line searching, we show
both the misfit and model error versus iteration in Fig. 5.

From the inversion results, we observe that augmenting the steepest descent method
with a subspace approach improves the update for the velocity with both 2D and 4D
gradient based basis vectors. However, the updating of the density worsens due to
density-velocity cross-talk. This is explainable through the scattering radiation patterns
as shown in Fig. 1 generated by isotropic point inclusions: for the density the radiation
pattern is strong at small scattering angles, which makes it difficult to update density
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Figure 3: Inverted velocity and density using different methods. Here, SD stands for steepest descent method,
GN stands for truncated Gauss-Newton method. Subspace method is used to replace line searching for each
iteration.

in transmission experiments. This reflects the fact that recorded data are more sensi-
tive to velocity variations, and barely respond to density variations. Cross talk between
velocity and density is strong and positive-signed, which leads to the expectation that
the 4D subspace method will not outperform the 2D method for any parameter, and in
fact will tend to slow down the convergence. The steepest descent subspace method ex-
hibits better convergence only for the first iteration as compared to the truncated Gauss-
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searching for each iteration. Here, SD stands for steepest descent method, GN stands for truncated Gauss-
Newton method, and SS stands for subspace method.

Newton method. Rather, when the subspace method is combined with the truncated
Gauss-Newton method, the cross-talk between velocity and density is reduced. Here
both the 2D and 4D subspace methods provide improved inversion results, especially for
density.

4.1.2 A subspace basis constructed from the nonlinear update

We next analyze the use of the higher-order perturbations as discussed in Section 3.2 to
construct the basis vectors. A maximum of 10 inner iterations in truncated Newton and
Gauss-Newton method and 20 outer iterations are used for the inversion. In Fig. 6 the
results of different methods are compared. In Fig. 7 the corresponding model profiles for
velocity and density are plotted at z=0.25 km. We observe:
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Figure 6: Inverted velocity and density using different methods. Here, GN stands for truncated Gauss-Newton
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nonlinear subspace stands for nonlinear inversion using 4D subspace basis as in Eq. (3.11).
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1. Using the full Hessian rather than the Gauss-Newton Hessian in the truncated
Newton method does not appear to provide a better update, especially for velocity;

2. Using the model perturbation obtained from a Gauss-Newton update and its re-
lated higher-order perturbation term with or without l-BFGS pre-conditioning for
the 4D Gauss-Newton nonlinear subspace updates, the inversion results converge
faster in the early stage for both velocity and density; and
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Table 1: Average computational costs of different FWI methods with/without subspace method for each iter-
ation. Here, SD stands for steepest descent method, GN stands for truncated Gauss-Newton method, and SS
stands for subspace method.

Methods
Maximum No. of Hessian-vector Average

inner iteration products for subspace time (s)

SD N/A N/A 57.1

2D SS N/A 2 41.6

4D SS N/A 4 77.1

4D nonlinear SS N/A 5 96.3

6D SS N/A 6 112.9

GN 10 N/A 230.0

GN 2D SS 10 2 270.0

GN 4D SS 10 4 301.0

GN 4D nonlinear 10 5 336.2

GN/l-BFGS 4D nonlinear 10 5 338.1

truncated Newton 10 N/A 312.5

3. Using the gradient and the higher-order perturbation term (i.e., the model pertur-
bation approximated within the l-BFGS update) to construct the subspace basis vec-
tors for the 4D nonlinear subspace updates, the velocity inversion is better than that
obtained with the truncated Newton method, but (because the Gauss-Newton Hes-
sian is replaced with the identity matrix), cross-talk artifacts strongly impact the
density model.

4.1.3 Computational aspects

Computational costs of performing the different FWI methods with/without subspace
method as used in Section 4.1.1 and Section 4.1.2 are averaged over number of iterations
and listed in Table 1. Truncated Gauss-Newton/Newton methods have larger computa-
tional costs because of the computation of Hessian matrix in the inner iterations. With the
computation of additional Hessian-vector products needed for the construction of sub-
space, increasing the number of subspace basis vectors also slightly increases the compu-
tational cost, however, it is still comparable with the original FWI methods.

4.2 Subspace methods in multi-parameter reflection FWI

The application of the subspace method to reflection-mode data is more complex. We
take a small subregion of the original Marmousi-II model as our true model, and create
an initial mode by smoothing the true model with a Gaussian smoothing window un-
der the water layer, as shown in Fig. 9. The new model is 81×161 grid nodes in size,
with grid interval of 20 m in each direction. 4 frequencies (3, 5, 8, 12 Hz) are inverted
simultaneously, and a maximum of 20 iterations are carried out in all the methods, where
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Figure 9: True velocity a) and density b). Initial velocity c) and density d).

10 inner iterations are used for the truncated Gauss-Newton type methods. Inversion
results for each method under study (a 2D subspace method, a 6D subspace method,
a truncated Gauss-Newton method, and a truncated Gauss-Newton method combined
with a 2D subspace method) are plotted in Fig. 10. In Fig. 11 the convergence profiles of
these four methods are plotted. We observe that using the subspace methods in place of
line searches improves the velocity updates noticeably, but this can come at the cost of
overestimation of the density.

5 Discussions

Using subspace methods in multi-parameter FWI in place of line search methods is ob-
served to positively alter descent directions, by accounting for the varying contribution
of each parameter class. Furthermore, higher-order perturbations can also be included
to construct subspace basis vectors, so that the different contributions of higher-order
perturbations for each parameter class can be included for each update and a nonlinear
update for each parameter class can be constructed. The Hessian operator is involved
in the calculation of subspace vector coefficients; compared to Newton-type methods,
subspace methods appear to be able to better incorporate the contributions of the higher-
order model perturbation in the descent direction for each parameter class. Therefore,
subspace methods in multi-parameter FWI may be useful tools for mitigating cross-talk
between parameter classes, it being capable of updating each parameter class with a tai-
lored step length. Also, it can when desired include nonlinear/multiple-scattering re-
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Figure 10: Inverted velocity and density using different methods. Results are plotted in the same scale of the
true model. Here, GN stands for truncated Gauss-Newton method, and SS stands for subspace method.

lated perturbations as a correction to the single-scattering related perturbations for dif-
ferent parameter classes.

Advantages of the subspace method, then, are that

1. Gradients with different parameters are considered individually. A least-squares
inversion is performed within the subspace, which is constructed including ac-
counting for the individual influence of each parameter class;
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Here, GN stands for truncated Gauss-Newton method, and SS stands for subspace method.

2. Coefficients are calculated using the Hessian-vector product, and is thus much
cheaper than Newton-type methods (it is comparable to truncated Gauss-
Newton/Newton methods);

3. The approach shows signs that they may be useful for attenuation of crosstalk in
multi-parameter FWI; and

4. Nonlinear / multiple scattering related perturbations can be used to construct the
basis vectors, so that the intrinsic nonlinearity of the FWI problem can be more
directly handled.

However, disadvantages of the subspace method can also be significant, since

1. The theory relies on the assumption that the Hessian correctly captures the full
behavior of the misfit function. When the misfit function is not locally quadratic,
there is no guarantee that the global minimum can be found;

2. An approximate Hessian is usually used rather than the exact Hessian, which in-
troduces difficult-to-quantify inaccuracies; and

3. It is possible that a model perturbation calculated from (2.11) will be too large for
the misfit function to be considered approximately quadratic. In this case, another
scaling factor may be needed to modify the coefficients so that updates converge.

6 Conclusions

We analyze the application of subspace methods to acoustic FWI and the simultaneous
updating of velocity and density. Subspace methods can be used in place of the line
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search in traditional implementations of FWI to obtain step lengths for different parame-
ter classes. The Gauss-Newton Hessian in Hessian-vector products is involved to find the
local minimum in the spanned space. We formulate different basis vectors, from gradient
of each parameter class to higher-order perturbations related to each parameter class, to
construct different spanned spaces to distinguish the contributions of different parame-
ter classes for linear updates as well as the contributions of higher-order perturbations
of each parameter class for nonlinear updates. The behavior of the subspace methods
for both linear and nonlinear updates are compared with traditional FWI methods. The
subspace methods exhibit improved convergence rates, as well as better reconstruction
of the velocity model. The reconstruction of density model, however, remains affected
by cross-talk artifacts, especially when the Hessian is not considered as in gradient-based
methods.
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