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Abstract. We introduce a high-order numerical scheme for fractional ordinary dif-
ferential equations with the Caputo derivative. The method is developed by dividing

the domain into a number of subintervals, and applying the quadratic interpolation
on each subinterval. The method is shown to be unconditionally stable, and for gen-

eral nonlinear equations, the uniform sharp numerical order 3− ν can be rigorously

proven for sufficiently smooth solutions at all time steps. The proof provides a gen-
eral guide for proving the sharp order for higher-order schemes in the nonlinear

case. Some numerical examples are given to validate our theoretical results.

AMS subject classifications: 65M06

Key words: Caputo derivative, fractional ordinary differential equations, high-order numerical

scheme, stability and convergence analysis.

1. Introduction

In the past decades, fractional differential equations have been studied extensively

by many researchers, due to its success in describing some physical phenomena and

chemical processes more accurately than integer order differential equations [18, 30,

33,34]. Like most classical differential equations, the exact solutions of fractional order

differential equations are usually not available to us. Even if analytical solutions can be

found, they usually appear in the form of series and are difficult to evaluate. Therefore,

the numerical study of fractional differential equations has also inspired a number of

excellent research works such as [6,7,12,13,15,21,29,41].
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In this work, we are interested in the following initial value problem: For some

ν ∈ (0, 1), we would like to find y(x) such that

0D
ν
xy(x) = f(x, y(x)), 0 < x ≤ T (1.1)

subject to the initial condition y(0) = y0. In (1.1), the operator 0D
ν
x is the Caputo

derivative, defined by

0D
ν
xy(x) =

∫ x

0
ω1−ν(x− s)y′(s)ds, (1.2)

where ω1−ν is defined by

ω1−ν(x) =
x−ν

Γ(1− ν)
(1.3)

with Γ(·) being Euler’s gamma function. The function ω1−ν(x) acts as the convolutional

kernel, which satisfies

∫ t

s

ων(t− µ)ω1−ν(µ − s)dµ = ω1(t− s) = 1, ∀ 0 < s < t < +∞. (1.4)

The numerical method for this equation has been extensively studied in the context of

linear partial differential equations. For example, the L1-type schemes based on piece-

wise linear interpolation have been studied in [5,10,27], where the numerical order is

2 − ν. In [1], the second-order L2-1σ method is proposed by quadratic interpolation.

To achieve the sharp order 3 − ν for smooth solutions, one can use the L1-2 method

proposed in [11], which is also based on the quadratic interpolation, or the method

based on Taylor expansion as introduced in [20]. For this numerical order, fast numer-

ical schemes to discretize the Caputo derivative is proposed in [39]. Generalization to

(r + 1 − ν)-th order schemes have been studied in [3, 23] by Lagrange interpolation.

A common problem in these methods is that the theoretical order of the solution at the

first time step can only achieve 2 − ν, as is shown in the numerical analysis in [20].

Such a problem is also mentioned in [24], where the author uses a finer grid near the

initial value to maintain the numerical accuracy. In [32], it is found that the size of

the finer grid should be proportional to ∆t2−ν , which may cause significant additional

computational cost especially when ν is small. Moreover, it is pointed out in [16] that

the realistic solution u is usually nonsmooth at t = 0, and the initial layer can also

cause the reduction of numerical order. To solve this issue, graded meshes have been

introduced to restore the numerical order [5,36]. In this case, the size of the finer grid

could be even smaller if a high-order scheme is needed. Therefore, we are motivated

to find a scheme that does not require a finer mesh for the first time step. For simplic-

ity, in this paper we restrict ourselves to the case of a uniform mesh, and assume the

smoothness of the solution. Other related works include, but not limited to [2,8,38].

In principle, these methods can be directly generalized to nonlinear problems. How-

ever, the analysis of convergence order on such methods for nonlinear problems is less

seen in the literature. In [4], the authors converted the Caputo fractional derivative
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to the Volterra integral and proved the order of accuracy 3 + ν for 0 < ν < 1 and 4
for ν ≥ 1. A similar technique is applied in [35]. In [17], the authors applied the L1

formula to the subdiffusion equation, and obtained the numerical order ν due to the

insufficient smoothness of the solution. The numerical order 2−ν is proven in [22,26].

A special cubic nonlinear term is studied in [37] to obtain a second-order numerical

method. However, theoretical proofs of numerical schemes with order 3−ν for general

nonlinear problems are rarely seen in the literature. In [31], it is demonstrated that

the generalization of schemes with order 3− ν for linear problems also works for non-

linear problems, but the proof for nonlinear problems is given only for the truncation

error. Clearly, nonlinearity has caused significantly difficulty in the numerical analysis,

especially on the transition from the estimation of the truncation error to the error of

the solution.

The aim of this work is to introduce a new (3−ν)-th order scheme for the fractional

differential equation (1.1). Our main contributions include:

• A new finite-difference approximation of the Caputo derivative is developed,

which leads to a high-order numerical method for (1.1) with uniform accuracy at

all time steps.

• The unconditional stability for the linear problem is proven rigorously.

• A novel proof for the convergence order is proposed for the general nonlinear

right-hand sides.

Our method is based on the block-by-block approach [14,19] commonly used for inte-

gral equations [28,40]. To avoid degeneracy (order reduction) at the first time step, the

proposed scheme couples the solutions at first two time steps, so that no smaller time

steps are needed to achieve the sharp numerical order. Such coupling is not required

in the later steps. The analysis of stability is complicated by these initial steps, which

requires close look at the structure of the solutions. The convergence analysis is based

on a novel technology that couples the idea of a recent work [25] and the strategy we

used in the proof of stability, so that the order 3 − ν can be achieved for sufficiently

smooth solutions and general nonlinear right-hand sides. The reference [25] provides

a general framework which may be helpful to prove the numerical order for a number

of high-order schemes such as [1,11]. In this paper, we follow the general steps therein

with some alteration to the initial steps.

The rest of this paper is organized as follows. Our numerical scheme is introduced in

Section 2. In Section 3, we prove the unconditional stability of our method. Section 4 is

devoted to the proof of the convergence order, as is verified by our numerical examples

in Section 5. Finally, some concluding remarks are given in Section 6.

2. A finite difference approximation to the Caputo derivative

In this section, we will construct an efficient numerical scheme for the problem

(1.1). For simplicity, we consider a uniform grid on [0, T ] defined by the grid points



74 J. Cao and Z. Cai

xj = j∆x, j = 0, . . . , 2N , where N is a positive integer, and ∆x = T
2N is the grid

size. Below we are going to use the short hand yj = y(xj) and fj = f(xj, yj) for all

j = 0, . . . , 2N .

First, we propose a high-order approximation to the Caputo derivative 0D
ν
xy(x) on

grid points xi based on piecewise quadratic interpolation. To present the quadratic

interpolation, we introduce the following notation:

I[xj ,xj+2]y(x) = ϕ0,j(x)yj + ϕ1,j(x)yj+1 + ϕ2,j(x)yj+2, j ∈ N, (2.1)

where ϕi,j(x), i = 0, 1, 2, are Lagrange interpolating polynomials defined as

ϕ0,j(x) =
1

2∆x2
(x− xj+1)(x− xj+2),

ϕ1,j(x) = −
1

∆x2
(x− xj)(x− xj+2),

ϕ2,j(x) =
1

2∆x2
(x− xj)(x− xj+1).

When j = 1, 2, we approximate 0D
ν
xy(xj) by 0D

ν
x(I[x0,x2]y)(xj):

0D
ν
xy(x1) =

∫ x1

0
y′(s)ω1−ν(x1 − s)ds ≈

∫ x1

0

[
I[x0,x2]y(s)

]′
ω1−ν(x1 − s)ds

= A0,0
1 y0 +A1,0

1 y1 +A2,0
1 y2, (2.2)

0D
ν
xy(x2) =

∫ x2

0
y′(s)ω1−ν(x2 − s)ds ≈

∫ x2

0

[
I[x0,x2]y(s)

]′
ω1−ν(x2 − s)ds

= A0,0
2 y0 +A1,0

2 y1 +A2,0
2 y2, (2.3)

where

Ai,0
j =

∫ xj

0
ϕ′
i,0(s)ω1−ν(xj − s)ds, i = 0, 1, 2, j = 1, 2.

To approximate 0D
ν
xy(xj) for j > 2, we assume that the values of y0, y1, . . . , yj are all

given. Different approximations will be used for odd and even j. When j = 2m+1, we

approximate y(x), x ∈ [0, x2m+1] by

y(x) ≈

{
I[x0,x2]y(x), if x ∈ [x0, x1],

I[x2k−1,x2k+1]y(x), if x ∈ [x2k−1, x2k+1], k = 1, . . . ,m.

This suggests the following approach

0D
ν
xy(x2m+1) =

∫ x1

0
y′(s)ω1−ν(x2m+1 − s)ds

+
m∑

k=1

∫ x2k+1

x2k−1

y′(s)ω1−ν(x2m+1 − s)ds

≈

∫ x1

0

[
I[x0,x2]y(s)

]′
ω1−ν(x2m+1 − s)ds
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+

m∑

k=1

∫ x2k+1

x2k−1

[
I[x2k−1,x2k+1]y(s)

]′
ω1−ν(x2m+1 − s)ds

=A0,0
2m+1y0 +A1,0

2m+1y1 +A2,0
2m+1y2

+

m∑

k=1

(
A0,k

2m+1y2k−1 +A1,k
2m+1y2k +A2,k

2m+1y2k+1

)
, (2.4)

where

Ai,0
2m+1 =

∫ x1

0
ϕ′
i,0(s)ω1−ν(x2m+1 − s)ds, i = 0, 1, 2, (2.5)

Ai,k
2m+1 =

∫ x2k+1

x2k−1

ϕ′
i,2k−1(s)ω1−ν(x2m+1 − s)ds, i = 0, 1, 2, k = 1, . . . ,m. (2.6)

Similarly, when j = 2m+ 2, we approximate the Caputo derivative on xj based on the

following piecewise quadratic interpolation of y(x):

y(x) ≈ I[x2k,x2k+2]y(x), ∀x ∈ [x2k, x2k+2], k = 0, . . . ,m. (2.7)

As a consequence, 0D
ν
xy(x2m+2) can be approximated in the same way as (2.4), and

the result is

0D
ν
xy(x2m+2) ≈

m∑

k=0

(
A0,k

2m+2y2k +A1,k
2m+2y2k+1 +A2,k

2m+2y2k+2

)
, (2.8)

where

Ai,k
2m+2 =

∫ x2k+2

x2k

ϕ′
i,2k(s)ω1−ν(x2m+2 − s)ds, i = 0, 1, 2, k = 0, . . . ,m. (2.9)

In all cases, the Caputo derivative 0D
ν
xy(xj) is approximated by a linear combina-

tion of yk. Furthermore, by straightforward calculation, it can be found that for any

fixed i, j and k, the coefficient Ai,k
j is proportional to ∆x−ν . Therefore we summarize

(2.2)-(2.4) and (2.8) to write down them uniformly as

0D
ν
xy(xj) ≈ 0D

ν
∆xyj , (2.10)

where the newly introduced operator 0D
ν
∆x is the discrete Caputo derivative defined by

0D
ν
∆xyj =





∆x−ν
(
D̂0y0 + D̂1y1 + D̂2y2

)
, if j = 1,

∆x−ν
(
D̃0y0 + D̃1y1 + D̃2y2

)
, if j = 2,

∆x−ν
∑2m+1

k=0 D
(m)
k

yk, if j = 2m+ 1, m = 1, . . . , N − 1,

∆x−ν
∑2m+2

k=0 D
(m)
k yk, if j = 2m+ 2, m = 1, . . . , N − 1.
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Here all the coefficients “D”s are constants depending only on ν, and their values can

be computed analytically:

D̂0 =
3ν − 4

2Γ(3 − ν)
, D̂1 =

2(1 − ν)

Γ(3− ν)
, D̂2 =

ν

2Γ(3− ν)
,

D̃0 =
3ν − 2

2νΓ(3− ν)
, D̃1 = −

4ν

2νΓ(3− ν)
, D̃2 =

ν + 2

2νΓ(3− ν)
,

D
(m)
0 =

1

Γ(3− ν)

(
−
2− ν

2

[
(2m)1−ν + 3(2m+ 2)1−ν

]
−
[
(2m)2−ν − (2m+ 2)2−ν

])
,

D
(m)
2k =

1

Γ(3− ν)

(
−

2− ν

2

[
(2m− 2k)1−ν + 6(2m− 2k + 2)1−ν + (2m− 2k + 4)1−ν

]

−
[
(2m− 2k)2−ν − (2m− 2k + 4)2−ν

])
, k = 1, . . . ,m,

D
(m)
2k+1 =

2

Γ(3− ν)

(
(2− ν)

[
(2m− 2k)1−ν + (2m− 2k + 2)1−ν

]

+
[
(2m− 2k)2−ν − (2m− 2k + 2)2−ν

])
, k = 0, . . . ,m, (2.11)

D
(m)
0 =

1

Γ(3− ν)

(
2− ν

2

[
(2m)1−ν − 3(2m + 1)1−ν

]
− (2m)2−ν + (2m+ 1)2−ν

)
,

D
(m)
1 =

1

Γ(3− ν)

(
−

2− ν

2

[
(2m− 2)1−ν + 3(2m)1−ν − 4(2m+ 1)1−ν

]

− (2m− 2)2−ν + 3(2m)2−ν − 2(2m+ 1)2−ν

)
,

D
(m)
2 =

1

Γ(3− ν)

(
2− ν

2

[
4(2m− 2)1−ν + 3(2m)1−ν − (2m+ 1)1−ν

]

+ 2(2m− 2)2−ν − 3(2m)2−ν + (2m+ 1)2−ν

)
,

D
(m)
2k = D

(m)
2k+1, D

(m)
2k−1 = D

(m)
2k , k = 2, . . . ,m, D

(m)
2m+1 = D

(m)
2m+2 =

ν + 2

Γ(3− ν)2ν
.

Based on the approximation (2.10), the numerical scheme for (1.1) with initial

condition y(0) = y0 can be written as

0D
ν
∆xyj = f(xj, yj), j = 1, . . . , 2N. (2.12)

The above scheme is implicit. Since 0D
ν
∆xy1 depends on y2, the values of y1 and y2

have to be solved simultaneously, which is the key to getting uniform accuracy without

loss of precision at the first time step. For j > 2, solving yj needs only to solve a single

equation.

Remark 2.1. Our numerical scheme includes more coefficients than some other high-

order schemes such as the L1-2 method [11] due to different discretizations on odd
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and even time steps. In fact, we can find from (2.11) that the difference between odd

and even time steps exists only in the first few coefficients with subscripts 0, 1, 2. In

particular, the coefficients D
(m)
2m+1 and D

(m)
2m+2 are the same for all m, indicating that the

numerical scheme for the nonlinear solver stays the same throughout the evolution of

the solution except for the first two time steps.

3. Stability analysis

This section is devoted to the stability analysis of our numerical scheme. Consider

the fractional ordinary differential equation (1.1) with right-hand side

f(x, y) = −λy, λ > 0. (3.1)

In this case, the scheme (2.12) for k > 2 can be rewritten as

(1 + α̃)yj =

j−1∑

k=0

dj
k
yk, k = 3, . . . , 2N, (3.2)

where

d2m+1
k

= −
D

(m)
k

α0
, k = 0, . . . , 2m, (3.3a)

d2m+2
k = −

D
(m)
k

α0
, k = 0, . . . , 2m+ 1, (3.3b)

α0 = D
(m)
2m+1 = D

(m)
2m+2 =

ν + 2

Γ(3− ν)2ν
, α̃ =

λ∆xν

α0
> 0. (3.3c)

Our purpose is to show that there exists a constant K such that |yj | < K|y0| for any

j. Such a property would be obvious from (3.2) if all the coefficients djk were positive.

Unfortunately, this is not true for some ν ∈ (0, 1). The following lemma shows the

properties of the coefficients djk.

Lemma 3.1. For any 0 < ν < 1, j ≥ 4, the coefficients in the scheme (3.2) satisfy

(1)
∑j−1

k=0 d
j
k = 1.

(2) dj
k
>

2ν

3α0Γ(1− ν)
(j − k)−ν−1, k = 2, . . . , j − 3.

(3) djj−1 > 0, dj0 > 0, dj1 > 0.

(4) There exists ν0 ∈ (0, 1) such that djj−2 > 0 if ν ∈ (0, ν0), and djj−2 < 0 if ν ∈
(ν0, 1).

(5)
1

4

(
djj−1

)2
+ djj−2 >

2−νν

8α0Γ(1− ν)
> 0.
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Proof. For simplicity, below we only present proof for the case j = 2m + 1, m ≥ 2.

The proof for even j is very similar. The statements below rely on some technical

inequalities, which are provided in Appendix A.

(1) By the fact that the scheme (2.12) for j = 2m+1 is exact for constant solutions,

we have
2m∑

k=0

D
(m)
k +D

(m)
2m+1 = 0.

According to the definition in the (3.3), we immediately obtain the equality of (1).

(2) For any k = 2, . . . , 2m − 2, we let g
(m)
k = Γ(3 − ν)D

(m)
k . According to (3.3), we

have

d2m+1
k = −

1

α0Γ(3− ν)
g
(m)
k ,

and we are going to prove

g
(m)
k < −(2− ν)(1− ν)ν(2m+ 1− k)−ν−1 (3.4)

by considering the following three cases separately.

Case 1: k = 2. In this case, we claim that

g
(m)
2 =

2− ν

2

[
4(2m− 2)1−ν + 3(2m)1−ν − (2m+ 1)1−ν

]

+
[
2(2m− 2)2−ν − 3(2m)2−ν + (2m+ 1)2−ν

]

≤ −
5

4
(2− ν)(1− ν)ν(2m− 1)−ν−1.

To show this, we rewrite the above inequality by applying binomial expansion on both

sides:

+∞∑

j=0

(−1)j
(
2− ν

j + 3

)
j + 1

2

(
2j+4 − (−1)j

)( 1

2m

)j+1+ν

≤

+∞∑

j=0

(−1)j
(
2− ν

j + 3

)
5

4
(j + 3)(j + 2)(j + 1)

(
1

2m

)j+1+ν

.

This inequality holds if

2j+4 − (−1)j ≥
5

2
(j + 3)(j + 2), ∀ j = 0, 1, . . . . (3.5)

When j = 0, this can be directly verified. When j ≥ 1, let

h(x) = 2x+4 − 1−
5

2
(x+ 3)(x + 2).
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It can be easily verified that h(x) is convex when x ≥ 1. Using h′(1) > 0 and h(1) > 0,

we conclude that h(x) is positive for all x ≥ 1. Therefore (3.5) holds.

Case 2: k = 4, 6, . . . , 2m− 2. In this case,

g
(m)
k = 2g̃

(m)
k′

,

where k′ = m− k
2 and

g̃
(m)
k′

= (2− ν)
[
(2k′)1−ν + (2k′ + 2)1−ν

]
+ (2k′)2−ν − (2k′ + 2)2−ν .

If k′ > 1, by Lemma A.2, we can obtain

g̃
(m)
k′ < −(2− ν)(2k′)1−ν

(
2

2k′

)2 (1− ν)ν

6

(
1−

ν + 1

2

2

2k′

)

≤ (3− ν)

(
2− ν

3

)
(2k′)−ν−1.

Thus

g
(m)
k < 2(3 − ν)

(
2− ν

3

)
(2m− k)−ν−1

< −
2

3
(2− ν)(1− ν)ν(2m+ 1− k)−ν−1.

When k′ = 1, by Lemma A.1(7), we get

g̃
(m)
k′

= 21−ν
[
4− ν − (2 + ν)21−ν

]

<
1

27
(2ν − 3)(2 − ν)(1− ν)ν

< −3−ν−2(2− ν)(1− ν)ν,

where we have used 3−ν < (3−2ν)
3 , which comes from the convexity of the function 3−ν .

The above inequality implies that (3.4) also holds for k = 2m− 2.

Case 3: k = 3, 5, . . . , 2m− 3. In this case, we have

g
(m)
k

=
1

2
ĝ
(m)

k̄
,

where k̄ = m− (k−1)
2 , and

ĝ
(m)

k̄
=− (2− ν)(2k̄)1−ν

[(
1−

1

k̄

)1−ν

+ 6 +

(
1 +

1

k̄

)1−ν
]

− 2(2k̄)2−ν

[(
1−

1

k̄

)2−ν

−

(
1 +

1

k̄

)2−ν
]
.
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Since k̄ ≥ 2, we can apply Lemma A.1(1),(2) to get

ĝ
(m)

k̄
≤ −(2− ν)(2k̄)1−ν

(
8−

1− ν

2k̄2

[
2ν −

(
2

3

)ν])

− 2(2k̄)2−ν

[
−2(2− ν)

1

k̄
+

(2− ν)(1− ν)ν

3k̄3

]

= −(2k̄)1−ν (2− ν)(1 − ν)

6k̄2

(
8ν − 3

[
2ν −

(
2

3

)ν])
.

Let

f(ν) := 8ν − 3

[
2ν −

(
2

3

)ν]
.

Then

f ′′(ν) = 3

[(
2

3

)ν (
log

2

3

)2

− 2ν(log 2)2

]
< 0.

Therefore f(ν) ≥ f(0)(1− ν) + f(1)ν = 4ν. Thus

g
(m)
k =

1

2
ĝ
(m)

k̄
≤ −

4

3
(2− ν)(1− ν)ν(2k̄)−1−ν

= −
4

3
(2− ν)(1− ν)ν(2m+ 1− k)−1−ν .

(3) All the three inequalities can be directly shown as follows:

d2m+1
2m = −

D
(m)
2m

α0
=

2ν21−ν

Γ(3− ν)α0
=

4ν

ν + 2
> 0,

d2m+1
1 = −

1

α0Γ(3− ν)

(
−

2− ν

2

[
(2m− 2)1−ν + 3(2m)1−ν − 4(2m+ 1)1−ν

]

−
[
(2m− 2)2−ν − 3(2m)2−ν + 2(2m+ 1)2−ν

])
> 0,

[Due to Lemma A.1(3)]

d2m+1
0 = −

1

α0Γ(3− ν)

(
2− ν

2

[
(2m)1−ν− 3(2m+1)1−ν

]
−(2m)2−ν+(2m+1)2−ν

)
> 0.

[Due to (A.6)]

(4) Since

d2m+1
2m−1 = −

D
(m)
2m−1

α0
=

21−ν

Γ(3− ν)α0

[
3(2− ν)− (6 + ν)2−ν

]
,

the sign of d2m+1
2m−1 is determined by the sign of h(ν) := 3(2 − ν) − (6 + ν)2−ν , which

satisfies

h′′(ν) = −2−ν(log 2)2
(
6−

2

log 2
+ ν

)
< 0,
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h′(0) = 6 log 2− 4 > 0, h′(1) =
7

2
(log 2− 1) < 0.

Therefore h(ν) first increases and then decreases. By h(0) = 0 and h(1) = −1
2 , we

know that h(ν) has only one zero ν0 in (0, 1), and h(ν) > 0 if ν ∈ (0, ν0) and h(ν) < 0
if ν ∈ (ν0, 1), which agrees with the conclusion of the lemma.

(5) By Lemma A.1(8), we directly have

1

4

(
d2m+1
2m

)2
+ d2m+1

2m−1 =
2

(2 + ν)2
[
12− ν2 −

(
12 + 8ν + ν2

)
2−ν
]

>
(2− ν)(1− ν)ν

8(2 + ν)
=

2−νν

8α0Γ(1− ν)
,

which completes the proof.

The above lemma shows that for ν < ν0, all the coefficients djk are positive. In this

case, as mentioned previously, the stability of the scheme can be immediately obtained

from (3.2). However, this does not hold when ν > ν0. To deal with this case, below we

are going to rewrite the scheme (3.2) as equations with all positive coefficients. To this

end, we introduce

ȳj = yj − θyj−1 for all j > 1, ȳ0 = y0,

where θ = 2ν
2+ν

. In fact, we have θ = 1
2d

j
j−1 for all j ≥ 4. Thus the numerical solution

yj can be represented by ȳj through

yj = ȳj + θyj−1 = ȳj + θȳj−1 + θ2yj−2 = · · · =

j∑

k=0

θj−kȳk. (3.6)

For j ≥ 4, we can rewrite the scheme (3.2) by subtracting both sides by θyj−1:

ȳj + α̃yj = θyj−1 +

j−2∑

k=0

djkyk = θȳj−1 +

j−2∑

k=0

(
θj−k +

j−2∑

k′=k

djk′θ
k′−k

)
ȳk, (3.7)

where we have inserted (3.6) to write the right-hand side as functions of ȳj. By defining

d̄jj = −1, d̄j
k
= θj−k +

j−2∑

k′=k

dj
k′
θk

′−k, k = 0, . . . , j − 1, j ≥ 4, (3.8)

Eq. (3.7) becomes

ȳj + α̃yj = θȳj−1 +

j−2∑

k=0

d̄jkȳk, j ≥ 4. (3.9)

Note that the same equation does not hold for j = 3. When j = 3, we can use the same

method to rewrite ȳ3 + α̃y3 as a linear combination of ȳ0, ȳ1 and ȳ2. The result is

ȳ3 + α̃y3 = d̄32ȳ2 + d̄31ȳ1 + d̄30ȳ0, (3.10)



82 J. Cao and Z. Cai

where

d̄32 = d32 − θ =
ν + 6

ν + 2
−

4 + ν

ν + 2

(
2

3

)ν−1

, (3.11)

d̄31 = d̄32θ + d31 =
1

(2 + ν)2

[
−ν2 − 12 + 3

(
ν2 + 2ν + 4

)(2

3

)ν]
, (3.12)

d̄30 = d̄31θ + d30 =
1

2

(ν − 2)2

(ν + 2)3

[
4− 2ν + 3ν

(
2

3

)ν]
. (3.13)

Additionally, we define d̄33 = −1, so that for any j ≥ 3, we have

djk = d̄jk − θd̄jk+1, for all k = 0, . . . , j − 1. (3.14)

The following lemma shows that in the new “scheme” (3.9), all the coefficients are

positive.

Lemma 3.2. For 0 < ν < 1, the coefficients defined in (3.8) satisfy

(1) 0 < d̄32 < θ <
2

3
;

(2) d̄jk > 0, k = 0, . . . , j − 2, j ≥ 3;

(3) θ +
∑j−2

k=0 d̄
j
k < 1, j ≥ 3.

Proof. (1) Using the fact that (23 )
ν−1 is a convex function, we have (23)

ν−1 < 3−ν
2 .

Therefore by (3.11),

d̄32 >
ν + 6

ν + 2
−

4 + ν

ν + 2

3− ν

2
=
ν(ν + 3)

2(ν + 2)
> 0.

The inequality d̄32 < θ is a direct result of Lemma A.1(5) since

d̄32 − θ =
1

2 + ν

[
6− ν −

(
2 +

ν

2

)
2ν31−ν

]
.

The fact that θ < 2
3 is obvious since θ = 2ν

ν+2 .

(2) When j = 3, by Lemma A.1(4) and (3.12), we immediately see that d̄31 > 0. The

fact that d̄30 > 0 can be observed from

d̄30 =
1

2

(ν − 2)2

(ν + 2)3

[
4− 2ν + 3ν

(
2

3

)ν]
>

1

2

(ν − 2)2

(ν + 2)3
(4− 2ν + 2ν) > 0.

When j > 3, by (3.8) and Lemma 3.1(5), we get

d̄jj−2 = θ2 + djj−2 =
1

4

(
djj−1

)2
+ djj−2 > 0. (3.15)
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For other cases, we notice that (3.8) implies the following recurrence relation of d̄j
k
:

d̄jk = θd̄jk+1 + djk, k = 0, . . . , j − 3. (3.16)

Since dj
k
> 0 for all k = 0, . . . , j − 3, Eq. (3.16) shows that d̄j

k+1 > 0 implies d̄j
k
> 0.

Thus, by mathematical induction with the base case (3.15), we see that d̄jk > 0 for all

k = 0, . . . , j − 2.

(3) When j = 3, direct calculation yields

θ + d̄31 + d̄30

=1 +
1

2(2 + ν)3

[
−2ν3+ 12ν2 − 56ν − 48 + 3

(
2

3

)ν (
3ν3 + 4ν2 + 20ν + 16

)]
.

By Lemma A.1(6), we see that the above quantity is less than 1. When j ≥ 4, we let Qj

be the left-hand side of the inequality. It can be observed from (3.8) that

(1− θ)Qj = θ(1− θj) +

j−2∑

k=0

(1− θk+1)djk.

According to Lemma 3.1(2), we have

(1− θ)Qj < θ
(
1− θj

)
+

j−3∑

k=0

djk +
(
1− θj−1

)
djj−2

= θ +

j−2∑

k=0

djk − θj−1
(
θ2 + djj−2

)
,

where we have used (3.15) at the last step. Now we apply Lemma 3.1(1) to get

(1− θ)Qj < θ + 1− djj−1 = θ + 1− 2θ = 1− θ,

which indicates Qj < 1.

Base on this lemma, we can show the stability for the numerical solution ȳj.

Lemma 3.3. For 0 < ν < 1, we have

ȳ2j + α̃y2j ≤ y20 for all j > 0. (3.17)

Proof. We first prove (3.17) for j = 1. When f(x, y) = −λy, the scheme (2.12) for

the first two steps is

D̂0y0 + D̂1y1 + D̂2y2 = −β0y1,

D̃0y0 + D̃1y1 + D̃2y2 = −β0y2,
(3.18)
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where β0 = λ∆xν . By solving the linear system, we can get

ȳ21 + α̃y21

=y20 ·
ã0 + ã1Γ(3− ν)β0 + ã2Γ(3− ν)2β20 + ã3Γ(3− ν)3β30 + ã4Γ(3− ν)4β40
b̃0 + b̃1Γ(3− ν)β0 + b̃2Γ(3− ν)2β20 + b̃3Γ(3− ν)3β30 + b̃4Γ(3− ν)4β40

, (3.19)

where the coefficients satisfy

ã0 = 16(2 − ν)4 > 0,

ã1 = 8(ν − 2)2
[
2ν
(
5ν2 − 8ν + 12

)
− 4

(
ν2 + 2ν

)]

≥ 8(ν − 2)2
[
(1 + ν log 2)

(
5ν2 − 8ν + 12

)
− 4

(
ν2 + 2ν

)]
> 0,

ã2 = 16ν2(ν + 2)2 − 2ν+3ν
(
5ν3 + 4ν2 − 28ν + 32

)

+ 4ν
(
25ν4 − 76ν3 + 148ν2 − 256ν + 192

)

≥ 16ν2(ν + 2)2 − 8(1 + ν)ν
(
5ν3 + 4ν2 − 28ν + 32

)

+ (1 + ν log 4)
(
25ν4 − 76ν3 + 148ν2 − 256ν + 192

)
> 0,

ã3 = 2ν
[
32ν2(ν + 2)− 2ν+3ν

(
5ν2 − 10ν + 8

)
+ 4ν(ν + 2)(4 − 3ν)2

]

≥ 2ν
[
32ν2(ν + 2)− 8(1 + ν)ν

(
5ν2 − 10ν + 8

)
+ (1 + ν log 4)(ν + 2)(4 − 3ν)2

]
> 0,

ã4 = 4ν+2ν2 > 0,

b̃0 − ã0 = 128ν(2 − ν)2 > 0,

b̃1 − ã1 = 8(2 − ν)
[
2ν
(
ν3 − 30ν2 + 28ν − 8

)
− 2(ν + 2)

(
ν2 − 8ν − 4

)]

≥ 8(2 − ν)2ν
[(
ν3 − 30ν2 + 28ν − 8

)
− 2

(
ν2 − 8ν − 4

)]
> 0,

b̃2 − ã2 = 4ν
(
−9ν4 + 108ν3 − 196ν2 + 192ν − 128

)

+ 2ν+3
(
3ν4 − 8ν3 − 44ν2 + 48ν + 32

)
− 4(ν − 2)(3ν + 2)(ν + 2)2

≥ (1 + ν log 4)
(
−9ν4 + 108ν3 − 196ν2 + 192ν − 128

)

+ 8
(
3ν4 − 8ν3 − 44ν2 + 48ν + 32

)
− 4(ν − 2)(3ν + 2)(ν + 2)2 > 0,

b̃3 − ã3 = 2ν
[
2ν+3

(
3ν3 − 16ν2 + 8ν + 8

)
− 4ν(ν + 2)(4 − 3ν)2

− 8(ν − 2)(ν + 2)(3ν + 2)
]

> 2ν
[
8
(
3ν3 − 16ν2 + 8ν + 8

)
− 4(ν + 2)(4 − 3ν)2

− 8(ν − 2)(ν + 2)(3ν + 2)
]
> 0,

b̃4 − ã4 = 41+ν
(
4 + 4ν − 3ν2

)
> 0.

In the above derivation, we have omitted the details on the determination of signs for

all polynomials of degree less than or equal to 5, which is elementary but tedious. Since

β0 = λ∆xν > 0, these inequalities show that the coefficient of y20 on the right-hand side

of (3.19) is less than 1. Therefore ȳ21 + α̃y21 ≤ y20.
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To show (3.17) for j = 2, we also solve the linear system (3.18) to get

ȳ22 + α̃y22

=y20 ·
ǎ0 + ǎ1Γ(3− ν)β0 + ǎ2Γ(3− ν)2β20 + ǎ3Γ(3− ν)3β30

b̌0 + b̌1Γ(3− ν)β0 + b̌2Γ(3− ν)2β20 + b̌3Γ(3− ν)3β30 + b̌4Γ(3− ν)4β40
,

and it can be similarly shown that

b̌l > ǎl > 0, l = 0, 1, 2, 3, b̌4 > 0.

Therefore (3.17) also holds for j = 2.

Next, we prove (3.17) for j = 3. Multiplying by 2ȳ3 on both sides of (3.10), and

using the identity

2yj ȳj = (yj + yj)ȳj = (yj + ȳj + θyj−1)(yj − θyj−1) = y2j + ȳ2j − θ2y2j−1, (3.20)

we get

2ȳ23 + α̃y23 + α̃ȳ23 − α̃θ2y22 ≤ d̄32ȳ
2
2 + d̄31ȳ

2
1 + d̄30y

2
0 +

(
d̄32 + d̄31 + d̄30

)
ȳ23. (3.21)

Applying Lemma 3.2(1)(3) and the result (3.17) for j = 1, 2 to the above inequality,

we obtain

ȳ23 + α̃y23 ≤ θ
(
ȳ22 + α̃y22

)
+ d̄31

(
ȳ21 + α̃y21

)
+ d̄30y

2
0 ≤

(
θ + d̄31 + d̄30

)
y20 ≤ y20 .

Therefore, we can obtain (3.17) for j = 3.

When j ≥ 4, we apply mathematical induction and assume that the result holds for

all cases up to j − 1. To show (3.17), we multiply both sides of (3.9) by 2ȳj and apply

the identity (3.20), resulting in the following inequality:

2ȳ2j + α̃y2j + α̃ȳ2j − α̃θ2y2j−1

≤θȳ2j−1 +

j−2∑

k=0

d̄jkȳ
2
k +

(
θ +

j−2∑

k=0

d̄jk

)
ȳ2j ≤ θȳ2j−1 +

j−2∑

k=0

d̄jkȳ
2
k + ȳ2j ,

where Lemma 3.2(3) has been applied at the last step. Some rearrangement yields

ȳ2j + α̃y2j ≤ θ
(
ȳ2j−1 + α̃y2j−1

)
+

j−2∑

k=1

d̄j
k

(
ȳ2k + α̃y2k

)
+ d̄j0y

2
0.

Now one can apply the inductive hypothesis to get

ȳ2j + α̃y2j ≤

(
θ +

j−2∑

k=1

d̄jk + d̄j0

)
y20 ≤ y20.

By the principle of mathematical induction, the inequality (3.17) holds for all j > 0.

By now, we are ready to show the stability of the original numerical solution yk.
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Theorem 3.1. The scheme (2.12) for Eq. (1.1) with f given in (3.1) is stable in the sense

that

|yk| ≤
2 + ν

2− ν
|y0| for all k > 0. (3.22)

Proof. By Lemma 3.3, we can get

|ȳj| ≤ |y0| for all j > 0. (3.23)

Inserting this inequality to (3.6) yields

|yk| ≤

k∑

j=0

θk−j|ȳj | ≤

k∑

j=0

θk−j|y0| ≤
1

1− θ
|y0| =

2 + ν

2− ν
|y0|,

which completes the proof of the stability.

4. Convergence analysis

Our convergence analysis follows the general idea of the recent work [25], which is

parallel to the proof of L2-stability of the fractional ODE (1.1) with respect to the initial

data. However, our analysis has to deal with the special processing of the first two time

steps and the non-positivity of the coefficients in the numerical scheme. For the sake

of clarity, we decompose our analysis into the following three subsections. Before that,

we make the following assumptions:

(H1) The exact solution y ∈ C3([0, T ]);

(H2) The right-hand side f(x, y) is Lipschitz continuous with respect to y, i.e.

|f(x, y∗)− f(x, y∗∗)| < L|y∗ − y∗∗| for any y∗ and y∗∗. (4.1)

In the following analysis, we will restrict ourselves to the numerical solution exactly

on [0, T ]. As in the beginning of the Section 2, we suppose 2N∆x = T for a positive

integer N . For convenience, we define the numerical error by

ej = y(xj)− yj, j = 0, . . . , 2N,

and e0 = 0. Furthermore, by the hypotheses (H2), we can find Lj for j = 1, . . . , 2N ,

such that

f(xj, y(xj))− f(xj, yj) = Lj(y(xj)− yj), |Lj| ≤ L. (4.2)

Remark 4.1. In (H2), we have assumed the global Lipschitz continuity for the right-

hand side. If f(x, y) is local Lipschitz continuous with respect to y, then the same

numerical order can still be proved if the numerical solution converges. We just need



High-Order Scheme for Nonlinear Fractional Differential Equations 87

to set sufficiently small time steps to make sure that yj is sufficiently close to y(xj) so

that the complete numerical solution is within the interval

I :=
[

min
x∈[0,T ]

y(x)− ǫ, max
x∈[0,T ]

y(x) + ǫ
]

for some constant ǫ. Then we can set L to be the maximum Lipschitz coefficient for

y ∈ I, and thus the proof in this section can still be applied.

4.1. Reformulation of the numerical scheme

Our first step is to rewrite our numerical scheme to better match the form of the

Caputo derivative (1.2). To this end, we introduce the notation

∇ψk = ψk − ψk−1, k > 0

for any quantity ψk, as corresponds to the first-order derivative appearing in the defi-

nition of the Caputo derivative. Furthermore, for any n ≥ 2 and k = 0, . . . , n − 1, we

define B̄n
k as

B̄n
0 = ∆x−να0, B̄n

n−k = B̄n
n−k−1 −∆x−να0d̄

n
k , k = 1, . . . , n− 1. (4.3)

By (3.14), we have

0D
ν
∆xyn = ∆x−να0yn −∆x−να0

n−1∑

k=0

dnkyk = ∆x−να0yn −∆x−να0

n−1∑

k=0

(
d̄nk − θd̄nk+1

)
yk

= ∆x−να0

(
yn + θd̄nnyn−1

)
−∆x−να0

n−1∑

k=1

d̄nk(yk − θyk−1)−∆x−να0d̄
n
0y0

= ∆x−να0ȳn −∆x−να0

n−1∑

k=1

d̄nk ȳk −∆x−να0d̄
n
0y0.

Now we can apply the definition of B̄n
k given in (4.3) to rewrite the discrete fractional

derivative as

0D
ν
∆xyn = B̄n

0 ȳn +

n−1∑

k=1

(
B̄n

n−k − B̄n
n−k−1

)
ȳk −∆x−να0d̄

n
0y0

=

n∑

k=1

B̄n
n−k∇ȳk +

(
B̄n

n−1 −∆x−να0d̄
n
0

)
y0. (4.4)

Similarly, if we define ȳ(x) = y(x)− θy(x−∆x) and ȳ(0) = y0, we have

0D
ν
∆xy(xn) =

n∑

k=1

B̄n
n−k∇ȳ(xk) +

(
B̄n

n−1 −∆x−να0d̄
n
0

)
y0. (4.5)

Our analysis will be based on such a form of the discrete Caputo derivative. The fol-

lowing lemma provides the lower bounds and the monotonicity of the coefficients.
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Lemma 4.1. The coefficients B̄n
k satisfy B̄n

0 > . . . > B̄n
n−1 > 0 and

B̄n
k ≥

1

πB∆x

∫ xn−k

xn−k−1

ω1−ν(xn − s)ds

=
1

πB∆xνΓ(2− ν)

[
(k + 1)1−ν − k1−ν

]
, (4.6)

where πB = 9.

Proof. The monotonicity of the coefficients B̄n
k is obvious by the definition (4.3) and

the positivity of d̄nk , and below we focus only on the proof of (4.6).

When k = 0, we have

B̄n
0 = ∆x−να0 =

ν + 2

(2− ν)2ν
1

∆xνΓ(2− ν)
≥

1

∆xνΓ(2− ν)
.

When k > 0, since (k + 1)1−ν − k1−ν ≤ (1− ν)k−ν , we just need to show

B̄n
k ≥

1

9∆xνΓ(2− ν)
(1− ν)k−ν =

1

9∆xνΓ(1− ν)
k−ν .

Below we separate our proof into four cases.

Case 1: n = 3. By direct calculation, one can obtain

B̄3
1 = B̄3

0 −∆x−να0d̄
3
2

=
2−ν

∆xνΓ(3− ν)

[
3(ν + 4)

2

(
2

3

)ν

− 4

]

≥
1− ν log 2

∆xνΓ(3− ν)

[
3(ν + 4)

2

(
1 + ν log

2

3

)
− 4

]

=
1

∆xνΓ(1− ν)

[
1 +

ν
(
β0 + β1ν + β2ν

2
)

2(2 − ν)(1− ν)

]
,

where

β0 = 9− 12 log 3 + 8 log 2,

β1 = 3 log 3(4 log 2− 1)− 12(log 2)2 − 2,

β2 = 3 log 2(log 3− log 2).

It is not difficult to check that β0 + β1ν + β2ν
2 > 0 when ν ∈ (0, 1). Therefore

B̄3
1 ≥

1

∆xνΓ(1− ν)
.
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Similarly, the case k = 2 can be shown by

B̄3
2 = B̄3

1 −∆x−να0d̄
3
1

=
2−ν

∆xνΓ(2− ν)
·

1

ν + 2

[
2− ν +

3ν

2

(
2

3

)ν]

≥
2−ν

∆xνΓ(2− ν)
·

1

ν + 2

[
2− ν +

3ν

2

(
1 + ν log

2

3

)]

=
2−ν

∆xνΓ(1− ν)

[
1 +

ν[3 + (2− 3 log 3 + 3 log 2)ν]

2(2 + ν)(1− ν)

]

≥
2−ν

∆xνΓ(1− ν)
.

Case 2: n > 3 and k = n− 1. By definition,

B̄n
n−1 = B̄n

0 −∆x−να0

n−1∑

k=1

d̄nk = ∆x−να0

(
1−

n−1∑

k=1

d̄nk

)
.

By Lemma 3.2(3) and (3.14), we can bound B̄n
n−1 by

B̄n
n−1 > ∆x−να0d̄

n
0 > ∆x−να0d

n
0 .

Now we consider odd and even n separately. If n = 2m+ 1 and m > 1, by (3.3a),

B̄2m+1
2m

>
1

∆xνΓ(3− ν)

(
2− ν

2

[
3(2m+ 1)1−ν − (2m)1−ν

]
−
[
(2m+ 1)2−ν − (2m)2−ν

])
.

Using the inequality (A.6), we see that

B̄2m+1
2m ≥

1

∆xνΓ(3− ν)
(2− ν)(1− ν)(2m)−ν

(
1−

7ν

24m

)
>

1

2∆xνΓ(1− ν)
(2m)−ν .

Similarly, when n = 2m+ 2 and m ≥ 1, we have

B̄2m+2
2m+1 ≥

1

∆xνΓ(3− ν)
(2− ν)(1− ν)(2m)−ν

(
1−

5ν

6m

)

=
1

∆xνΓ(3− ν)
(2− ν)(1− ν)(2m+ 1)−ν

(
2m

2m+ 1

)−ν (
1−

5ν

6m

)

>
1

6∆xνΓ(1− ν)
(2m+ 1)−ν .

Case 3: n > 3 and k = n− 2. We can directly use the result for k = n− 1 to get

B̄n
n−2 ≥ B̄n

n−1 >
1

6∆xνΓ(1− ν)
(n − 2)−ν ·

(
n− 1

n− 2

)−ν

>
1

9∆xνΓ(1− ν)
(n− 2)−ν .
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Case 4: n > 3 and k = 1, . . . , n− 3. Using

d̄nj = θd̄nj+1 + dnj ≥ dnj >
2ν

3α0Γ(1− ν)
(n − j)−ν−1, j = 1, . . . , n− 3,

d̄nn−2 =
1

4
(dnn−1)

2 + dnn−2 >
ν

4α0Γ(1− ν)
2−ν−1,

we obtain

B̄n
k = B̄n

n−1 +∆x−να0

n−1−k∑

j=1

d̄nj > B̄n
n−1 +

ν

4∆xνΓ(1− ν)

n−1−k∑

j=2

(n− j)−ν−1

≥
1

2∆xνΓ(1− ν)
(n− 1)−ν +

ν

4∆xνΓ(1− ν)

∫ n−1−k

1
(n− x)−ν−1 dx

=
1

2∆xνΓ(1− ν)
(n− 1)−ν +

1

4∆xνΓ(1− ν)

[
(1 + k)−ν − (n− 1)−ν

]

≥
1

4∆xνΓ(1− ν)
(1 + k)−ν ≥

1

8∆xνΓ(1− ν)
k−ν .

This completes the proof for all k = 0, . . . , n− 1.

The purpose of the above lemma is an upper bound for the discrete fractional

derivative of |ēj |
2. We state the result in the following lemma:

Lemma 4.2. For any j ≥ 3,

2ēj

j∑

k=3

B̄j
j−k∇ēk ≥

j∑

k=3

B̄j
j−k∇(|ēk|

2).

We refer the readers to [25, Lemma A.1] for the proof of this lemma.

4.2. Estimation of the truncation errors

Most error estimation is based on the estimation of the truncation error. In our case,

it can be defined by

rj(∆x) := 0D
ν
xy(xj)− 0D

ν
∆xy(xj), j ≥ 1. (4.7)

Here 0D
ν
∆xy(xj) is defined by replacing yj in (2.2)-(2.4) and (2.8) with y(xj). As

mentioned previously, the first two time steps in our scheme have to be taken into

account independently. Therefore, for j ≥ 3 we introduce the following modified

truncation error:

r̃j(∆x) = rj(∆x)− Lj

2∑

k=1

θj−kēk +

2∑

k=1

B̄j
j−k∇ēk, (4.8)

where ēk = ek − θek−1. Below we are going to derive bounds for both (4.7) and (4.8).
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Theorem 4.1. Assume that (H1) holds. There exists a constant C1 depending only on the

function y and the final time T , such that for all ∆x > 0,

|rj(∆x)| ≤ C1∆x
3−ν , j = 1, . . . , 2N. (4.9)

Proof. Our error estimation will be established on the following error term of the

Lagrange interpolation:

y(x)− I[xk,xk+2]y(x)

=
y(3)(ξk(x))

6
(x− xk)(x− xk+1)(x− xk+2), ∀x ∈ [xk, xk+2], (4.10)

where ξk(x) is a function defined on [xk, xk+2] with range (xk, xk+2). Let M1 be the

upper bound of y(3) on [0, T ]. For any x ∈ [xk, xk+2], we have

∣∣y(x)− I[xk,xk+2]y(x)
∣∣ ≤ M1

3
∆x2(xk+2 − x), (4.11)

or more simply,

∣∣y(x)− I[xk,xk+2]y(x)
∣∣ ≤ M1

6
∆x(xk+2 − x)(x− xk) ≤

M1

6
∆x3. (4.12)

We first estimate r1(∆x):

|r1(∆x)|

=

∣∣∣∣
1

Γ(1− ν)

∫ x1

0
y′(s)(x1 − s)−νds −

1

Γ(1− ν)

∫ x1

0

[
I[x0,x2]y(s)

]′
(x1 − s)−νds

∣∣∣∣

=
ν

Γ(1− ν)

∣∣∣∣
∫ x1

0

[
y(s)− I[x0,x2]y(s)

]
(x1 − s)−ν−1ds

∣∣∣∣

=
ν

Γ(1− ν)

∣∣∣∣∣

∫ x1

0

y(3)(ξ0(s))

6
(s − x0)(x1 − s)−ν(s− x2)ds

∣∣∣∣∣

≤
ν

Γ(1− ν)

M1

6

∫ x1

0
s(x2 − s)(x1 − s)−νds =

ν

(3− ν)Γ(2− ν)

M1

3
∆x3−ν

< M1∆x
3−ν , (4.13)

where we have used Γ(2 − ν) > 2
3 . The Eq. (4.13) proves (4.9) for j = 1. The case

j = 2 can be similarly proven, and here we omit the details.

Now we estimate r2m+1(∆x) for m ≥ 1. In a similar way to (4.13), we can use
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integration by parts to obtain

|r2m+1(∆x)|

=

∣∣∣∣
ν

Γ(1− ν)

∫ x1

0

[
y(s)− I[x0,x2]y(s)

]
(x2m+1 − s)−ν−1ds

+
ν

Γ(1− ν)

m−1∑

k=1

∫ x2k+1

x2k−1

[y(s)− I[x2k−1,x2k+1]y(s)](x2m+1 − s)−ν−1ds

+
ν

Γ(1− ν)

∫ x2m+1

x2m−1

[
y(s)− I[x2m−1,x2m+1]y(s)

]
(x2m+1 − s)−ν−1ds

∣∣∣∣. (4.14)

Applying (4.11) and (4.12), we can estimate the truncation error by

|r2m+1(∆x)|

≤
ν

Γ(1− ν)

[
M1

6
∆x3

(∫ x1

0
(x2m+1 − s)−ν−1ds+

m−1∑

k=1

∫ x2k+1

x2k−1

(x2m+1 − s)−ν−1ds

)]

+
ν

Γ(1− ν)

∫ x2m+1

x2m−1

M1

3
∆x2(x2m+1 − s)−νds

≤
M1ν

Γ(1− ν)

[
1

6
∆x3

∫ x2m−1

0
(x2m+1 − s)−ν−1ds+

1

3
∆x2

∫ x2m+1

x2m−1

(x2m+1 − s)−νds

]

=
M1

6Γ(2− ν)

[
2−ν(1 + 3ν)− (1− ν)(2m+ 1)−ν

]
∆x3−ν ≤M1∆x

3−ν .

The case j = 2m+ 2 can be similarly proven, and the details are omitted.

To show the error bounds for (4.8), we need the error estimation for the first two

time steps.

Lemma 4.3. Assume that both (H1) and (H2) hold, and ∆xν < (7L)−1. Then

|e1| 6 10C1∆x
3, |e2| 6 10C1∆x

3,

where the constant C1 is defined in Theorem 4.1.

Proof. By the numerical scheme (2.12) for k = 1, 2 and the definition of the trunca-

tion error (4.7), we have

{
∆x−νD̂1e1 +∆x−νD̂2e2 = f(x1, y(x1))− f(x1, y1)− r1(∆x),

∆x−νD̃1e1 +∆x−νD̃2e2 = f(x2, y(x2))− f(x2, y2)− r2(∆x).
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After solving the equation, we get

|e1| = Γ(2− ν)∆xν
∣∣∣∣
2 + ν

2
[f(x1, y(x1))− f(x1, y1)− r1(∆x)]

− 2ν−2ν [f(x2, y(x2))− f(x2, y2)− r2(∆x)]

∣∣∣∣

≤ Γ(2− ν)∆xν
(
2 + ν

2

(
L|e1|+ C1∆x

3−ν
)
+ 2ν−2ν

(
L|e2|+ C1∆x

3−ν
))

≤ ∆xν
(
3

2

(
L|e1|+ C1∆x

3−ν
)
+

1

2

(
L|e2|+ C1∆x

3−ν
))

≤
3

2
L∆xν(|e1|+ |e2|) + 2C1∆x

3.

By similar means, we can obtain |e2| ≤ 2L∆xν(|e1|+ |e2|) + 3C1∆x
3. Summing up the

two inequalities yields

|e1|+ |e2| ≤
7

2
L∆xν(|e1|+ |e2|) + 5C1∆x

3.

Therefore when ∆xν < (7L)−1, we have

|e1|+ |e2| ≤ 10C1∆x
3, (4.15)

which completes the proof.

The above lemma already shows that we do not lose any numerical accuracy for

the first two time steps. In fact, their orders are slightly higher than the general error

bound O(∆x3−ν). This is necessary to provide error bounds for r̃j(∆x) in the following

theorem.

Theorem 4.2. Assume both (H1) and (H2) hold, and ∆xν < (10|L|)−1. There exists

a constant C such that

|r̃j(∆x)| ≤ C∆x3−ν. (4.16)

Proof. We first estimate the coefficients B̄j
j−1 and B̄j

j−2. According to (4.3),

B̄j
j−1 < ∆x−να0 =

(ν + 2)∆x−ν

Γ(3− ν)2ν
≤ 3∆x−ν ,

B̄j
j−2 − B̄j

j−1 = ∆x−να0d̄
j
1 < ∆x−να0 ≤ 3∆x−ν ,

where we have used d̄j1 < 1 implied by Lemma 3.2(3),(5). Now we can apply triangle

inequality to (4.8)

|r̃j(∆x)| ≤ |rj(∆x)|+
∣∣∣(1 + θ)B̄j

j−2 − B̄j
j−1

∣∣∣ · |e1|+
∣∣∣Ljθ

j−2 − B̄j
j−2

∣∣∣ · |e2|

≤ C1∆x
3−ν + 70C1∆x

3−ν + 10C1(|Lj |+ 6∆x−ν)∆x3.

Here we have applied Theorem 4.1 and Lemma 4.3. Since ∆xν < (10|L|)−1, the above

inequality yields

|r̃j(∆x)| ≤ 132C1∆x
3−ν .



94 J. Cao and Z. Cai

4.3. Error analysis

Now we are ready to summarize the previous two subsections and carry out the

error analysis for our scheme. The purpose of Section 4.1 is to provide preparatory

works to introduce an important tool – the complementary discrete convolution ker-

nels. Inspired by the property (1.4), we would like to find the discrete kernel Pn
j ,

corresponding to the kernel ων(·), which satisfies

n∑

j=m

Pn
n−jB̄

j
j−m ≡ 1, ∀ 3 ≤ m ≤ n ≤ 2N. (4.17)

According [25, Eq. (2.6)], we have

Pn
0 =

1

B̄n
0

, Pn
j =

1

B̄n−j
0

j−1∑

k=0

(
B̄n−k

j−k−1 − B̄n−k
j−k

)
Pn
k for 1 ≤ j ≤ n− 3. (4.18)

Define

Pn
n−2 = 0, Pn

n−1 = 0. (4.19)

Then when m = 1, 2, we have

n∑

j=1

Pn
n−jB̄

j
j−1 = Pn

n−1B̄
j
0 + Pn

n−2B̄
j
1 +

n∑

j=3

Pn
n−jB̄

j
j−1 ≤

n∑

j=3

Pn
n−jB̄

j
j−3 = 1, (4.20)

n∑

j=2

Pn
n−jB̄

j
j−2 = Pn

n−2B̄
j
0 +

n∑

j=3

Pn
n−jB̄

j
j−2 ≤

n∑

j=3

Pn
n−jB̄

j
j−3 = 1. (4.21)

By Lemma 4.1, (4.18) and (4.19), we know that all the coefficients Pn
j ≥ 0. These

coefficients help us “invert” the discrete fractional derivative, so that we can derive the

recursive inequality for the numerical error.

Lemma 4.4. For any n ≥ 3, it holds that

|ēn|
2 ≤

n∑

j=3

Pn
n−j

j∑

k=3

4Lθj−k|ēk|
2 + |ē2|

2 + 2
n∑

j=3

Pn
n−j |ēj | · |r̃j(∆x)|, (4.22)

where r̃j(∆x) is defined in (4.8).

Proof. Plugging (4.5) and (1.1) into (4.7), we get

rj(∆x) = f(xj, y(xj))−

j∑

k=1

B̄j
j−k

∇ȳ(xk)−
(
B̄n

n−1 −∆x−να0d̄
n
0

)
y0

= f(xj, y(xj))−

j∑

k=1

B̄j
j−k

∇ēk −

j∑

k=1

B̄j
j−k

∇ȳk −
(
B̄n

n−1 −∆x−να0d̄
n
0

)
y0.
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By (4.4), (2.12) and (4.2), the above equation can be further simplified, namely,

rj(∆x) = f(xj, y(xj))− f(xj, yj)−

j∑

k=1

B̄j
j−k∇ēk

= Ljej −

j∑

k=1

B̄j
j−k∇ēk = Lj

j∑

k=1

θj−kēk −

j∑

k=1

B̄j
j−k∇ēk.

Now we use (4.8) to rewrite the above equation as

j∑

k=3

B̄j
j−k∇ēk = Lj

j∑

k=3

θj−kēk − r̃j(∆x). (4.23)

Now we multiply both sides of the above equation by 2ēj . The right-hand side can be

bounded by

2ēj

[
Lj

j∑

k=3

θj−kēk − r̃j(∆x)

]

≤L

j∑

k=3

θj−k
(
|ēj |

2 + |ēk|
2
)
+ 2|ēj | · |r̃j(∆x)|

≤

j∑

k=3

4Lθj−k|ēk|
2 + 2|ēj | · |r̃j(∆x)|,

where we have used θ < 2
3 , and the left-hand side can be bounded from below by

Lemma 4.2. Catenating both bounds using (4.23), we see that

j∑

k=3

4Lθj−k|ēk|
2 + 2|ēj | · |r̃j(∆x)| ≥

j∑

k=3

B̄j
j−k∇

(
|ēk|

2
)
.

Multiplying both sides of the above equation by P j
n−j and taking the sum over j, one

gets

n∑

j=3

P j
n−j

j∑

k=3

4Lθj−k|ēk|
2 + 2

n∑

j=3

P j
n−j|ēj | · |r̃j(∆x)|

≥
n∑

j=3

P j
n−j

j∑

k=3

B̄j
j−k

∇
(
|ēk|

2
)
.

Applying the identity (4.17) yields

n∑

j=3

P j
n−j

j∑

k=3

4Lθj−k|ēk|
2 + 2

n∑

j=3

P j
n−j|ēj | · |r̃j(∆x)|

≥
n∑

k=3

∇
(
|ēk|

2
)
= |ēn|

2 − |ē2|
2,
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which is clearly equivalent to the conclusion of the Lemma (4.22).

We can now apply mathematical induction to bound the error by the initial error

and the truncation errors.

Lemma 4.5. Let ēn = en − θen−1 with θ = 2ν
(2+ν) . If

∆xν ≤
1

24πBL
(4.24)

it holds that

|ēn| ≤ 2Eν(24πBLx
ν
n)

(
|ē2|+ 2 max

3≤k≤n

k∑

j=3

P k
k−j|r̃j(∆x)|

)
, for n ≥ 2, (4.25)

where r̃j(∆x) is defined in (4.8), and Eν is the Mittag-Leffler function defined by (B.8).

Proof. In the following proof, we need some useful properties of the kernel Pn
j

provided in Appendix B, wherein the complete details can be found. Here we simply

make references to the equations to be used.

For simplicity, we define

Fn = 2Eν (24πBx
ν
n) , Gn = |ē2|+ 2 max

3≤k≤n

k∑

j=3

P k
k−j|r̃j(∆x)|.

Then both Fn and Gn are monotonically increasing with respect to n. Below we are

going to prove the lemma using mathematical induction. Since Eν(z) > 1 for all z > 0,

it is obvious that (4.25) holds for n = 2. Now we assume that n > 2 and the estimation

(4.25) holds for all ē2, . . . , ēn−1. Let

|ēk(n)| = max
2≤j≤n−1

|ēj |.

If |ēn| ≤ |ēk(n)|, then the monotonicity of Fn and Gn shows that

|ēn| ≤ |ēk(n)| ≤ Fk(n)Gk(n) ≤ FnGn.

If |ēn| > |ēk(n)|, then by the inequality (4.22)

|ēn|
2 ≤|ēn|

(
n−1∑

j=3

Pn
n−j

j∑

k=3

4Lθj−k|ēk|+ |ē2|

+ Pn
0

n∑

k=3

4Lθn−k|ēn|+ 2

n∑

j=3

Pn
n−j · |r̃j(∆x)|

)
. (4.26)
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Using (B.1), (4.24) and θ < 2
3 , we have

Pn
0

n∑

k=3

4Lθn−k < πB∆x
ν · 12L ≤

1

2
.

Thus according to (4.26), we can estimate ēn as follows:

|ēn| ≤ 2

(
n−1∑

j=3

Pn
n−j

j∑

k=3

4Lθj−k|ēk|+ |ē2|+ 2

n∑

j=3

Pn
n−j · |r̃j(∆x)|

)

≤ 2
n−1∑

j=3

Pn
n−j

j∑

k=3

4Lθj−kFkGk + 2Gn ≤ 2
n−1∑

j=3

Pn
n−j

j∑

k=3

4Lθj−kFjGn + 2Gn

≤

(
24L

n−1∑

j=3

Pn
n−jFj + 2

)
Gn =

(
48L

n−1∑

j=3

Pn
n−jEν(24πBLx

ν
j ) + 2

)
Gn.

Finally, we use (B.7) to find that

|ēn| ≤

(
48πBL

Eν(24πBLx
ν
n)− 1

24πBL
+ 2

)
Gn = 2Eν (24πBLx

ν
n)Gn = FnGn.

Thus the lemma is proven by the principle of mathematical induction.

Our final error estimation can be achieved by combining the above result with our

estimation of the truncation error, and the conclusion is given in the following theorem:

Theorem 4.3. Let y be the exact solution of (1.1) and (1.2), and {yk}
2N
k=0 be the numer-

ical solution obtained by (2.12). Assume y(x) ∈ C3[0, T ]. If the step size ∆x satisfies

∆xν ≤
1

24πBL
, (4.27)

then there exists a constant K depending on ν, L and the final time T , such that

|y(xk)− yk| ≤ K∆x3−ν for k = 1, . . . , 2N. (4.28)

Proof. Combining (B.2), (4.16) and (1.3), we have

k∑

j=3

P k
k−j|r̃j(∆x)| ≤

(
max
1≤j≤k

1

ω1−ν(xj)

) k∑

j=1

P k
k−jω1−ν(xj)|r̃j(∆x)|

≤ Γ(1− ν)xνk · C∆x3−ν

k∑

j=1

P k
k−jω1−ν(xj)

≤ [CπBΓ(1− ν)xνk] ∆x
3−ν .
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Substituting this estimate into (4.25) yields

|ēn| ≤ 2Eν

(
24πBLx

ν
n

) (
|ē2|+ [2CπBΓ(1− ν)xνn]∆x

3−ν
)

≤ 2Eν

(
24πBLx

ν
n

) (
|e1|+ |e2|+ [2CπBΓ(1− ν)xνn] ∆x

3−ν
)

≤ 2Eν

(
24πBLx

ν
n

)(
10C1 + 2CπBΓ(1− ν)xνn

)
∆x3−ν , for n ≥ 2, (4.29)

where we have used the estimation (4.15). Therefore, the numerical error |ek| can be

estimated by

|ek| =

∣∣∣∣∣

k∑

n=0

θk−nēn

∣∣∣∣∣ ≤ 3 max
0≤n≤k

ēn ≤ 6Eν

(
24πBLx

ν
k

)(
10C1 + 2CπBΓ(1− ν)xνk

)
∆x3−ν .

The proof is completed.

5. Numerical results

In this section, we present numerical experiments to verify the theoretical results

obtained in the previous sections.

Example 5.1. We consider the problem (1.1) with

f(x, y(x)) =
Γ(4 + ν)

6
x3, y(0) = 0,

where f is independent of y. It can be verified that the exact solution is y(x) = x3+ν .

The computation is carried out up to T = 1. In our tests, we choose ν = 0.3, 0.5, 0.8,

0.99, and for all choices of ν, we choose the step size to be ∆x = 1
2l
, l = 3, . . . , 10. The

error we will display is defined by

e∆x = max
k=1,...,2N

|y(xk)− yk|,

where 2N = T
∆x

.

By this example, we would like to check the convergence order of the numerical

method with respect to the order of the fractional derivative ν. The results are given in

Table 1, where the convergence order is computed by log2(
e2∆x

e∆x
). By Theorem 4.3, we

expect that this number is close to 3 − ν. It is obvious that our numerical results are

consistent with the theoretical analysis.

Example 5.2. In this example, we add the dependence on y to the right-hand side

f(x, y). The following two functions are considered:

f(x, y(x)) =
Γ(4 + ν)

6
x3 + x3+ν − y(x), (5.1)

f(x, y(x)) =
Γ(4 + ν)

6
x3 + x6+2ν − y2(x). (5.2)
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This two right-hand sides correspond to linear and nonlinear dependencies on y. With

the initial condition y(0) = 0, the exact solution of both is y(x) = x3+ν .

We take T = 1 again and repeat the calculation in Example 5.1. The numerical

error is provided in Tables 2 and 3. Due to the sufficient smoothness of the numerical

solution, we again observe a good agreement with the theoretical convergence order. In

particular, it is worth emphasizing that the non-linearity of f seems to have no impact

on the numerical order of the scheme.

Table 1: Maximum error e∆x and convergence order for Example 5.1.

∆x ν = 0.3 order ν = 0.5 order ν = 0.8 order ν = 0.99 order
1

8
1.6782e-3 − 5.8967e-3 − 2.3580e-2 − 4.7431e-2 −

1

16
2.7683e-4 2.5998 1.1467e-3 2.3623 5.8213e-3 2.0181 1.3486e-2 1.8143

1

32
4.3876e-5 2.6575 2.1076e-4 2.4438 1.3329e-3 2.1267 3.5413e-3 1.9291

1

64
6.8430e-6 2.6807 3.7908e-5 2.4750 2.9674e-4 2.1673 9.0195e-4 1.9731

1

128
1.0596e-6 2.6910 6.7551e-6 2.4884 6.5272e-5 2.1846 2.2667e-4 1.9924

1

256
1.6356e-7 2.6957 1.1986e-6 2.4945 1.4278e-5 2.1926 5.6613e-5 2.0014

1

512
2.5195e-8 2.6986 2.1228e-7 2.4974 3.1153e-6 2.1963 1.4096e-5 2.0057

1

1024
3.8778e-9 2.6998 3.7565e-8 2.4985 6.7888e-7 2.1981 3.5049e-6 2.0078

Table 2: Maximum error e∆x and convergence order for the right-hand side (5.1).

∆x ν = 0.3 order ν = 0.5 order ν = 0.8 order ν = 0.99 order
1

8
8.9242e-4 − 3.4577e-3 − 1.6357e-2 − 3.6070e-2 −

1

16
1.4371e-4 2.6345 6.5136e-4 2.4083 3.9150e-3 2.0628 1.0036e-2 1.8455

1

32
2.2556e-5 2.6715 1.1826e-4 2.4614 8.8578e-4 2.1439 2.6115e-3 1.9422

1

64
3.5029e-6 2.6868 2.1163e-5 2.4824 1.9621e-4 2.1744 6.6251e-4 1.9788

1

128
5.4140e-7 2.6937 3.7628e-6 2.4916 4.3066e-5 2.1878 1.6619e-4 1.9950

1

256
8.3492e-8 2.6969 6.6703e-7 2.4959 9.4114e-6 2.1940 4.1471e-5 2.0026

1

512
1.2854e-8 2.6993 1.1806e-7 2.4981 2.0524e-6 2.1970 1.0322e-5 2.0063

1

1024
1.9781e-9 2.7000 2.0887e-8 2.4989 4.4715e-7 2.1984 2.5659e-6 2.0081

Table 3: Maximum error e∆x and convergence order for the right-hand side (5.2).

∆x ν = 0.3 order ν = 0.5 order ν = 0.8 order ν = 0.99 order
1

8
9.1405e-4 − 3.2126e-3 − 1.5357e-2 − 3.4906e-2 −

1

16
1.6188e-4 2.4972 6.4829e-4 2.3090 3.8037e-3 2.0134 1.0094e-2 1.7898

1

32
2.6226e-5 2.6258 1.2091e-4 2.4226 8.7214e-4 2.1247 2.6623e-3 1.9228

1

64
4.1349e-6 2.6651 2.1873e-5 2.4667 1.9417e-4 2.1672 6.7852e-4 1.9722

1

128
6.4327e-7 2.6843 3.9072e-6 2.4849 4.2704e-5 2.1848 1.7050e-4 1.9925

1

256
9.9504e-8 2.6926 6.9413e-7 2.4928 9.3407e-6 2.1927 4.2578e-5 2.0016

1

512
1.5350e-8 2.6964 1.2299e-7 2.4965 2.0379e-6 2.1964 1.0600e-5 2.0059

1

1024
2.3643e-9 2.6987 2.1774e-8 2.4978 4.4407e-7 2.1982 2.6356e-6 2.0079
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Example 5.3. In this example, we consider the problem with right-hand side f(x, y) =
λy(x), where λ < 0 is a constant. The exact solution is y(x) = y0Eν(λx

ν), and Eν(·)
is the Mittag-Leffler function defined in (B.8). When ν = 1, the fractional derivative

reduces to the ordinary derivative, and the exact solution turns out to be y(x) = y0e
λx.

In our test, we set λ = −1 and choose the initial value y0 = 1. The choices of the

fractional order are now taken as ν = 0.3, 0.6, 0.9, 1.0. Other settings are the same as

previous two examples. When ν = 1.0, our numerical method reduces to the second-

order backward differentiation formula (BDF2). Results are given in Table 4, from

which we can observe that when ν < 1, the convergence order is close to ν. The

reason lies in the singularity of the Mittag-Leffler function at x = 0. When ν = 1, the

singularity disappears, and the convergence order 3− ν is restored.

Table 4: Maximum error e∆x and convergence order for Example 5.3.

∆x ν = 0.3 order ν = 0.6 order ν = 0.9 order ν = 1.0 order
1

8
3.2510e-3 − 8.8351e-4 − 2.1988e-3 − 3.8804e-4 −

1

16
2.8864e-3 0.1716 6.6298e-4 0.4143 9.7373e-4 1.1751 2.9709e-4 0.3853

1

32
2.5263e-3 0.1922 4.6140e-4 0.5229 4.5730e-4 1.0903 9.7657e-5 1.6051

1

64
2.1840e-3 0.2100 3.1026e-4 0.5725 2.2952e-4 0.9945 2.7213e-5 1.8434

1

128
1.8684e-3 0.2252 2.0569e-4 0.5930 1.2005e-4 0.9350 7.1461e-6 1.9290

1

256
1.5842e-3 0.2380 1.3568e-4 0.6003 6.3888e-5 0.9100 1.8289e-6 1.9661

1

512
1.3332e-3 0.2488 8.9370e-5 0.6023 3.4223e-5 0.9006 4.6252e-7 1.9834

1

1024
1.1150e-3 0.2578 5.8861e-5 0.6025 1.8362e-5 0.8982 1.1628e-7 1.9918

Table 5: Maximum error and convergence order of the corrected method for Example 5.3.

∆x ν = 0.3 order ν = 0.6 order ν = 0.9 order
1

8
2.4932e-6 − 4.2141e-5 − 1.2940e-4 −

1

16
8.5679e-7 1.5409 1.7729e-5 1.2491 7.0189e-5 8.8254e-01

1

32
2.8365e-7 1.5947 5.0652e-6 1.8074 2.3691e-5 1.5668

1

64
9.0097e-8 1.6546 1.2249e-6 2.0479 6.6215e-6 1.8391

1

128
2.7462e-8 1.7140 2.7037e-7 2.1796 1.6940e-6 1.9667

1

256
8.0536e-9 1.7697 5.6509e-8 2.2583 4.1466e-7 2.0304

1

512
2.2805e-9 1.8202 1.1354e-8 2.3152 9.9291e-8 2.0622

1

1024
6.2613e-10 1.8648 2.5311e-9 2.1654 2.3508e-8 2.0785

The convergence order can be improved by Lubich’s method [29] to include singular

terms in the ansatz of the solution. This is achieved by choosing a finite sequence of

positive real numbers σ1 < . . . < σm+1, and assume that

y(x)− y(0) =
m∑

j=1

cjx
σj + xσm+1 ỹ(x), (5.3)
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where ỹ(x) is a bounded function, and we assume that the term xσm+1 ỹ(x) is sufficiently

smooth to retain our convergence order. The sum of cjx
σj captures the less smooth part,

for which the discretization of the fractional derivative needs to be altered to get better

accuracy. Here we omit the detailed derivation, and refer the readers to [29,41,42] for

more discussions on the correction method. The final numerical scheme discretizes the

fractional derivative by

0D
ν,m
∆x yn = 0D

ν
∆xyn +∆x−ν

m∑

j=1

Wn,j(yj − y0), (5.4)

where Wn,j are the starting weights that are chosen such that

0D
ν
∆xqk(xn) + ∆x−ν

m∑

j=1

Wn,jqk(xj)

=
Γ(1 + σk)

Γ(1− ν + σk)
xσk−ν
n for all k = 1, . . . ,m, (5.5)

where qk(x) = xσk .

In this example, we choose σk = kν. Then Wn,j, 1 ≤ j ≤ m can be solved from

(5.5), and the values of Wn,j are independent of ∆x. Since the series expansion of the

exact solution includes terms such as xν and x2ν , Lubich’s correction method is suitable

for such a problem. The results of the corrected method are given in Table 5, which

shows remarkable improvement compared with Table 4.

6. Conclusion

An efficient high-order approximate numerical scheme for fractional ordinary dif-

ferential equations with the Caputo derivative has been introduced in this paper. The

scheme is unconditionally stable and has uniform accuracy for all time steps. The proof

of stability shows the technical details on how to deal with the special initial steps.

The sharp numerical order 3−ν is proven for sufficiently smooth solutions and general

nonlinear equations, and this order is verified by our numerical experiments. For so-

lutions with initial singularity, our scheme can couple with Lubich’s method seamlessly

to improve the numerical order. Future works include the construction and analysis of

the scheme for graded meshes to resolve the initial layer.
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Appendix A: Proof of some inequalities

In this appendix, we provide the proofs of two lemmas used in the stability analysis,

which include a number of technical inequalities.

Lemma A.1. For any k ≥ 2, it holds that

(1)

(
1−

1

k

)1−ν

+

(
1 +

1

k

)1−ν

≥ 2−
1− ν

2k2

[
2ν −

(
2

3

)ν]
,

(2)

(
1−

1

k

)2−ν

−

(
1 +

1

k

)2−ν

≥ −2(2− ν)
1

k
+

1

3k3
(2− ν)(1− ν)ν,

(3)
2− ν

2

1

2k

[(
1−

2

2k

)1−ν

+ 3− 4

(
1 +

1

2k

)1−ν
]
+

(
1−

2

2k

)2−ν

− 3 + 2

(
1 +

1

2k

)2−ν

≥ 0,

(4) − ν2 − 12 + 3

(
2

3

)ν (
ν2 + 2ν + 4

)
> 0,

(5) 6− ν −
(
2 +

ν

2

)
2ν31−ν < 0,

(6) −2ν3 + 12ν2 − 56ν − 48 + 3

(
2

3

)ν (
3ν3 + 4ν2 + 20ν + 16

)
< 0,

(7) 21−ν
[
4− ν − (2 + ν)21−ν

]
<

1

27
(2ν − 3)(2 − ν)(1− ν)ν,

(8) 12− ν2 −
(
12 + 8ν + ν2

)
2−ν >

1

16
(2 + ν)(2− ν)(1− ν)ν.

Proof. (1) This inequality is equivalent to

f1(t) := (1− t)1−ν + (1 + t)1−ν − 2
(
1−At2

)
≥ 0 (A.1)

for t = 1
k

and A = 1
4 (1 − ν)[2ν − (23)

ν ]. Since k ≥ 2, the range of t is (0, 12 ]. To show

(A.1), we take the derivative of f1(t) to get

f ′1(t) = −(1− ν)
[
(1− t)−ν − (1 + t)−ν

]
+ 4At = −4t[f2(t)−A], (A.2)

where

f2(t) =
1− ν

4

(1− t)−ν − (1 + t)−ν

t

=
1− ν

4

+∞∑

j=0

2

(2j + 1)!
ν(1 + ν) . . . (2j + ν)t2j .

The series expansion of f2 clearly shows that f2 is an increasing function, which yields

f2(t) ≤ f2(
1
2 ) = A. Thus by (A.2), we have f ′1(t) ≥ 0, indicating that

f1(t) ≥ f1(0) = 0.
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(2) This inequality can be similarly proven by defining

f3(t) = (1− t)2−ν − (1 + t)2−ν + 2(2 − ν)t−
1

3
(2− ν)(1− ν)νt3,

whose series expansion is

f3(t) =
+∞∑

j=2

2

(2j + 1)!
(−2 + ν)(−1 + ν)ν(1 + ν) . . . (2j − 2 + ν)t2j+1.

Since all the terms in the sum are monotonically increasing, we have f3(t) ≥ f3(0) = 0.

The proof is completed by setting t = 1
k
.

(3) Let

f1(k, ν) =

(
1−

2

2k

)2−ν

+ 2

(
1 +

1

2k

)2−ν

, f2(k, ν) =

(
1−

2

2k

)2−ν

. (A.3)

Then the desired inequality is equivalent to

f(k, ν) :=

(
1−

2− ν

2k + 1

)
f1(k, ν) +

[
2− ν

4(k − 1)
+

2− ν

2k + 1

]
f2(k, ν) +

3(2 − ν)

4k
− 3 ≥ 0.

Since k ≥ 2, we can apply binomial expansion to f1 to obtain

f1(k, ν) =
+∞∑

j=0

(
2− ν

j

)[
(−2)j + 2

] ( 1

2k

)j

.

It can be observed that when j ≥ 2, the summand in the above sum is positive. There-

fore

f1(k, ν) ≥
3∑

j=0

(
2− ν

j

)[
(−2)j + 2

]( 1

2k

)j

= 3 +
3(2 − ν)(1− ν)

4k2
+

(2− ν)(1− ν)ν

8k3
. (A.4)

By similar means, we get

f2(k, ν) ≥ 1−
2− ν

k
+

(2− ν)(1− ν)

2k2
+

(2− ν)(1− ν)ν

6k3
. (A.5)

Plugging (A.4) and (A.5) into the expression of the f(k, ν), we get

f(k, ν) ≥
(2− ν)(1− ν)ν

8k3(k − 1)(2k + 1)
[−3k + (k − 1)(2k − 1 + ν) + (2k − 1)(2 − ν)]

≥
(2− ν)(1− ν)ν

8k3(k − 1)(2k + 1)
[−3k + (k − 1)(3 + ν) + 3(2 − ν)]

=
(2− ν)(1− ν)ν

8k3(k − 1)(2k + 1)
[(k − 1)ν + 3(1 − ν)] ≥ 0,
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which completes the proof.

(4) Let

h̃(ν) = −ν2 − 12 + 3

(
2

3

)ν (
ν2 + 2ν + 4

)
.

Then its first-order derivative is

h̃′(ν) = −2ν + 3

(
2

3

)ν [
2ν + 2 +

(
ν2 + 2ν + 4

)
log

2

3

]
.

When ν ∈ (0, 1), by the property of quadratic functions, one can show that

2ν + 2 +
(
ν2 + 2ν + 4

)
log

(
2

3

)
> 0.

Therefore

h̃′(ν) ≥ −2ν + 2

[
2ν + 2 +

(
ν2 + 2ν + 4

)
log

2

3

]

= 2

[
ν + 2 +

(
ν2 + 2ν + 4

)
log

2

3

]
.

Again it can be shown by the property of quadratic functions that h̃′(ν) > 0 for all

ν ∈ (0, 1). Thus

h̃(ν) > h̃(0) = 0.

(5) Let

g(ν) = 6− ν −
(
2 +

ν

2

)
2ν31−ν .

We want to prove g(ν) < 0. The first-order and second-order derivatives of g are

g′(ν) = −1−

(
2

3

)ν−1

−

(
6 +

3

2
ν

)(
2

3

)ν

log
2

3
,

g′′(ν) = −

(
2

3

)ν−1(
2 + log

16

81
+ ν log

2

3

)
log

2

3
.

It is clear that g′′(ν) changes from positive to negative as ν varies from 0 to 1. Therefore

g′(ν) first increases and then decreases. By straightforward calculation, we see that

g′(0) < 0 and g′(1) > 0, meaning that g(ν) first decreases and then increases. Therefore

g(ν) < max(g(0), g(1)) = 0.
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(6) Let g̃(ν) be the left-hand side. Then the fourth-order derivative of g̃(ν) is

g̃(4)(ν) = 3

(
2

3

)ν

log
2

3

[
72 + 6(18ν + 8) log

2

3
+ 4(9ν2 + 8ν + 20)

(
log

2

3

)2

+ (3ν3 + 4ν2 + 20ν + 16)

(
log

2

3

)3
]

< 3

(
2

3

)ν

log
2

3

[
72 + 156 log

2

3
+ 80

(
log

2

3

)2

+ 43

(
log

2

3

)3
]
< 0.

Therefore g̃′′′(ν) is monotonically decreasing for ν ∈ (0, 1). Straightforward calculation

yields g̃′′′(0) > 0 and g̃′′′(1) < 0, which indicates that g̃′′(ν) first increases and then

decreases. Since g̃′′(0) > 0 and g̃′′(1) > 0, we know that g̃′(ν) increases monotonically.

Finally, using g̃′(0) < 0 and g̃′(1) > 0, one sees that g̃(ν) first decreases and then

increases, which implies

g̃(ν) < max(g̃(0), g̃(1)) = 0.

This completes the proof.

(7) This inequality can be proven using the same method as (6).

(8) Define

g(ν) =
1

16
(2 + ν)(2− ν)(1− ν)ν −

[
12− ν2 − (12 + 8ν + ν2)2−ν

]
.

The third-order derivative of g satisfies

g(3)(ν) = 2−3−ν
[
2ν(12ν − 3)− 48 log 2 + (192 + 48ν)(log 2)2

−
(
8ν2 + 64ν + 96

)
(log 2)3

]

> 2−3−ν
[
− 3− 48 log 2 + 192(log 2)2 − 168(log 2)3

]
> 0,

which means g′′(ν) is monotonically increasing. Using g′′(1) < 0, we know that g′(ν) is

an decreasing function. Finally, using g′(0) < 0, we know that g′(ν) is negative for all

ν ∈ (0, 1). Thus g(ν) < g(0) = 0.

Lemma A.2. Suppose 0 < b < 2m. Let

f(ν) = (2− ν)
[
a1(2m)1−ν + a2(2m+ b)1−ν

]
+ a3

[
(2m)2−ν − (2m+ b)2−ν

]
.

Then we have

1. If a3b
a2

≤ 3
2 and a2 < 0, then

f(ν) < (2− ν)(2m)1−ν

[
a1 + a2 − a3b+

2∑

k=1

(
1− ν

k

)(
a2 −

a3b

k + 1

)
bk

(2m)k

]

< (2− ν)(2m)1−ν(a1 + a2 − a3b). (A.6)
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2. If a3b = 2a2 > 0, then

f(ν) < (2− ν)(2m)1−ν

[
a1 + a2 − a3b− a2

(
b

2m

)2 (1− ν)ν

6

(
1−

ν + 1

2

b

2m

)]
.

(A.7)

Proof. Since b < 2m, we can apply binomial expansion to get

f(ν) = (2− ν)(2m)1−ν

[
a1 + a2

(
1 +

b

2m

)1−ν
]
+ a3(2m)2−ν

[
1−

(
1 +

b

2m

)2−ν
]

= (2− ν)(2m)1−ν

[
a1 + a2 − a3b+

+∞∑

k=1

(
1− ν

k

)(
a2 −

a3b

k + 1

)
bk

(2m)k

]
. (A.8)

When 0 < b < 2m and a3b
a2

≤ 2, then the above series is an alternating series. Denote

the above series by
∑+∞

k=1 Sk. Then by b < 2m, we see that

|Sk+1| ≤
(k + ν − 1)(k + 2− a3b/a2)

(k + 2)(k + 1− a3b/a2)
|Sk|.

We want to show that the factor in front of |Sk| is less than one, meaning that {|Sk|}
decreases monotonically. To show this, we take the difference between the numerator

and the denominator:

(k + ν − 1)

(
k + 2−

a3b

a2

)
− (k + 2)

(
k + 1−

a3b

a2

)

=(2 + k)(ν − 2) +
a3b

a2
(3− ν). (A.9)

Now we consider the two cases separately:

Case 1: If a3b
a2

≤ 3
2 and a2 < 0, then

(2 + k)(ν − 2) +
a3b

a2
(3− ν) ≤ 3(ν − 2) +

3

2
(3− ν) =

3

2
(ν − 1) < 0.

Therefore |Sk+1| ≤ |Sk|, indicating that the sign of the alternating series is determined

by the sign of the first term. Using

S1 = (1− ν)

(
a2 −

a3b

2

)
b

2m
= (1− ν)a2

(
1−

a3b

2a2

)
b

2m
< 0,

we conclude that the series in (A.8) is negative. Therefore

f(ν) < (2− ν)(2m)1−ν(a1 + a2 − a3b+ S1 + S2).
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Case 2: If a3b = 2a2 > 0, we have S1 = 0. We only need to study the sign of (A.9)

when k ≥ 2:

(2 + k)(ν − 2) +
a3b

a2
(3− ν) ≤ 4(ν − 2) + 2(3− ν) = 2(ν − 1) < 0.

Therefore we also have |Sk+1| ≤ |Sk|. Now the first term in the series is

S2 = −

(
b

2m

)2 (1− ν)ν

3!
a2 < 0.

Thus the whole series is also negative. In this case, we have

f(ν) < (2− ν)(2m)1−ν(a1 + a2 − a3b+ S2 + S3).

The Eq. (A.7) can be obtained by inserting the expressions of S2 and S3.

Appendix B: Some results in the proof of Lemma 4.5

Now we provide the proof of some results used in the proof of Lemma 4.5. The

proof is generally in accordance with the corresponding results in [25]. The difference

is that according to our definition of Pn
j , the Eqs. (4.20) and (4.21) are not equalities.

Consequently, the results in [25] cannot be directly applied to our case. Below we

divide the proof into three lemmas.

Lemma B.1. The discrete kernels Pn
j defined in (4.18) satisfy

0 ≤ Pn
n−j ≤ πBΓ(2− ν)∆xν , 3 ≤ j ≤ n ≤ 2N, (B.1)

n∑

j=3

Pn
n−jω1−ν(xj) ≤ πB , 3 ≤ n ≤ 2N. (B.2)

Proof. According [25, Lemma 2.1], we can directly obtain (B.1). We mainly focus

on (B.2). Taking n = j and k = j − 1 in (4.6), we have

B̄j
j−1 ≥

1

πB∆xΓ(2− ν)

[
j1−ν − (j − 1)1−ν

]
=

1

πB∆xΓ(1− ν)

j1−ν − (j − 1)1−ν

1− ν

≥
1

πB∆xνΓ(1− ν)
j−ν =

1

πB

x−ν
j

Γ(1− ν)
=

1

πB
ω1−ν(xj), (B.3)

which indicates ω1−ν(xj) ≤ πBB̄
j
j−1. By (4.17) and Lemma 4.1, we obtain

n∑

j=3

Pn
n−jω1−ν(xj) ≤ πB

n∑

j=3

Pn
n−jB̄

j
j−1 ≤ πB

n∑

j=3

Pn
n−jB̄

j
j−3 = πB

as completes the proof.
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Lemma B.2. Let v : [0, T ] → R be a continuous and piecewise C1 function whose deriva-

tive v′(x) is nonnegative for all x ∈ [0, T ]. Then

(I) If v′ is monotonically decreasing, we have

n∑

j=3

Pn
n−j(0D

ν
xv)(xj) ≤ πB

∫ xn

0
v′(s)ds = πB [v(xn)− v(0)], 3 ≤ n ≤ 2N. (B.4)

(II) If v′ is monotonic, then

n−1∑

j=3

Pn
n−j(0D

ν
xv(xj)) ≤ πB

∫ xn

0
v′(s)ds = πB[v(xn)− v(0)], 3 ≤ n ≤ 2N. (B.5)

Proof. (I) The proof requires the Chebyshev’s sorting inequality [9, P.168, item

236]: if f is monotone increasing and g is monotone decreasing on the interval [a, b],
and both functions are integrable, we have

(b− a)

∫ b

a

f(s)g(s)ds ≤

∫ b

a

f(s)ds

∫ b

a

g(s)ds.

In this inequality, we set [a, b] = [xk−1, xk], f(s) = w1−α(xj−s) and g(s) = v′(s) ≥ 0.

Using Lemma 4.1, we see that when j ≥ 3,

(0D
ν
xv)(xj) =

∫ xj

0
w1−α(xj − s)v′(s)ds =

j∑

k=1

∫ xk

xk−1

w1−α(xj − s)v′(s)ds

≤

j∑

k=1

1

∆x

∫ xk

xk−1

w1−α(xj − s)ds

∫ xk

xk−1

v′(s)ds

≤

j∑

k=1

πBB̄
j
j−k

∫ xk

xk−1

v′(s)ds = πB

j∑

k=1

B̄j
j−k

∫ xk

xk−1

v′(s)ds. (B.6)

Thus, from the (4.17), (4.20) and (4.21), we conclude that

n∑

j=3

Pn
n−j(0D

ν
xv)(xj) ≤

n∑

j=3

Pn
n−jπB

j∑

k=1

B̄j
j−k

∫ xk

xk−1

v′(s)ds

=πB

n∑

k=1

∫ xk

xk−1

v′(s)ds

n∑

j=k

Pn
n−jB̄

j
j−k ≤ πB

∫ xn

0
v′(s)ds.

(II) Since v′(x) ≥ 0, we have

(0D
ν
xv)(xj) =

j∑

k=1

∫ xk

xk−1

w1−α(xj − s)v′(s)ds ≥ 0.
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Therefore if v′ is monotonically decreasing, then (B.5) is a simple corollary of (B.4). If

v′ is increasing, we can use Lemma 4.1 and (4.19) to obtain

n−1∑

j=3

Pn
n−j(0D

ν
xv)(xj) =

n−1∑

j=3

Pn
n−j

j∑

k=1

∫ xk

xk−1

w1−α(xj − s)v′(s)ds

≤
n−1∑

j=3

Pn
n−j

j∑

k=1

v′(xk)

∫ xk

xk−1

w1−α(xj − s)ds ≤ πB∆x
n−1∑

j=3

Pn
n−j

j∑

k=1

v′(xk)B̄
j
j−k

= πB∆x
n−1∑

j=1

Pn
n−j

j∑

k=1

v′(xk)B̄
j
j−k

= πB∆x
n−1∑

k=1

v′(xk)
n−1∑

j=k

Pn
n−jB̄

j
j−k

≤ πB∆x
n−1∑

k=1

v′(xk) ≤ πB

n−1∑

k=1

∫ xk+1

xk

v′(s)ds ≤ πB

∫ xn

0
v′(s)ds.

This proves (B.5).

Lemma B.3. For the discrete kernels Pn
j defined in (4.18), it holds for any µ > 0 that

n−1∑

j=3

Pn
n−jEν

(
µxνj

)
≤
πB
µ

[Eν(µx
ν
n)− 1] , 3 ≤ n ≤ 2N, (B.7)

where Eν(·) is the Mittag-Leffler function defined by

Eν(z) :=
+∞∑

k=0

zk

Γ(1 + kν)
. (B.8)

Proof. Define

vk(x) =
xkν

Γ(1 + kν)
.

Then

Eν(µx
ν) =

+∞∑

k=0

µkxkν

Γ(1 + kν)
=

+∞∑

k=0

µkvk(x). (B.9)

The function vk(x) satisfies

v0(x) = 1, v′k(x) =
xkν−1

Γ(kν)
= ωkν(x), v′′k(x) =

(kν − 1)xkν−2

Γ(kν)
, (B.10)

(0D
ν
xvk)(x) =

∫ x

0
w1−α(xj − s)ωkν(s)ds = ω1+(k−1)ν(x) = vk−1(x), ∀k ≥ 1. (B.11)

Therefore for all x > 0, v′′k(x) ≤ 0 if kν− 1 ≤ 0 and v′′k(x) > 0 if kν− 1 > 0. Thus, v′k(x)
is non-negative and monotonic, so we can apply (B.5) to get

n−1∑

j=3

Pn
n−j(0D

ν
xvk)(xj) ≤ πB[vk(xn)− vk(0)] = πBvk(xn), ∀k ≥ 1. (B.12)
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The Eqs. (B.11) and (B.12) yield

n−1∑

j=3

Pn
n−j

m∑

k=1

µkvk−1(xj) ≤ πB

m∑

k=1

µkvk(xn). (B.13)

Now we take the limit as m → +∞. The right-hand side of the above inequality

approaches to πB(Eν(µx
ν
n)− 1), and the limit of the left-hand side is

n−1∑

j=3

Pn
n−j

+∞∑

k=1

µkvk−1(xj) =
n−1∑

j=3

Pn
n−jµ

+∞∑

k=0

µkvk(xj) =
n−1∑

j=3

Pn
n−jµEν(µx

ν
j ).

This completes the proof.
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