
Commun. Comput. Phys.
doi: 10.4208/cicp.OA-2018-0144

Vol. 28, No. 1, pp. 276-296
July 2020

Linear Wavefield Optimization Using a Modified Source

Tariq Alkhalifah1,∗

1 Physical Sciences and Engineering, King Abdullah University of Science and
Technology, Mail box # 1280, Thuwal 23955-6900, Saudi Arabia.

Received 28 May 2018; Accepted (in revised version) 9 October 2019

Abstract. Recorded seismic data are sensitive to the Earth’s elastic properties, and
thus, they carry information of such properties in their waveforms. The sensitivity
of such waveforms to the properties is nonlinear causing all kinds of difficulties to the
inversion of such properties. Inverting directly for the components forming the wave
equation, which includes the wave equation operator (or its perturbation), and the
wavefield, as independent parameters enhances the convexity of the inverse problem.
The optimization in this case is provided by an objective function that maximizes the
data fitting and the wave equation fidelity, simultaneously. To enhance the practical-
ity and efficiency of the optimization, I recast the velocity perturbations as secondary
sources in a modified source function, and invert for the wavefield and the modified
source function, as independent parameters. The optimization in this case corresponds
to a linear problem. The inverted functions can be used directly to extract the velocity
perturbation. Unlike gradient methods, this optimization problem is free of the Born
approximation limitations in the update, including single scattering and cross talk that
may arise for example in the case of multi sources. These specific features are shown
for a simple synthetic example, as well as the Marmousi model.
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1 Introduction

Recording waves that may originate from active, or natural sources, including ambient
noise is now prevalent in many applications ranging from medical imaging, reverse en-
gineering, non-destructive testing, and, of course, delineating the Earth physical proper-
ties. The resulting signals carry information of the object they originated from and the
medium they travelled through. The state of these waves as a function of space and time
are referred to as wavefields. These functions depend on the source of the wavefield
energy and the medium they reside in [2]. A special kind of wavefield is the Green’s
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function [7], which represents the wavefield response to a specific point source in time
and space (or just space in most practical applications, considering our band limited sig-
nals). So, wavefields tend to be a superposition or summation of these Green’s functions
weighted by the actual sources of energy in the wavefield, as well as the sources of scat-
tering (secondary sources) [8, 9, 20]. In real life, wavefields are only known at the sensor
(recording device) locations. In our computing devices, we solve for these wavefields
using the appropriate wave equation (considering the physical nature of the medium),
for a given source of energy (location and structure) and given medium properties. If
within the simulation process of waves, the source or the medium properties are not
representative of the true source or medium properties under investigation, the wave-
field would usually be wrong and its values at the simulated sensors would differ from
those measured in the real experiment. In classic waveform inversion, we use such dif-
ferences, measured in many ways, to update the source information and the medium
parameters or at least one of them [15]. An integral part of this process is the accuracy
of the wavefield, which connects these unknowns to the measurements, and often satis-
fies a particular wave equation, or specifically its partial differential equation (PDE) form
in time or frequency. For the specific problem of waves propagating within a medium,
having the accurate wave equation for a specific medium, implies having the accurate
form, the medium information, the wavefield and source function. The classic inversion
method suffers from the sinusoidal nature of waves, and thus, faces issues related to cy-
cle skipping and the highly nonlinear relation between the medium properties and the
wave behavior. Improvements in the performance of waveform inversion is crucial to
many applications as the cost of the process is high [5, 14, 18, 19].

An approach to reduce the nonlinearity of waveform inversion is provided by loos-
ening the constraint on the wave equation and allowing the wavefield to fit the data
regardless of the velocity model [1, 11, 17, 23]. As a result, the optimization problem in-
cludes, at least, two terms, or two objectives: reducing the modelled wavefield misfit to
the data and increasing its compliance to the wave equation. Using such an optimiza-
tion, [16] and [1] invert for the medium perturbations and the source contrasts. On the
other hand, [17] elected to invert for the wavefield and the medium perturbations. The
philosophy behind both approaches is supported by the inversion iterative nature. Since
the initial velocity model is assumed wrong (it provides wavefields that do not fit the
data), then why do we need to constrain the wavefield to the wave equation. The wave
equation is as good as its operator, which is driven primarily by the model. However,
in both implementations, updating the velocity model is an integral part of the iterative
process.

Since the scattering series, and specifically, the Lippmann-Schwinger equation [21]
suggests that the wavefield can be constructed from the background model and scattering
(secondary or contrast sources), we can formulate an optimization for the wavefield and
the secondary sources, and initially bypass inverting for the source of nonlinearity given
by the medium perturbations. The inversion for the medium perturbations can happen
in a follow up step. Thus, in this case, the wave equation operator remains stationary,
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corresponding to the background model allowing for faster wavefield solutions. Though
this approach seems exposed to the weaknesses of the scattering series (the convergence
issue [9, 10]), the loose implementation of the Lippmann-Schwinger equation (used as a
penalty) allows us to avoid such limitations.

In this paper, I outline an algorithm that utilizes the wave equation’s linear relation to
the wavefield and the force function. Finding the wavefield that fits the data and satisfies
an accurate wave equation is the objective of waveform inversion. However, we often do
not have the accurate wave equation operator controlled by the model information. If we
absorb the model perturbations into the source function, we can formulate a linear opti-
mization problem to invert for the wavefield and a modified source. This optimization
has valuable features in efficiency, as well as accuracy. We will analyse such features on a
simple model, as well as the Marmousi model. Full inversion implementations and more
complicated models are topics of a follow up paper.

2 Theory

The suggested inversion allows us to start with an initial wave equation corresponding
to an initial knowledge of the medium, an initial knowledge of the state of the wavefield,
and an initial knowledge of the source. These could be guesses, possibly good ones, and
possibly based on using other approaches to obtain the initial values. We then update all
three components of the wave equation or two of them or any of them, in any order or
together. To establish the relation between perturbations in the model and the resulting
changes in the wavefield or the data, we utilize perturbation theory admitting the infa-
mous Born scattering series [4]. For brevity, I use wavefields, and all relative variables,
represented in the frequency domain.

2.1 The Lippmann Schwinger equation

The wave equation in the frequency domain can be discretized to form the following
linear equation:

Lu= f, (2.1)

where L is the impedance kernel (or matrix), u is a function (vector) holding discrete
values of the complex-valued wavefield over the range of the model space for a single
frequency, and f is the source vector described also within that space, also possibly com-
plex valued. For point grid sources in the domain of interest represented by the identity
matrix, I, the Green’s function satisfies a similar equation:

LG= I, (2.2)

where G is the Green’s matrix with columns made up of the wavefield response to a par-
ticular grid point source. Thus, each column of G spans the model space. As a result, the
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wavefield can also be evaluated using a simplified version of Green’s theorem (ignoring
boundary conditions) as follows:

u=L−1f.=Gf. (2.3)

Considering the impedance matrix for a simpler (or known) model, L0, the new
Green’s function satisfies the following equation:

L0G0= I. (2.4)

Assuming the difference V = L−L0 (medium perturbations) causes a Green’s function
(wavefield) perturbation, G−G0, then the total Green’s function satisfies the following
Lippmann Schwinger equation:

G=G0+G0VG. (2.5)

We can then solve for the full Green’s function as follows:

G=(I−G0V)−1G0, (2.6)

which is hard to implement numerically as it includes an inverse of a large matrix, which
tends to be unstable when V is large (the matrix less diagonal dominant). The Born
series is extracted by expanding Eq. (2.6) using the Neumann series (Born-Neumann ex-
pansion). The expanded series is not guaranteed to converge, especially if V is large (i.e.
the determinant of VG0 is bigger than 1).

If we consider V to be small, we can replace G with G0 in the right hand side of
Eq. (2.5) to obtain:

Gapprox=G0+G0VG0, (2.7)

which is the Born approximation, and it is the essence of the gradient based update for
FWI, as we will see next.

2.2 The Inversion

In classic implementations of waveform inversion, we seek the velocity model informa-
tion (or what is missing from it, perturbations) from the difference between the modelled
and measured data. To do so we formulate an optimization problem that utilizes the
wave equation, or any form of it, to obtain data (our wavefields at the measuring points)
that are similar to the measured ones. Thus, an optimization problem in seeking the true
perturbation V̂ can have the following form:

V̂=min
V

J(V)=min
V

1

2
|d−CG(V)f|22, (2.8)

such that (L0+V)G= I. Here, C projects the wavefield to the receiver locations in which
the measured data, d, reside. The operator L0 corresponds to the wave equation for the
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initial (background) velocity, and V is assumed zero at the beginning of the inversion
process. In many applications, including classic FWI, V is assumed to be block diagonal
with nonzero elements spanning only the model space. The gradient, computed using
the adjoint state method, is, thus, given by [13]

∇V J=u∗(L0+V)−1CT
∆d, (2.9)

where for conventional waveform inversion,∇V J is also given by elements that span the
model space. Here, ∆d=d−CG(V)f, and the symbol ∗ stands for the complex conjuga-
tion. The gradient here constitutes the adjoint of the Born approximation equation (2.7).
In this case, the perturbation can be updated using

Vnew=V−AV∇V J, (2.10)

where AV can be the Hessian or any approximation of it, or as simple as a predetermined
step length.

We can also establish a gradient for f:

∇f J=(L0+V)−1CT
∆d, (2.11)

which is the time reversal of the residual data [3]. Its update, thus, is given by fnew =
f−Af∇f J, where Af is the again a form of the Hessian. Thus, we can iteratively update
V and f using their gradients. The Green’s function here is computed using the wave
equation, and it is dependent on the velocity. This dependency is the reason for the
nonlinearity of the objective function as the Green’s function is nonlinearly dependent
on perturbations in velocity, as evidence by the Born series.

If we treat the Green’s function as an independent variable of the perturbation by
loosening the constraint on the wave equation [11, 23], we can formulate the following
two-term optimization problem:

J(V,G,f)=
1

2
|CGf−d|2+

1

2
ǫ|(L0+V)G−I|2, (2.12)

where G is the full Green’s function, and I, as described earlier, is the identity matrix.
Here, ǫ is a weighting variable between the data fitting and satisfying the wave equation.
In this case, the gradient with respect to perturbations in the wave equation operator is
given by

∇V J(V,G,f)=ǫG∗∆I, (2.13)

where, ∆I=(L0+V)G−I. However, unlike wavefields, which extend the model space,
Green’s functions can be as large as squared the model space. Meanwhile, the gradient
with respect to the Green’s function as an independent function is given by:

∇G J(V,G,f)=ǫ(L0+V)∗∆I+f∗CT
∆d, (2.14)
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and the gradient with respect to the source is given by

∇f J(V,G,f)=G∗CT
∆d, (2.15)

which again constitutes a time reversal with the full Green’s function. Here, I try to con-
strain three parameters with two terms in the objective function, which can be a source
of nonuniqueness in the inversion and additional constraints are required.

2.3 Inversion with the Lippmann Schwinger equation

If we replace the wave equation with the Lippmann Schwinger equation, the conven-
tional optimization problem can be formulated as follows:

V=min
V
|d−CGf|22, (2.16)

such that G satisfies Eq. (2.5), in which C again projects the wavefield to the receiver
locations. This optimization problem is equivalent to FWI. If we replace G with Gapprox,
we obtain the linearized inversion [15], which can be used to obtain optimized Gauss
Newton updates for a full waveform inversion [22].

Moving back to the extended form (Eq. (2.12)), the optimization in this case has the
following two-term structure

J(V,G,f)=
1

2
|CGf−d|2+

1

2
ǫ|G−G0−G0VG|2, (2.17)

where again G is the full Green’s function satisfying LG= I, and G0 is the background
Green’s function satisfying L0G0= I. Thus, the gradient with respect to the perturbation
V:

∇V J(V,G,f)=ǫG∗G∗0∆G, (2.18)

which somewhat resembles the classic FWI gradient, but for the residual, which here
corresponds to the Green’s function, ∆G=G−G0−G0VG. The gradient with respect to
the Green’s function is given by:

∇G J(V,G,f)=ǫ(I−V∗G∗0)∆G+f∗CT
∆d, (2.19)

and the gradient with respect to the source is given by

∇f J(V,G,f)=G∗CT
∆d, (2.20)

which again constitutes a time reversal with the full Green’s function. Since f is a function
that controls the data linearly, there is a potential tradeoff between it and the Green’s
function. Thus, if f is unknown, we will need to constrain it.

As mentioned earlier, Green’s functions can have dimensions squared the model
space to cover sources at every model point. Inverting for it, however, can be cumber-
some though maybe useful as mentioned above to allow for an expanded inversion for



282 T. Alkhalifah / Commun. Comput. Phys., 28 (2020), pp. 276-296

the operator perturbation. However, for practical implementations, I substitute u=Gf

into Eq. (2.17) after multiplying the second term by f, to obtain:

J(V,u,f)=
1

2
|Cu−d|2+ǫ

1

2
|u−G0f−G0Vu|2. (2.21)

This form provides an opportunity to reduce the complexity of the problem as we will
see next.

3 The reduction of the problem

I will outline two forms of this proposed reduction, which are based on the following
substitution:

fe= f−Vu. (3.1)

The idea is to postpone the inversion for V, which is the source of nonlinearity (Vu), to
a separate stage. This approach attempts to extract the wavefield from the background
medium using the scattering series in an optimization formulation.

3.1 Focusing on the wavefield

Substituting Eq. (3.1) into Eq. (2.12) yields the reduced linear optimization given by

J(u,fe)=
1

2
|Cu−d|2+

1

2
ǫ|u−G0fe|2. (3.2)

We now have two unknowns, the wavefield and a modified source function supposedly
holding information corresponding to the actual source and secondary sources (pertur-
bations). If we invert for one of these two potential unknowns, this optimization problem
is convex, and can be used to solve for u using the following linear equations:

(

C
ǫL0

)

u=

(

d

ǫfe

)

, (3.3)

with
fe = fe+∆fe, (3.4)

and ∆fe =ǫ(L0u−fe).
The least squares form of Eq. (3.3) is given by

(

CTC+ǫ
2L0
∗L0

)

u=CTd+ǫ
2L0
∗fe, (3.5)

with
fe =L0u. (3.6)

Eqs. (3.5) and (3.6) are solved sequentially in an alternate fashion.
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3.2 An alternative formulation

Utilizing the Lippmann-Schwinger formulation (2.5) in both terms of the extended opti-
mization, I obtain

J(V,u,f)=
1

2
|d−CG0f−CG0Vu|2+

1

2
ǫ|u−G0f−G0Vu|2. (3.7)

Considering that the known (initial) velocity model is used to develop the initial
wavefield (stripped of the source function) G0, then the difference between the true
wavefield, part of which is represented in the measured data, and this wavefield is given
by the perturbation V. In classic full waveform inversion, the difference in the wave-
fields at the recording stations is used to update the background model using the Born
approximation V0.

The gradient for this optimization, using the adjoint state method, is given by:

∇V J=uG∗0CT
∆d+ǫuG∗0∆u,

∇u J=ǫ∆u−V∗u∗
(

ǫ∆u+CT
∆d

)

,

∇f J=−G∗0

(

ǫ∆u+CT
∆d

)

, (3.8)

where ∆d = d−CG0f−CG0Vu and ∆u = u−G0f−G0Vu. Again this optimization of-
fers a large degree of freedom and a high level of non uniqueness in which additional
constraints and regularizations are needed.

Using the reduction process based on including of the model perturbation in a new
force function (3.1), we obtain the following objective function:

J(u,fe)=
1

2
|d−CG0fe|2+

1

2
ǫ|u−G0fe|2. (3.9)

In this case, the solution satisfies the following linear form:

(

ǫG0

CG0

)

fe =

(

ǫu

d

)

, (3.10)

where

∆u=u−G0fe, (3.11)

and u=u+∆u, or in another form u=G0fe. We continue iterating between Eqs. (3.10)
and (3.11) until, for example, |∆u|2 is small. This is similar to the set (3.5) and (3.6), with
interchanging the roles of wavefield and force function.

We, then, can use fe and u, with a known f to invert for V.
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3.3 Inverting for V

Now the estimation of medium perturbations, V, can be applied in a separate step. If we
know the force function, f, or at least the space component of it the problem is generally
trivial. However, if this function is unknown, we might need to inject constraints, like
promoting sparsity in f, to the problem. We can formulate an optimization to find the
minimum of:

J(V,f)= |fe−f+Vu|22. (3.12)

Such an optimization can be performed efficiently since no modelling is involved and
these functions often span the model space. The gradients are given by:

∇V J(V,f)=u∗∆f, (3.13)

and
∇f J(V,G,f)=∆f, (3.14)

where ∆f = fe−f+Vu. Using the gradients, we can update one of these parameters or
both as needed. In solving for both V and f, we are trying to identify in fe the actual
sources, f, and the secondary ones, Vu, identified in [11] as contrast sources. However,
our identification is given directly by the perturbation V. In using the gradient method
to obtain V, we are vulnerable to crosstalk when f contains more than one event.

However, if the true source function, f, is known, or at least its space component is
known, we can solve for V directly using Eq. (3.1). It is given by a direct division:

V=
f−fe

u
≈

u∗(f−fe)

u∗u+α
, (3.15)

where α is a small positive number to guarantee that the denominator is bigger than zero.
This division, or deconvolution, slightly mitigates crosstalk. It is, however, dependent
on a wavefield in the denominator. Since we are pursuing in the division a velocity or
medium update, we should utilize smoothing operators. Such operators can regularize
the division to provide us with a smooth version courtesy of shaping operators [6]. I
utilize such smooth divisions in the examples below.

4 A potential algorithm

The derived formulas offer the opportunity to suggest a number of implementation strate-
gies. The key feature here is that the estimation of the medium perturbations can be
done independently using a separate step. The inversion of the wavefield and the mod-
ified source, like any inversion, will depend on how accurate the background model as
such an inversion depends on the size of the scatterer. The implementation based on
the extended objective function (3.2) in which the wavefield and the modified source are
inverted allows for additional degrees of freedom to help us converge in spite of the po-
tentially inaccurate background (initial) model. However, an opportunity to update the
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background model is helpful, granted it does not add much to the cost of the inversion.
So the right balance between robustness and efficiency is needed.

A frequency domain implementation is favourable here considering that the wave-
field and the source function have reduced dimensions in such a domain. In this case,
each frequency will require an inversion of the matrix involved in Eqs. (3.3) or (3.10).
We can utilize this fact by updating the velocity model once per frequency as we move
from low to high frequencies. The only parameter we might want to change in the left
hand side (The matrix) is ǫ. This parameter, as [17] suggested, does not have to change
frequently. So it can also be updated per frequency, as well.

This implementation that allows for a single LU decomposition per frequency is syn-
onymous to the cost of solving the wave equation in the frequency domain, and thus,
offers what might be the most efficient rendition of an inversion. Since the extended
equation forces the data fitting in the initial iterations, it is also somewhat immune to
cycle skipping. However, like any inversion, there is no guarantee of convergence.

I share an algorithm (see Algorithm 1) of a potential inversion implementation using
the least squares form of Eqs. (3.10) and (3.11), in which we place the modified source
as the central parameter. This algorithm explicitly clarifies the role of the background
Green’s function more vividly. Note that we can pull G∗0 from the least square version of
Eq. (3.10), and thus, the modified force function satisfies:

(

ǫ
2G0+CTCG0

)

fe =
(

ǫ
2u+CTd

)

, (4.1)

which suggests that the inverted fe attempts in average, to fit the current wavefield and
data (weighted by ǫ). For large ǫ, fe is controlled mainly by the background wavefield,
and thus, it is closer to f and the problem is closer to conventional FWI, with the danger

Algorithm 1 Modified source inversion algorithm

Input: Observed seismic data d; initial velocity providing L0; Number of iterations niter;
Source function f; all associated with the ith frequency; The weight ǫ;

Output: The model perturbation V.
1: Initialize: u←G0f;
2: for i=1...N do

3: G0← Solve (L0+V)G0= I;
4: for k=1...niter do

5: fe← Solve
(

ǫ
2G∗0G0+G∗0CTCG0

)

fe =G∗0
(

ǫ
2u+CTd

)

using for example conju-
gate gradient methods;

6: u←G0fe;
7: end for

8: V← f−fe
u ;

9: Increase ǫ if needed;
10: end for
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of cycle skipping if the initial velocity is bad. For ǫ = 0, fe is the time reversal source
image. For an intermediate ǫ it contains both components (background wavefield and
time reversal) weighted by ǫ. In the algorithm, we assume f is known, which is often the
case with active experiments.

5 Examples

At this stage, let us analyse some of the features of the reduced formulation using a sim-
ple two-layer model. The model shown in Fig. 1(a) has a velocity of 2 km/s in the first
layer and 3.5 km/s in the second layer. Using a Helmholtz solver for a frequency of 5
Hz and a source function given in Fig. 1(b), we solve for the wavefield with the real part
shown in Fig. 2(a). Considering a background (initial) homogeneous model with veloc-
ity equal to 2.5 km/s (a value between the first and second layers velocities), we obtain
a wavefield with the real part shown in Fig. 2(b) for the same source function. Thus, the
background wave equation operator provides, as expected, circular wavefronts. Thus,
we can appreciate how the layering effected the wavefield, especially in the region above
the layer interface (acting as a secondary source). If we move the complexity of the model

(a)

(b)

Figure 1: (a) A simple two-layer model with the velocity in first layer 2.0 km/s, and the second layer 3.5 km/s.
(b) The source function used to produce the single frequency wavefield.
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(a)

(b)

Figure 2: (a) The real part of the resulting wavefield for the model in Fig. 1(a) and the corresponding L, as
well the source function in Fig. 1(b). (b) The real part of the wavefield for the background homogeneous model
corresponding to L0 with a velocity of 2.5 km/s and the same source function.

(the perturbation) to the source function, we can use the background wave equation oper-
ator to obtain the same complex wavefield. Using the exact wavefield shown in Fig. 2(a),
we compute fe from Eq. (3.1), which is shown in Fig. 3(a). Applying the Helmholtz
solver with the constant background velocity for the source function fe, we obtain the
wavefield shown in Fig. 3(b). In fact, for the homogeneous model, the Green’s function
can be described analytically. Thus, the complexity of this new wavefield is the result of
the modified source function. The resulting wavefield is very close to the true one shown
in Fig. 2(a). The mild differences are attributed to the boundary condition that is different
for L and L0, and ignored here.

This resulting wavefield along with fe can be used to compute the perturbation us-
ing a gradient method given by Eq. (3.13) or a smooth division [6], of Eq. (3.15). The
smooth division, applied here, includes a 7-point smoother in both space directions. The
smoother is needed since we are dealing with a single frequency and a single source in
calculating the perturbation. The purpose of this simple experiment is to demonstrate the
validity of the formulations. The need for the smoothing is evident in the estimated per-
turbation, V, in Fig. 4(a). It is obtained using the wavefield in Fig. 3(b) and fe in Fig. 3(a),
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(a)

(b)

Figure 3: (a) The modified source function fe obtained using Eq. (3.1) with the exact wavefield in Fig. 2(a)
and the true V and f. (b) The real part of the wavefield solved using L0u= fe to compare with Fig. 2(a).

(a) (b)

(c) (d)

Figure 4: (a) The perturbation V obtained by using the gradient method (using Eq. (3.13) iteratively), and
(b) by using a smooth division. (c) The corresponding velocity perturbation for the gradient case (a) after
smoothing it with the same window used in the smooth division. (d) The corresponding perturbation in velocity
for the smooth division.
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(a)

(b)

Figure 5: (a) The source function with three sources. (b) The real part of the resulting wavefield for the model
in Fig. 1(a) corresponding L, and the source function in (a).

as well as the original source, with the gradient method. It clearly contains an imprint of
the wavefield. On the other hand, the smooth division with a smoothing of 7 points in
both space axes, results in the perturbation in Fig. 4(b). Obviously, the smooth division
provided a better perturbation estimate than the gradient. Even with a 7-point smoother
applied to the resulting velocity perturbation, δm obtained from the gradient approach,
(Fig. 4(c)) calculated from V in Fig. 4(a) is not very stable compared to the velocity per-
turbation using the smooth division (Fig. 4(d)). In both cases, the required update of -0.5
in the first layer and 1.0 km/s in the second layer is apparent in average in the result-
ing perturbations. These perturbations are obtained using the exact fe, but it shows the
potential of the approach, and its closed loop nature.

One of the features I promote with the direct (smooth) division, to obtain the ve-
locity perturbation, is the mitigation of crosstalk artifacts often associated with a simul-
taneous inversion of multi sources data [12]. The crosstalks are often associated with
gradient-based updates in waveform inversion (correlation replacing deconvolution), as
we compare state and adjoint state wavefields assuming the continuity in the wavefield
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(a)

(b)

Figure 6: (a) The modified source function fe obtained using Eq. (3.1) with the exact wavefield in Fig. 5(b)
and the true V and f. (b) The real part of the wavefield solved using L0u= fe.

at perturbation points. For multi sources, the comparison includes energy from unrelated
events of the state and adjoint state wavefields interacting with each other forming arti-
facts. Since the inversion, promoted here, evaluates the velocity perturbation using direct
inversion, the results are immune from such artifacts. Fig. 5(b) shows the wavefield for
the same model in Fig. 1(a) but for a 3-source function, not uniformly spaced (Fig. 5(a)).
As expected the wavefield is complicated. We use it again to compute fe, as shown in
Fig. 6(a). Considering the homogeneous background model we used above, and solving
the Helmholtz wave equation in the background model with fe, we obtain the wavefield
in Fig. 6(b). It is reasonably similar to the wavefield shown in Fig. 5(b).

As above, we next invert for the velocity perturbation for the three simultaneous
sources case. The velocity perturbation obtained using the gradient method and a 7-point
smoother is shown in Fig. 7(a). Though the perturbations are close to what we expect,
they include a lot of artifacts. On the other hand, direct division using a smooth division
with a 7-point window admits the velocity perturbation shown in Fig. 7(b)). This pertur-
bation is relatively free from artifacts and compared to the single source case (Fig. 4(d),
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(a)

(b)

Figure 7: (a) The velocity perturbation for the gradient case after smoothing it with the same window used in
the smooth division. (b) The corresponding perturbation in velocity for the smooth division.

benefited from more illumination, and thus, the change between layers is more regular
laterally.

I repeat the above experiment with the Marmousi model shown in Fig. 8(a). I consider
a homogeneous background given by a velocity of 2.5 km/s. Thus, the perturbations we
seek are shown in Fig. 8(b). For a change, I use a higher frequency of 10 Hz for this ex-
ample. Fig. 9(a) shows the wavefield computed by solving the Helmholtz wave equation
for the source function given in Fig. 1(b). I then compute the modified source fe from the
perturbation shown in Fig. 8(b). Solving the background wave equation for the velocity
of 2.5 km/s using the modified source results in the wavefield shown in Fig. 9(b). It looks
similar to the exact wavefield. The difference is caused by not including the boundary
condition in the modified source. However, such a difference is small with respect to
inversion standards. We use this wavefield and the modified source to compute the ve-
locity perturbation shown in Fig. 10(a) using smooth division with a 7-point smoother.
For comparison, the velocity perturbation computed from the wavefield and modified
source using a gradient method is shown in Fig. 10(b). As we saw before, the direct
division provides a better inversion as we compare the inverted perturbations with the
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(a)

(b)

Figure 8: (a) The Mamrousi model. (b) The velocity perturbation we seek considering a constant background
velocity model of 2.5 km/s.

true ones shown in Fig. 8(b). The difference is expected to be larger for simultaneous
sources. So we repeat the experiment with the simultaneous sources function shown in
Fig. 5(a). The resulting velocity perturbation by division is shown in Fig. 11(a). Mean-
while, the gradient approach admitted an artifact infested velocity perturbation shown
in Fig. 11(b).

6 Discussions

The main objective of this paper is to introduce the two step inversion in which the model
estimation is handled in a separate step. Thus, I focussed on the concept and performing
some simple numerical analysis. We will include the process of inversion in a sequel
paper.

Of course, the accuracy of the inversion in the first step (for u and fe) depends on
the background model. Despite that the introduction of the modified source function
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(a)

(b)

Figure 9: (a) The true wavefield obtained by solving the Helmholtz wave equation for the true velocity model
shown in Fig. 8(a). (b) The wavefield corresponding to the background 2.5 km/s model with the modified
source.

in Eq. (3.1) is exact, as expected, finding the wavefield and modified source function
that satisfies the background wave equation and the data is slightly more involved when
the background model is far from the true model. Thus, in the implementation, I sug-
gest to update the wave equation operator as we scale up the frequency. This proposed
methodology tries to balance the need for efficiency with maintaining a semblance of ac-
curacy. However, there are many potential strategies and options to utilize the two-step
implementation. The cost of the inversion depends on the implementation strategy. As
discussed earlier. we anticipate that one matrix inversion will be needed per frequency.
In this case, the cost is similar to the cost of solving the wave equation. The cost of the
smooth division to obtain the velocity perturbation is negligible. However, due to the
expected variations in illumination depending on the acquisition, a line search will be
needed to find the best update along the velocity perturbation vector direction.

Among the most important features of the new formulation is the reduction of crosstalk
in the case of simultaneous sources. Since this feature is related to the mitigation of
crosstalk, we expect other sources of crosstalk, like multiples, will benefit from this fea-



294 T. Alkhalifah / Commun. Comput. Phys., 28 (2020), pp. 276-296

(a)

(b)

Figure 10: (a) The inverted model using the smooth division. (b) The inverted model using the gradient
method. Both inverted models using the true fe and computed wavefield in Fig. 9(b).

ture. The smoothness used in the division is natural. It will help in the case of simulta-
neous sources. Such smoothness is often used with FWI gradients to reduce noise. For a
fair comparison we used the same smoothness for the division and gradient methods.

7 Conclusions

I developed an efficient waveform inversion strategy that relies on a convex optimiza-
tion problem in inverting for the wavefield and a modified source. The wavefield and
modified source can be used to directly invert for the velocity perturbation in a separate
step. The efficiency of the strategy is provided by relying on the background wavefield
for such a convex inversion in which we iteratively invert for the wavefield and the mod-
ified source function. In addition, the direct inversion for the perturbation is immune
to crosstalk in the case of using multi sources. Some of the features of the approach is
demonstrated on a simple two-layer model, as well as the Marmousi model.
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(a)

(b)

Figure 11: (a) The smooth division inverted model for the simultaneous source case. (b) The inverted model
using the gradient method for the simultaneous source case.
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