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Abstract. We provide a general construction method for a finite volume element

(FVE) scheme with the optimal L2 convergence rate. The k-(k-1)-order orthogonal

condition (generalized) is proved to be a sufficient and necessary condition for a k-
order FVE scheme to have the optimal L2 convergence rate in 1D, in which the

independent dual parameters constitute a (k-1)-dimension surface in the reasonable
domain in k-dimension.

In the analysis, the dual strategies in different primary elements are not necessar-

ily to be the same, and they are allowed to be asymmetric in each primary element,
which open up more possibilities of the FVE schemes to be applied to some complex

problems, such as the convection-dominated problems. It worth mentioning that,

the construction can be extended to the quadrilateral meshes in 2D. The stability
and H1 estimate are proved for completeness. All the above results are demon-

strated by numerical experiments.
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tion.

1. Introduction

The finite volume element method (FVEM) [1–3, 6, 9–11, 14–16, 18, 19, 21, 26, 29–

31, 34, 36] is a type of finite volume method (FVM), which is famous for the local

conservation property and has been successfully applied to a broad range of problems.

Till now, a lot of progress has been made in understanding the stability andH1 estimate

[8, 9, 20, 22, 28, 35, 37], L2 estimate [7, 13, 17, 23, 24, 32], and superconvergence [4,

5, 25, 33] for the FVEM. Most of the existing results talk about the FVE schemes with

symmetric dual meshes.

∗Corresponding author. Email addresses: wxjldx@jlu.edu.cn (X. Wang), 918809040@qq.com (Y. Zhang)

http://www.global-sci.org/nmtma 47 c©2021 Global-Science Press



48 X. Wang and Y. Zhang

This paper focuses on the construction and L2 analysis for the FVE schemes whose

dual meshes could be asymmetric in 1 dimension. Due to the test space of the FVEM is

different from the trial space, given a Lagrange k-order trial space, there are different

FVE schemes corresponding to the different choices of dual meshes and the piecewise

constant test space over it. Nevertheless, not all of these FVE schemes have optimal

L2 convergence rate, including the even-order FVE schemes with uniform dual meshes.

Therefore, how to choose the dual meshes is a main issue of the FVE schemes’ con-

struction [8, 23, 25, 32, 33, 35, 37]. To the authors’ knowledge, current results about

the L2 estimate are mainly focused on sufficient conditions for FVE schemes to have

the optimal L2 convergence rate. At the same time, little progress has been made in

understanding the necessary conditions.

In this paper, the k-(k-1)-order orthogonal condition (generalized) is proved to be

a sufficient and necessary condition for the FVE schemes to hold the optimal L2 con-

vergence rate. The k-(k-1)-order orthogonal condition means some orthogonality to

the (k-1)-order polynomial space on each element K in the sense of the inner prod-

uct. It was first proposed in [32] for the FVE schemes with symmetric dual meshes

over triangular meshes, and a simple comparative study was made on the number of

independent restrictions and the number of independent dual parameters to determine

the dual meshes. In the present paper, it is proved that, when the k-(k-1)-order or-

thogonal condition is satisfied, the k dual parameters form a (k-1)-dimension surface

in the reasonable domain in k-dimension. That means, for the FVE schemes holding

optimal L2 convergence rate, their k dual parameters form a (k-1)-dimension surface in

k-dimension. In particular, for FVE schemes with symmetric dual meshes, all odd-order

schemes have optimal L2 convergence rate, while not all even-order schemes hold op-

timal L2 convergence rate even if they have uniform dual meshes, which are consistent

with what we knew before from numerical experiments.

It’s worth mentioning that, in the analysis, the dual strategies in different element

could be different, which allows more applications of the FVEM. Numerical experiments

are presented for some convection-dominated problems (Examples 5.4-5.5). The per-

formances of the standard quadratic finite element (FE) scheme (FE2), the quadratic

FVE scheme with Gauss-Lobatto dual strategy (FV2-5), and the quadratic FVE schemes

(FV2-6 in Example 5.4 and FV2-7 in Example 5.5) with asymmetric dual meshes are

compared over uniform primary meshes. It’s shown that the quadratic FVE schemes

(FV2-6 and FV2-7) with proper dual strategies perform better than FE2 and FV2-5

in these two examples, which demonstrates the capacity of the FVEM to solve some

convection-dominated problems.

Following Section 2 shows the definition of the FVE schemes for the two-points

boundary value problem. Section 3 introduces the orthogonal condition and the cor-

responding equivalent equations, which helps to construct FVE schemes. In Section 4,

we present the main result of this paper, a necessary and sufficient condition for a FVE

scheme to have the optimal L2 convergence rate. Numerical experiments, including

one on the rectangular meshes, are shown in Section 5 to illustrate our theoretical re-

sults. Then, we made conclusion in Section 6 and analyse the stability in Appendix A.
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2. FVE schemes of arbitrary order

Consider the two-point boundary value problem,
{

−(p(x)u′(x))′ + q(x)u′(x) + r(x)u(x) = f(x), ∀x ∈ Ω := (0, 1),

u(0) = u(1) = 0,
(2.1)

where

p ≥ p0 > 0, r −
1

2
q′ ≥ γ > 0, p, q, r ∈ L∞, f ∈ L2(Ω), ‖p‖2,∞ ≤ p2.

2.1. The trial function space and test function space

Primary mesh and trial function space. Let 0 = x0 < x1 < x2 < · · · < xN = 1 be

N +1 distinct points on Ω. For all i ∈ ZN := {1, . . . , N}, we denote Ki = [xi−1, xi] and

hi = xi − xi−1. Let h = max
i∈ZN

hi and

Th = {Ki : i ∈ ZN}

be a partition (primary mesh) of Ω. The corresponding trial function space Uk
h is chosen

as the k-order (k ≥ 1) Lagrange finite element space

Uk
h :=

{

wh ∈ C(Ω) : wh|K ∈ P k(K),∀K ∈ Th, wh|∂Ω = 0
}

.

Here, P k(K) is the k-order polynomial space on K. It’s easy to find that dim Uk
h =

Nk − 1.

Dual mesh and test function space. Let 0 < α1 < α2 < · · · < αk < 1 be k points

(to define the dual points) on the reference interval K̂ = [0, 1]. The dual points on each

interval Ki(i ∈ ZN ) are defined as the affine transformations of αjs from K̂ to Ki, that

αi,j = hiαj + xi−1, (i, j) ∈ ZN × Zk, αN,k+1 = 1.

With these dual points, we construct the dual meshes

T ∗
h =

{

K∗
1,0

}

∪
{

K∗
i,j : (i, j) ∈ ZN × Zk

}

,

where

K∗
1,0 = [0, α1,1], K∗

i,j = [αi,j , αi,j+1], αi,k+1 = αi+1,1, ∀i ∈ ZN−1.

The corresponding test function space Vh is the piecewise constant function space over

T ∗
h , which vanishes on the intervals K∗

1,0 ∪K
∗
N,k

Vh :=

{

vh : vh =

N
∑

i=1

k
∑

j=1

vi,jψi,j, (i, j) ∈ ZN × Zk, v1,0 = vN,k = 0

}

,

where vi,j and ψi,j = χ[αi,j , αi,j+1] are the constant function and the characteristic

function on K∗
i,j, respectively. Here, we have dimVh = Nk − 1 = dimUk

h .
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2.2. FVE schemes

Integrating (2.1) on each control volume K∗
i,j = [αi,j, αi,j+1] ∈ T ∗

h with integration

by parts, we have

p(αi,j)u
′(αi,j)− p(αi,j+1)u

′(αi,j+1)

+

∫ αi,j+1

αi,j

q(x)u′(x) + r(x)u(x) dx =

∫ αi,j+1

αi,j

f(x) dx. (2.2)

For any vh ∈ Vh, multiplying (2.2) with vi,j and the summing up for all K∗
i,j ∈ T ∗

h ,

approximate u in the trial space Uk
h . Then, the FVE scheme for solving (2.1) is to find

uh ∈ Uk
h , such that

ah(uh, vh) = (f, vh), ∀vh ∈ Vh, (2.3)

where (f, vh) is the normal inner product, and ah(uh, vh) is the bilinear form of the

FVEM

ah(uh, vh) =
∑

Ki∈Th

∑

K∗

i,j∈T
∗

h

−
(

pu′hvh
)

|∂K∗

i,j∩Ki

+
∑

Ki∈Th

∫

Ki

vh
(

q(x)u′h(x) + r(x)uh(x)
)

dx,

which also can be written as

ah(uh, vh) =

N
∑

i=1

k
∑

j=1

[vi,j]p(αi,j)u
′
h(αi,j) +

N
∑

i=1

k
∑

j=1

vi,j

∫ αi,j+1

αi,j

q(x)u′h(x) + r(x)uh(x) dx.

Here, [vi,j ] = vi,j − vi,j−1 is the jump of vh at point αi,j, and vi,0 = vi−1,k, 2 ≤ i ≤ N .

2.3. Notations about interpolation operators

To the convenience of the proof in this paper, we define the following two operators

Πk
h and Πk,∗

h .

• Πk
h : H1(Ω) → Uk

h , the piecewise k-order Lagrange interpolation operator.

• Πk,∗
h : Uk

h → Vh, a piecewise constant operator based on the dual mesh T ∗
h .

Let 0 = a0 < a1 < a2 < · · · < ak = 1 be k+1 points on the reference interval K̂ = [0, 1].

Then, define the interpolation nodes of Πk,∗
h on Ki by the affine transformations of ajs

from K̂ to Ki, that

a1,0 = 0, ai,j = xi−1 + hiaj , (i, j) ∈ ZN × Zk.

Then, for any wh ∈ Uk
h ,Π

k,∗
h wh is given by

Πk,∗
h wh|K∗

i,j
= wh(ai,j), ∀K∗

i,j ∈ T ∗
h .
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3. The orthogonal condition

The orthogonal condition for the k-order FVEM with general dual strategies are

given by

Definition 3.1 (The k-(k-1)-order orthogonal condition). We call a k-order FVE scheme

satisfying the k-(k-1)-order orthogonal condition, if there exists Πk,∗
h , such that the

following equations (constraints) hold

∫

K
g
(

w −Πk,∗
h w

)

dx = 0, ∀g ∈ P k−1(K), ∀w ∈ P 1(K). (3.1)

Here, P k−1(K) is the (k-1)-order polynomial space on K.

Lemma 3.1. The k-(k-1)-order orthogonal condition (3.1) is equivalent to following re-

strictions
k
∑

j=1

(aj − aj−1)α
i
j =

1

i+ 1
, ∀i ∈ Zk. (3.2)

Here, αjs (j ∈ Zk) and ais (i ∈ Zk ∪{0}) are the parameters to locate the dual points and

the interpolation nodes of Πk,∗
h , respectively, which are defined in Subsections 2.1 and 2.3.

Proof. Consider the interpolation Π̂k,∗
h on the reference element K̂ = [0, 1]. Notice

that when w is a constant on K̂, w ≡ Π̂k,∗
h w. That means (3.1) hold when w is a con-

stant. Thus, with the facts that P k−1([0, 1]) = Span{1, x, . . . , xk−1}, (3.1) is equivalent

to
∫ 1

0
g
(

x− Π̂k,∗
h x

)

dx = 0, ∀g ∈
{

1, x, . . . , xk−1
}

.

We further arrive
∫ 1

0
xiΠ̂k,∗

h x dx =

∫ 1

0
xi+1dx, ∀i ∈ {0, 1, . . . , k − 1}, (3.3)

which leads to
∫ 1

0
xiΠ̂k,∗

h x dx =
1

i+ 2
, ∀i ∈ {0, 1, . . . , k − 1}. (3.4)

Substitute the expression of Π̂k,∗
h into (3.4) then we have

1

i+ 1





k−1
∑

j=1

aj

(

αi+1
j+1 − αi+1

j

)

+
(

1− αi+1
k

)



 =
1

i+ 2
, ∀i ∈ {0, 1, . . . , k − 1}.

Through a simple calculation, we have the conclusion of Lemma 3.1.

Lemma 3.2. Given k, there exists an operator Πk,∗
h , such that the k-(k-1)-order orthogonal

condition is satisfied.
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Proof. Recalling (3.3), with a simple calculation, the k-(k-1)-order orthogonal con-

dition is equivalent to the following restrictions

k
∑

j=1

(aj − aj−1)α
i+1
j =

∫ 1

0
xi+1dx, ∀i = 0, 1, . . . , k − 1. (3.5)

Summing the coefficients of αi+1
j s, we have

k
∑

j=1

(aj − aj−1) = ak − a0 = 1− 0 = 1.

Thus, the coefficients (aj−aj−1) in (3.5) could be the weights of the k-points numerical

quadrature corresponding to αjs. Since a k-points integration rule is accurate for (k-

1)-order polynomials (see, e.g., [12]), the k-(k-1)-order orthogonal condition could be

satisfied with a proper selection of αjs and ajs. Which ends the proof of Lemma 3.2.

Lemma 3.3. Let xt = (x1, x2, . . . , xt)
T
t×1, satisfying 0 < x1 < · · · < xt < 1. Then,

M(xt) =









x1 x2 · · · xt
x21 x22 · · · x2t
· · · · · · · · · · · ·
xt1 xt2 · · · xtt









t×t

(3.6)

is an irreducible (invertible) Vandermonde matrix.

Proof. The determinant of the Vandermonde matrix M(xt) can be easily given by

det(M(xt)) =
t
∏

i=1

xi
∏

1≤j<s≤t

(xs − xj).

Since 0 < x1 < x2 < · · · < xt < 1, we have

xs − xj < 0, ∀ 1 ≤ s ≤ j.

Thus,

det(M(xt)) 6= 0.

Thus, M(xt) is invertible.

Now, we are ready to present when will a dual strategy on K satisfy the k-(k-1)-

order orthogonal condition for the k-order FVEM.

Lemma 3.4. Let Dα,k := {(α1, . . . , αk)
T
1×k : 0 < α1 < · · · < αk < 1} be the reasonable

domain of the parameters ~αk, which determine the dual strategy on K for the k-order FVE

schemes. Then, the solutions ~αk ∈ Dα,k of the k-(k-1)-order orthogonal condition (3.1)

form a (k-1)-dimension surface in Dα,k, which is in k-dimension.
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Proof. From (3.2), the constraints of (3.1) are equivalent to a linear algebra

M(~αk)Ca = b, (3.7)

where M(~αk) is defined by (3.6), and

C =















1 0 0 · · · 0
−1 1 0 · · · 0
0 −1 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1















k×k

, a =















a1
a2
a3
...

ak















k×1

, b =















1/2
1/3
1/4

...

1/(k + 1)















k×1

with ak ≡ 1. Here, M(~αk) is invertible (from Lemma 3.3) and C is obviously invertible.

For a given ~αk ∈ Dα,k, it’s impossible to always have a reasonable a such that

a = C−1(M(~αk))
−1b

since the last component ak is fixed as ak = 1.

However, with Lemma 3.2, there always exist appropriate ~αk and a for (3.7) to be

true. Considering ~αk as parameter equations of a. It’s easy to see that the reasonable

~αk from (3.7) form a (k-1)-dimension surface in the k-dimension domain Dα,k. Which

ends the proof of conclusion in Lemma 3.4.

3.1. Equivalent equations for k = 2, 3, 4

Here, we show the equivalent equations of the k-(k-1)-order orthogonal condition

for k ≤ 4.

• For k = 1, the equivalent equations of (3.1) lead to the unique solution α1 =
1
2 .

• For k = 2, the equivalent equations of (3.1) are











a1α1 + (1− a1)α2 =
1

2
,

a1α
2
1 + (1− a1)α

2
2 =

1

3
,

(3.8)

where 0 < a1 < 1 and 0 < α1 < α2 < 1. Write α1 and α2 as parameter functions

of a1. Thus,














α1 =
1

2
−

1− a1
a1

√

a1
12(1 − a1)

,

α2 =
1

2
+

√

a1
12(1 − a1)

,

(3.9)

where 1
4 < a1 <

3
4 .
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• For k = 3, the equivalent equations of (3.1) are


























a1α1 + (a2 − a1)α2 + (1− a2)α3 =
1

2
,

a1α
2
1 + (a2 − a1)α

2
2 + (1− a2)α

2
3 =

1

3
,

a1α
3
1 + (a2 − a1)α

3
2 + (1− a2)α

3
3 =

1

4
,

(3.10)

where 0 < a1 < a2 < 1 and 0 < α1 < α2 < 1.

• For k = 4, the equivalent equations of (3.1) are














































a1α1 + (a2 − a1)α2 + (a3 − a2)α3 + (1− a3)α4 =
1

2
,

a1α
2
1 + (a2 − a1)α

2
2 + (a3 − a2)α

2
3 + (1− a3)α

2
4 =

1

3
,

a1α
3
1 + (a2 − a1)α

3
2 + (a3 − a2)α

3
3 + (1− a3)α

3
4 =

1

4
,

a1α
4
1 + (a2 − a1)α

4
2 + (a3 − a2)α

4
3 + (1− a3)α

4
4 =

1

5
,

(3.11)

where 0 < a1 < a2 < a3 < 1 and 0 < α1 < α2 < α3 < 1.

Here, we show in Fig. 1 the reasonable solutions of the orthogonal condition for

k = 2, 3, which are a 1-dimension line and a 2-dimension surface in the 2-dimension

and 3-dimension domains, respectively.
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Figure 1: The parameters satisfy the k-(k-1)-order orthogonal condition.

4. L2 estimate

We prove that the k-(k-1)-order orthogonal condition is a sufficient and necessary

condition for a k-order FVE scheme to have optimal L2 convergence rate. The stability
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and H1 estimate, which are the basis of L2 convergence, will be proved later in Ap-

pendix A, in which Theorem A.2 shows the H1 estimate for the finite volume schemes

that

‖u− uh‖1 ≤ Chk‖u‖k+1 (4.1)

under the assumption u ∈ H1
0 (Ω) ∩H

k+1
T (Ω).

4.1. The sufficiency

Theorem 4.1. Suppose u ∈ H1
0 (Ω)∩H

k+2(Ω) is the exact solution of (2.1), Th is regular.

For a k-order Lagrange trial function space Uk
h , choose T ∗

h satisfying the k-(k-1)-order

orthogonal condition. Let uh ∈ Uk
h be the solution of the corresponding k-order FVE

scheme (2.3). Then, there exists a positive constant C such that

‖u− uh‖0 ≤ Chk+1‖u‖k+2. (4.2)

Proof. We begin with the Aubin-Nitsche technique. The auxiliary problem is given

by: For any g ∈ L2(Ω), find w ∈ H1
0 (Ω) such that

a(v,w) = (g, v), ∀v ∈ H1
0 (Ω), (4.3)

where

a(v,w) =

∫

Ω
pv′w′ +

(

qv′ + rv
)

w dx, (g, v) =

∫

Ω
gv dx.

Clearly, from the regularity of the auxiliary problem (4.3), we have w ∈ H1
0 (Ω)∩H

2(Ω)
and some constant C such that,

‖w‖2 ≤ C‖g‖0. (4.4)

Let v = g = u− uh in (4.3). Notice the orthogonality of FVE solution that

ah

(

u− uh,Π
k,∗
h

(

Π1
hw
)

)

= 0,

then

‖u− uh‖
2
0 = a(u− uh, w)

=a
(

u− uh, w −Π1
hw
)

+ a
(

u− uh,Π
1
hw
)

− ah

(

u− uh,Π
k,∗
h

(

Π1
hw
)

)

. (4.5)

For the first term on the right-hand side of (4.5) with (4.1) and the estimate of the

linear interpolations we have

a
(

u− uh, w −Π1
hw
)

≤ C‖u− uh‖1‖w −Π1
hw‖1

≤ Chk+1‖u‖k+1‖w‖2. (4.6)
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Following, we estimate the difference between a(u − uh,Π
1
hw) and ah(u − uh,

Πk,∗
h (Π1

hw)). With the integration by parts, the diffusion terms of the bilinear forms

can be rewritten by

∑

K∈Th

∫

K
p(u− uh)

′
(

Π1
hw
)′
dx

=
∑

K∈Th

(

p(u− uh)
′Π1

hw
) ∣

∣

∂K
−
∑

K∈Th

∫

K

(

p(u− uh)
′
)′ (

Π1
hw
)

dx, (4.7)

∑

K∈Th

∑

K∗∈T ∗

h

−
(

p(u− uh)
′Πk,∗

h

(

Π1
hw
)

) ∣

∣

∣

∂K∗∩K

=
∑

K∈Th

(

p(u− uh)
′Πk,∗

h

(

Π1
hw
)

) ∣

∣

∣

∂K
−
∑

K∈Th

∫

K

(

p(u− uh)
′
)′
Πk,∗

h

(

Π1
hw
)

dx. (4.8)

Notice that Π1
hw|∂K = Πk,∗

h (Π1
hw)|∂K , then, the first terms on the right-hand side of

(4.7) and (4.8) are equal that

∑

K∈Th

(

p(u− uh)
′Π1

hw
) ∣

∣

∂K
=
∑

K∈Th

(

p(u− uh)
′Πk,∗

h

(

Π1
hw
)

) ∣

∣

∣

∂K
.

Since the orthogonal condition (3.1) is satisfied, with the fact that Πk−1
h u′h = u′h ∈

P k−1(Ki), we have

∣

∣

∣

∣

∣

∑

K∈Th

∫

K
p(u− uh)

′
(

Π1
hw
)′
dx−

∑

K∈Th

∑

K∗∈T ∗

h

−
(

p(u− uh)
′ Πk,∗

h

(

Π1
hw
)

) ∣

∣

∣

∂K∗∩K

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

K∈Th

∫

K

(

(p− p0,K + p0,K)(u− uh)′
)′
(

Π1
hw −Πk,∗

h

(

Π1
hw
)

)

dx

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∑

K∈Th

∫

K

(

(p− p0,K)(u− uh)
′
)′
(

Π1
hw −Πk,∗

h

(

Π1
hw
)

)

dx

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∑

K∈Th

p0,K

∫

K

(

(u− uh)
′′ −Πk−1

h (u− uh)
′′
)(

Π1
hw −Πk,∗

h

(

Π1
hw
)

)

dx

∣

∣

∣

∣

∣

≤Ch‖p‖2,∞‖u− uh‖2

∥

∥

∥
Π1

hw −Πk,∗
h

(

Π1
hw
)

∥

∥

∥

0

+

∣

∣

∣

∣

∣

∑

K∈Th

∫

K
p0,K

(

u′′ −Πk−1
h u′′

)(

Π1
hw −Πk,∗

h

(

Π1
hw
)

)

dx

∣

∣

∣

∣

∣

(with the orthogonal condition)

≤Ch2‖p‖2,∞‖u− uh‖2‖w‖1 + C‖p‖0,∞h
k+1‖u‖k+2‖w‖1

.hk+1‖u‖k+2‖w‖1. (4.9)
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Here, p0,K is the average of p on K. Thus,

∣

∣

∣
a
(

u− uh,Π
1
hw
)

− ah

(

u− uh,Π
k,∗
h

(

Π1
hw
)

)∣

∣

∣

=

∣

∣

∣

∣

∣

−
∑

K∈Th

∫

K

(

p(u− uh)
′
)′
(

Π1
hw −Πk,∗

h

(

Π1
hw
)

)

dx

+
∑

K∈Th

∫

K

(

q(u− uh)
′ + r(u− uh)

)

(

Π1
hw −Πk,∗

h

(

Π1
hw
)

)

dx

∣

∣

∣

∣

∣

≤ Chk+1‖u‖k+2‖w‖1 + C‖u− uh‖1

∥

∥

∥
Π1

hw −Πk,∗
h

(

Π1
hw
)

∥

∥

∥

0

≤ Chk+1‖u‖k+2‖w‖1. (4.10)

From (4.4)-(4.6) and (4.10), one can conclude that

‖u− uh‖
2
0 ≤ Chk+1‖u‖k+1‖w‖2 + Chk+1‖u‖k+2‖w‖1

≤ Chk+1‖u‖k+2‖w‖2

≤ Chk+1‖u‖k+2‖u− uh‖0.

Eliminate ‖u− uh‖0, we have the optimal L2 estimate (4.2).

4.2. The necessity

To prove the necessity, one should prove that all the FVE schemes, which do not sat-

isfy the k-(k-1)-order orthogonal condition, can not reach the optimal L2 convergence

rate. However, the optimal L2 estimate (4.2) is an inequality itself, and there are many

inequality estimates in the proof. All these make the proof of necessity much harder

than sufficiency.

Theorem 4.2. A k-order FVE scheme to solve (2.1) will hold the optimal L2 convergence

rate if and only if the k-(k-1)-order orthogonal condition is satisfied.

Proof. The sufficiency is given by Theorem 4.1. Following, we analysis the necessity:

for any FVE scheme, if the k-(k-1)-order orthogonal condition is not satisfied, there

exist u and uh such that

‖u− uh‖0 ≥ Chk‖u‖k+1. (4.11)

Here, C is independent of h.

From the proof of Lemma 3.4, we can find that, any k-order FVE scheme holds

at least k-(k-2)-order orthogonality. Recall the second row from the bottom of (4.9).
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Expand u at x0,K ∈ K, then
∫

K
p0,Ku

′′
(

Π1
hw −Πk,∗

h

(

Π1
hw
)

)

dx

=

∫

K
p0,K

(

k−1
∑

i=0

(

u(i+2)(x0,K)

i!
(x− x0,K)i

)

+ r′′K

)

(

Π1
hw −Πk,∗

h

(

Π1
hw
)

)

dx

=

∫

K
p0,K

(

u(k+1)(x0,K)

(k − 1)!
(x− x0,K)k−1 + r′′K

)

(

Π1
hw −Πk,∗

h

(

Π1
hw
)

)

dx,

where rK is the reminder of the (k+1)-order expansion. It’s obvious that

∑

K∈Th

∣

∣

∣

∣

∫

K
p0,Kr

′′
K

(

Π1
hw −Πk,∗

h

(

Π1
hw
)

)

dx

∣

∣

∣

∣

≤ Chk+1‖u‖k+2‖w‖1.

However, when the k-(k-1)-order orthogonal condition is not satisfied, since p0,K
×(u(k+1)(x0,K)/(k − 1)!) is a constant on K, one cannot expect a higher-order estimate

for the integral of (x − x0,K)k−1(Π1
hw − Πk,∗

h (Π1
hw)) on K by cancellation for arbitrary

w. Generally, one only have

∑

K∈Th

∫

K
p0,K

u(k+1)(x0,K)

(k − 1)!
(x− x0,K)k−1

(

Π1
hw −Πk,∗

h

(

Π1
hw
)

)

dx

=O
(

hk
)

‖u‖k+1‖w‖1. (4.12)

Together (4.5) and (4.6),

‖u− uh‖
2
0

≥ −
∣

∣a
(

u− uh, w −Π1
hw
)∣

∣

−

∣

∣

∣

∣

∣

∑

K∈Th

∫

K

(

(p − p0,K)(u− uh)
′
)′
(

Π1
hw −Πk,∗

h

(

Π1
hw
)

)

dx

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∑

K∈Th

∫

K
p0,K

(

(u− uh)
′
)′
(

Π1
hw −Πk,∗

h

(

Π1
hw
)

)

dx

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

∑

K∈Th

∫

K

(

q(u− uh)
′ + r(u− uh)

)

(

Π1
hw −Πk,∗

h

(

Π1
hw
)

)

dx

∣

∣

∣

∣

∣

≥ −Chk+1‖u‖k+1‖w‖2 − Chk+1‖u‖k+1‖w‖1

+O
(

hk
)

‖u‖k+1‖w‖1 − Chk+1‖u‖k+1‖w‖1

= O
(

hk
)

‖u‖k+1‖w‖1 − Chk+1‖u‖k+1‖w‖2. (4.13)

Recall, when we talk about the convergence order of a FVE scheme, it should gen-

erally work for any (2.1). Theoretically, it is possible to construct a pair of ũ and ũh
such that

C1‖w̃‖2 ≤ ‖w̃‖1 ≤ C2‖w̃‖2, (4.14)
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where C1 and C2 are independent to h and ũh. For this ũ and ũh, with the fact that

‖w̃‖2 ≥ C‖ũ− ũh‖0, from (4.13), we further have

‖ũ− ũh‖0 ≥ O
(

hk
)

‖ũ‖k+1. (4.15)

That is to say, a k-order FVE scheme, which does not satisfy the k-(k-1)-order or-

thogonal condition, can hold at most k-order L2 convergence rate, which meets with

(4.11).

Remark 4.1. The proof of Theorems 4.1, 4.2 do not require the restriction r−(1/2)q′ ≥
γ > 0 on the convection and reaction coefficients of the problem (2.1). If the stabil-

ity and the optimal H1 convergence rate can be ensured for some BVP (2.1) without

satisfying r − (1/2)q′ ≥ γ > 0, the optimal L2 convergence rate can also be ensured.

Remark 4.2. The analysis of Theorems 4.1, 4.2 are given element-wisely. Thus, defin-

ing the dual strategies of a FVE scheme by (3.2) element-wisely would not affects the

process of the analysis. That is to say, the dual strategies in different primary elements

could be different without affecting the L2 convergence rate.

Remark 4.3. The conclusions are extensible to multi-dimensional tensorial meshes

with different dual strategies in different directions. The numerical results for bi-

quadratic/bicubic/biquatic FVE schemes over rectangular meshes are shown in Exam-

ple 5.6 as an example. However, the theorem for multi-dimensional cases are not

straightforward.

5. Numerical experiments

In this section, Example 5.1 shows the numerical results for some FVE schemes,

which indicate that all FVE schemes hold optimal H1 convergence rate, while only the

FVE schemes satisfying the k-(k-1)-order orthogonal condition possess the optimal L2

convergence rate.

Example 5.2 shows the numerical L2 convergence rates for quadratic FVE schemes

and quartic FVE schemes (with symmetric dual). The numerical results well match with

the solutions of the k-(k-1)-order orthogonal condition. That is to say the k-(k-1)-order

orthogonal condition is a sufficient and necessary condition for a FVE scheme to hold

optimal L2 convergence rate.

Example 5.3 shows the L2 results for quadratic FVE schemes, who have different

dual strategies in different primary elements. The dual strategy in each primary el-

ement satisfies the 2-1-order orthogonal condition respectively. The results illustrate

that the dual strategies in different primary elements could be different.

Examples 5.4-5.5 compare the numerical performances of the standard quadratic FE

scheme and quadratic FV schemes for three convection-dominated convection-diffusion

problems. These two examples demonstrate the possibility and capacity of the FVE
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schemes (such as scheme FV2-6 in Example 5.4 and scheme FV2-7 in Example 5.5)

with possibly asymmetric dual strategies to be used to solve some complex problems.

Example 5.6 shows the numerical L2 results of three schemes, whose dual strategy

are obtained from the tensor of the dual strategies of 1D cases, on rectangular meshes.

All these schemes holds optimal L2 convergence rate.

Example 5.1. Consider the BVP (2.1) with p(x) = 1, q(x) = x, r(x) = 2,Ω = [0, π], and

f is chosen such that the exact solution is u(x) = sin(x). Apply the FVE schemes listed

in Table 1 to this problem. In which, schemes O-k-i (k, i ≤ 4) are k-order FVE schemes

satisfying the k-(k-1)-order orthogonal condition, obtained by solving (3.1) with the

corresponding ak. While, schemes G-k-i do not satisfy the k-(k-1)-order orthogonal

condition.

Here, we list in Table 2 the H1 and L2 results for schemes O-1-1 and G-1-1, in Fig. 2

the H1 and L2 results for schemes O-2-i and G-2-i (i = 1, 2, 3, 4), and in Fig. 3 the L2

results for schemes O-3/4-i and G-3/4-i (i = 1, 2, 3, 4).

Table 1: The FVE schemes used in Example 5.1.

Orthogonal Schemes General Schemes

k Schemes ~αk ak Schemes ~αk

1 O-1-1 1/2 - G-1-1 1/3

O-2-1 (1/2−
√

1/12, 1/2 +
√

1/12) 1/2 G-2-1 (1/3, 2/3)

2 O-2-2 (1/2−
√

1/24, 1/2 +
√

1/6) 2/3 G-2-2 (1/2, 9/16)

O-2-3 (1/2−
√

7/60, 1/2 +
√

5/84) 5/12 G-2-3 (1/4, 5/13)

O-2-4 (1/2−
√

5/36, 1/2 +
√

1/20) 3/8 G-2-4 (1/3, 4/7)

O-3-1 (0.1797, 0.4626, 0.8127) (0.40, 0.57) G-3-1 (1/12, 1/2, 9/16)

3 O-3-2 (0.1365, 0.5636, 0.9151) (0.33, 0.78) G-3-2 (1/7, 1/3, 5/9)

O-3-3 (0.1018, 0.4325, 0.8521) (0.24, 0.65) G-3-3 (1/7, 1/4, 9/10)

O-3-4 (0.1284, 0.4937, 0.8676) (0.30, 0.69) G-3-4 (1/11, 2/3, 3/4)

O-4-1 (0.1312, 0.1929, 0.6264, 0.9707) (0.23, 0.37, 0.86) G-4-1 (1/5, 2/5, 3/5, 4/5)

4 O-4-2 (0.0457, 0.3543, 0.7767, 0.9848) (0.15, 0.58, 0.93) G-4-2 (1/6, 2/5, 1/2, 3/4)

O-4-3 (0.1153, 0.4625, 0.6335, 0.9070) (0.28, 0.58, 0.77) G-4-3 (1/9, 1/4, 1/3, 1/2)

O-4-4 (0.1197, 0.4900, 0.7395, 0.9311) (0.29, 0.66, 0.83) G-4-4 (1/7, 2/7, 4/7, 6/7)

Table 2: Example 5.1.

Scheme O-1-1 Scheme G-1-1

h |u− uh|1 Order ‖u− uh‖0 Order |u− uh|1 Order ‖u− uh‖0 Order

1/8 1.4270e− 01 \ 8.3106e− 03 \ 1.4696e− 01 \ 4.7438e− 02 \

1/16 7.1120e− 02 1.0046 2.0702e− 03 2.0051 7.4726e− 02 0.9757 2.3279e− 02 1.0270

1/32 3.5530e− 02 1.0012 5.1692e− 04 2.0018 3.7704e− 02 0.9869 1.1579e− 02 1.0075

1/64 1.7761e− 02 1.0003 1.2918e− 04 2.0006 1.8941e− 02 0.9932 5.7805e− 03 1.0023

1/128 8.8801e− 03 1.0001 3.2291e− 05 2.0002 9.4930e− 03 0.9966 2.8887e− 03 1.0008
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a) The H1 convergence rate
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Figure 2: The numerical results of the quadratic (2-order) FVE schemes.
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a) The cubic FVE schemes
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b) The quartic FVE schemes

Figure 3: The numerical L2 results of the cubic (3-order) and quartic (4-order) FVE schemes.

Example 5.2. Apply the quadratic (2-order) FVEM and the quartic (4-order) FVEM to

the BVP (2.1) with p(x) = 1, q(x) = r(x) = 0, and f is chosen such that u(x) = sinx.

There are two independent variable parameters (α2, α1) ∈ {0 < α1 < α2 < 1} for the

quadratic FVEM, and two independent variable parameters (α4, α3) ∈ {1/2 < α3 <
α4 < 1} for the quartic FVEM with symmetric dual strategies. Vary the parameters

in the reasonable domains with step size 1/300 respectively, and compute the discrete

problem (2.3) over uniform primary meshes with mesh size h = 1/10 and h/2. Denote

rL2 =
1

log(2)
log

(

‖u− uh‖0
‖u− uh/2‖0

)

as the numerical L2 convergence rate of the FVE schemes.

Figs. 4(a) and 4(b) show the numerical L2 convergence rate rL2 as functions of

the parameters (α2, α1) for the quadratic FVE schemes and (α4, α3) for the quartic FVE
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a) The quadratic FVEM b) The symmetric quartic FVEM

Figure 4: Numerical L2 convergence rate rL2 and the solutions of the orthogonal condition.

schemes, respectively. The red line is the solutions of the k-(k-1)-order orthogonal

condition (3.1). It shows that the region, where numerical L2 convergence rate is

close to optimal (k+1)-order, fits with the solutions of the red lines perfectly, which

helps to verify that the k-(k-1)-order orthogonal condition is a necessary and sufficient

condition for a FVE scheme to hold optimal L2 convergence rate.

Example 5.3. Consider the quadratic FVE schemes with different dual strategies in

different primary elements. The model problem is selected as the one in Example 5.1.

The dual strategies in each primary elements of each schemes FV2-i (i = 1, 2, 3, 4) for

the first level (h = 1/4) are randomly selected from the solutions of (3.9). And, the

dual strategies of the following levels are the same with their farther levels. We show

in Table 3 the numerical L2 results, which indicates that all these schemes hold optimal

L2 convergence rate.

Table 3: Example 5.3.

FV2-1 FV2-2 FV2-3 FV2-4

h ‖u− uh‖0 Order ‖u− uh‖0 Order ‖u− uh‖0 Order ‖u− uh‖0 Order

1/4 5.7866e− 03 \ 6.9984e− 03 \ 7.6671e− 03 \ 9.6704e− 03 \

1/8 7.6727e− 04 3.0589 1.0340e− 03 2.9908 1.0200e− 03 2.9292 1.0817e− 03 3.0573

1/16 1.0008e− 04 2.9926 1.2476e− 04 2.9904 1.2910e− 04 2.9602 1.3839e− 04 3.0415

1/32 1.0639e− 05 3.0058 1.5600e− 05 2.9937 1.6312e− 05 2.9794 1.6401e− 05 3.0210

Example 5.4. Consider a convection-dominated problem that p(x) = 10−7, q(x) =
1, r(x) = 0 in (2.1), f is defined such that u(x) = ex−1/2, and the boundary conditions

are set as u(0) = e−1/2, u(1) = e1/2. Write FV2-5 the quadratic FVE scheme shares the

same dual strategy with scheme O-2-1 in Table 1, and FV2-6 the quadratic FVE scheme
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a) Numerical solutions of FE2 and FV2-6
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b) Numerical solutions of FV2-5 and FV2-6

Figure 5: The numerical results of Example 5.4.

with dual strategy (α1, α2) = (0.0130, 0.6711) (which is obtained by letting a1 = 0.26 in

(3.5)) in all primary elements.

Fig. 5 shows the numerical solutions when the mesh size is h = 1/16, in which the

solutions of the standard quadratic FE scheme (FE2) and FV2-5 have high numerical

oscillation, while the solution of FV2-6 well fits the exact solution.

Example 5.5. Consider a variable coefficient convection-dominated problem that

p(x) = exp(8 sin(π(x − 1/2)) − 8), q(x) = 1, r(x) = 0 in (2.1), f is defined such that

u(x) = ex, and the boundary conditions are set as u(0) = 1, u(1) = e. The dual strate-

gies of the quadratic FVE scheme FV2-7 are different in different primary elements. On

K, it is given by (α1, α2) obtained through letting a1 = 0.2501 + p(xK)/4.1 (xK is the

midpoint of K) in (3.5). We still compare schemes FV2-7 with FE2 and FV2-6.

Fig. 6 shows that scheme FV2-7 has better convergence property than schemes FE2

and FV2-6 in this problem.
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Figure 6: The numerical results of Example 5.5.
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Example 5.6. Consider the following elliptic problem on Ω = (0, 1) × (0, 1):
{

−∇ · (D∇u) = f in Ω,

u = 0 on ∂Ω
(5.1)

with D = I. f is selected such that u = sin(πx) sin(πy). Construct the biquadratic

FVE scheme FV2D-2 as the tensor of schemes O-2-1 (in x-direction) and O-2-2 (in y-

direction) in Table 1, and the bicubic/biquartic FVE schemes FV2D-3/FV2D-4 as the

tensor of schemes O-3-1/O-4-1 and O-3-2/O-4-2. Fig. 7(a) shows the dual elements of

scheme FV2D-3, which is asymmetric in y-direction, and Fig. 7(b) shows that FV2D-2,

FV2D-3 and FV2D-4 all have optimal L2 convergence rate.
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a) Dual meshes for FV2D-2
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Figure 7: The numerical results of Example 5.6.

6. Conclusion

The k-(k-1)-order orthogonal condition is proved to be a sufficient and necessary for

a FVE scheme to have the optimal L2 convergence rate. From the equivalent equations

of the orthogonal conditions in Subsection 3.1, one can always construct a FVE scheme

with optimal L2 convergence rate. The dual strategies in different primary elements are

not necessarily to be the same, and they are allowed to be asymmetric in each primary

element. These opens up the possibilities and capacities of the FVEM to be applied to

some complex problems, such as the convection-dominated problems. The construct

method developed here is extensible to 2D problems over quadrilateral meshes, while

the theory in 2D is not straightforward.
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Appendix A Stability and the proof of H1 estimate

The stability and H1 estimate are the issues we can not skip when we study the L2

estimate. The authors of [4, 27] gave some results for FVE schemes with some special

dual strategies, such as the Gauss-Lobatto FVE schemes. In this section, we prove the

stability and H1 estimate for general FVE schemes. The proof in this section benefits

a lot from the k-points numerical quadrature and reference [4].

We begin with some notations specially used in this section. Firstly, for all w ∈
Hm

T (Ω), where

Hm
T (Ω) :=

{

w ∈ C(Ω) : w|Ki
∈ Hm(Ki),∀Ki ∈ Th

}

,

and all j ≥ 0, we define a semi-norm and a norm by

|w|j,T =





∑

Ki∈Th

|w|2j,Ki





1/2

, ‖w‖m,T =





m
∑

j=0

|w|2j,T





1/2

. (A.1)

Secondly, for any vh =
N
∑

i=1

k
∑

j=1
vi,jψi,j ∈ Vh, let

|vh|
2
1,T ∗

h
=

N
∑

i=1

k
∑

j=1

h−1
i [vi,j]

2, ‖vh‖
2
0,T ∗

h
=

N
∑

i=1

k
∑

j=1

hiv
2
i,j, (A.2)

‖vh‖
2
1,T ∗

h
= |vh|

2
1,T ∗

h
+ ‖vh‖

2
0,T ∗

h
. (A.3)

Noticing that v1,0 = vN,k = 0, it is easy to see the following Poincaré inequality

‖vh‖0,T ∗

h
≤ C|vh|1,T ∗

h
, ∀vh ∈ Vh,

where the constant C depends only on Ω and k.

Thirdly, we denote Aj (j ∈ Zk) the weights of the k-points numerical quadrature

Qk(F ) =
k
∑

j=1

AjF (αj)

for computing the integral

I(F ) =

∫ 1

−1
F (x) dx.

The weights on Ki ∈ Th are Ai,j = hiAj , j ∈ Zk. Then, we define a discrete semi-norm

| · |1,α for all w ∈ H1
0 (Ω) by

|w|1,α =





N
∑

i=1

k
∑

j=1

Ai,j

(

w′(αi,j)
)2





1/2

. (A.4)
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Fourthly, a linear mapping Π∗
T : Uk

h → Vh is given by (Π∗
T is different from Πk,∗

h
defined in Subsection 2.3, and Π∗

T will be used only in this section)

Π∗
T wh =

N
∑

i=1

k
∑

j=1

wi,jψi,j , wh ∈ Uk
h , (A.5)

where the coefficients wi,j are determined by the constraints

[wi,j] = Ai,jw
′
h(αi,j), (i, j) ∈ ZN × Zk\{(N, k)},

where Ai,js are the weights of k-points numerical quadrature on Ki. For wh ∈ Uk
h , the

derivative w′
h|Ki

∈ P k−1(Ki), i ∈ ZN , then

N
∑

i=1

k
∑

j=1

Ai,jw
′
h(αi,j) =

∫ b

a
w′
h(x) dx = wh(b)−wh(a) = 0.

Therefore, recall w1,0 = wN,k = 0, then

wN,k−1 =
∑

(i,j)6=(N,k)

[wi,j]

=

N
∑

i=1

k
∑

j=1

Ai,jw
′
h(αi,j)−AN,rw

′
h(αN,k) = −AN,rw

′
h(αN,k).

In other words, we also have

[wN,k] = wN,k − wN,k−1 = AN,kw
′
h(αN,k).

According to the idea of the proof of Theorem 3.1 in [4], with the help of the

k-points quadrature, we present the following lemma without the details of the proof.

Lemma A.1. Given an FVE scheme, for all wh ∈ Uk
h , we have the equivalence property

|Π∗
T wh|1,T ∗

h
∼ |wh|1,α ∼ |wh|1,T .

Here, the semi-norms | · |1,T ∗

h
, | · |1,α and | · |1,T are given by (A.2), (A.4) and (A.1),

respectively.

We are now ready to present the proof of the inf-sup condition in Theorem A.1.

Theorem A.1. For sufficiently small mesh size h, the following inf-sup condition are sat-

isfied.

inf
wh∈U

k
h

sup
vh∈Vh

ah(wh, vh)

‖wh‖1‖vh‖T ∗

h

≥ c0, (A.6)

where c0 > 0 is a constant depending only on k, α0, κ and Ω.
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Proof. It follows from the bilinear form (2.3) that

ah (wh,Π
∗
T wh) = I1 + I2, ∀wh ∈ Uk

h

with

I1 =
N
∑

i=1

k
∑

j=1

[wi,j ]p(αi,j)w
′
h(gi,j),

I2 =
N
∑

i=1

k
∑

j=1

wi,j

∫ αi,j+1

αi,j

(

q(x)w′
h(x) + r(x)wh(x)

)

dx.

Therefore,

I1 ≥ p0

N
∑

i=1

k
∑

j=1

Ai,j

(

w′
h(αi,j)

)2
∼ p0|wh|

2
1.

Next, we estimate I2. Let

V (x) =

∫ s

a

(

q(s)w′
h(s) + r(s)wh(s)

)

ds

and denote by

Ei =

∫ xi

xi−1

w′
h(x)V (x) dx−

k
∑

j=1

Ai,jw
′
h(αi,j)V (αi,j)

the error of the numerical quadrature in the in interval [xi−1, xi], i ∈ ZN . Then

I2 = −

N
∑

i=1

k
∑

j=1

[wi,j ]V (αi,j) = −

∫ b

a
w′
h(x)V (x) dx+

N
∑

i=1

Ei.

With the fact that wh(a) = wh(b) = 0 and

∫ b

a
q(x)w′

h(x)wh(x) dx = −
1

2

∫ b

a
q′(x)w2

h(x) dx

we obtain

−

∫ b

a
w′
h(x)V (x) dx =

∫ b

a

(

r(x)−
q′(x)

2

)

w2
h(x) dx ≥ γ‖wh‖

2
0.

On the other hand, by (2.7.12) on page 98 of [12], for all i ∈ ZN

Ei =
(

w′
hV
)(k)

(ξi)O
(

hk+1
i

)

,
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where ξi ∈ [xi−1, xi]. By the Leibnitz formula for derivatives and the inverse inequality,

we have

∣

∣

∣

(

w′
hV
)(k)

(ξi)
∣

∣

∣
≤

k
∑

t=1

(

k
t

)

∣

∣

∣

(

qw′
h + rwh

)(t−1) (
w′
h

)(k−t)
(ξi)
∣

∣

∣

≤c1

k
∑

t=1

‖wh‖t,∞,Ki
‖wh‖(k−t+1),∞,Ki

.c1

k
∑

t=1

h−(t−1/2)|wh|1,Ki
h−(k−t+1−1/2)|wh|1,Ki

=c̃1h
−k|wh|

2
1,Ki

with

c1 = max
{

‖q‖k−1,∞,Ki
, ‖r‖k−1,∞,Ki

}

max
t≤k

(

k
t

)

.

Combining the estimates above, we have

I2 & γ‖wh‖
2
0,T − c̃1hi|wh|

2
1,T ,

where c̃1 is a constant independent of hi. Then for sufficiently small h, we have

ah (wh,Π
∗
T wh) ≥

p0
2
|wh|

2
1,T +

γ

2
‖wh‖

2
0,T ≥

1

2
min{p0, γ}‖wh‖

2
1,T .

Recall Lemma A.1, then we obtain

‖wh‖1,T & ‖Π∗
T wh‖T ∗

h
.

Therefore, for any wh ∈ Uk
h ,

sup
vh∈Vh

ah(wh, vh)

‖vh‖T ∗

h

&
ah(wh,Π

∗
T wh)

‖Π∗
T wh‖T ∗

h

≥ c0‖wh‖1,T ,

where c0 is a constant depending only on k, p0, γ, and Ω. The inf-sup condition (A.6)

then follows.

Through the inf-sup condition (A.6) and a similar procedure with [4], we have the

H1 estimate for FVE schemes with general dual meshes (which could be asymmetric).

Theorem A.2. Let u ∈ H1
0 (Ω) ∩ Hk+1

T (Ω) and uh ∈ Uh be the solutions of (2.1) and

(2.3), respectively.

‖u− uh‖1 ≤ Chk‖u‖k+1, (A.7)

where C is a constant independent of Th (or h).
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