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Abstract. In this paper, a novel immersed boundary method is presented for simu-
lating incompressible flows governed by Navier-Stokes equations. A virtual bound-
ary is formed by the cell edges (for two-dimensional cases) in the vicinity of the im-
mersed boundary. In the domain with the virtual boundary, the governing equations
can be solved in the conventional way. Reconstructed velocity is imposed on the vir-
tual boundary, which is determined via the interpolation along the direction normal to
the wall and in conjunction with the no-slip condition for the actual boundary. For
”freshly cleared nodes” on the virtual boundary encountered in moving-boundary
problems, pressure at the previous time step is reconstructed by solving the local sim-
plified momentum equation. In the test case for an analytical solution, the local accu-
racy of pressure is verified to be of the second order. In order to further validate the
present method, various flows over the stationary and/or moving circular cylinder
and NACA0012 airfoil have been simulated. The obtained results agree well with the
available numerical or experimental data in the published literatures.

AMS subject classifications: 76D05, 76M25
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1 Introduction

The immersed boundary (IB) methods have attracted a lot of attention in the numerical
simulation of moving-boundary flows. Using the IB methods, the governing equations
for the flow of fluid can be solved on a fixed mesh and there is no need to update the
mesh at each time step. Hence, the computational cost for mesh updating and solution
transferring between the old mesh and the new one can be eliminated, and the errors due
to solution transferring can also be avoided.

∗Corresponding author.
Email: chzhou@nuaa.edu.cn (C. H. Zhou)

http://www.global-sci.org/aamm 83 c©2021 Global Science Press



84 J. Y. Wang and C. H. Zhou / Adv. Appl. Math. Mech., 13 (2021), pp. 83-100

The IB method was firstly proposed by Peskin for simulating cardiac mechanics and
associated blood flow [1]. The idea of his method is to transmit the effect of the solid
boundary into the momentum equations as forcing terms, thereby the no-slip boundary
condition is satisfied. Mittal and Iaccarino classified roughly the IB methods into two
categories [2]: one is termed continuous forcing approach (diffuse interface approach) in
which the forcing term is incorporated explicitly into the momentum equations before
discretization and another is the discrete forcing approach (sharp interface approach) in
which the forcing term is introduced explicitly or implicitly after discretization. The con-
tinuous forcing approach is very attractive for elastic solid boundaries while it inherently
cannot provide a sharp representation of rigid boundaries.

The essence of many discrete forcing IB methods [3–5] is to reconstruct the solution at
”forcing points” in the vicinity of the immersed boundary via the local approximate form
of solution so that the spatial discrete form of the governing equations can be closured
and the no-slip boundary condition can be enforced. In the ghost-cell IB method [3]
and the local domain-free discretization method [5], some exterior cell-centers or exte-
rior nodes near the immersed boundary are selected to be forcing points. In the hybrid
Cartesian immersed boundary (HCIB) method [4, 6–8], some interior cell-centers or in-
terior nodes near the immersed boundary are selected. When the second order spatial
approximation is employed for the governing equations, the global and local accuracy of
velocity is of the second order and the global accuracy of pressure is also of the second
order [9,10]. However, in the work of [10,11], the local accuracy of pressure is reported to
be around the first order. In many other published literatures, e.g., [3, 8, 12], the authors
do not provide the result of the local accuracy of pressure.

In this work, a novel immersed boundary method is proposed, in which the corrected
boundary conditions are enforced on a virtual boundary and then the governing equa-
tions can be solved in the same way as the conventional boundary-conforming methods.
The virtual boundary consists of the cell-edges of background mesh and the correction
of boundary condition is implemented by reconstructing the velocity at the nodes of vir-
tual boundary. Our numerical experiment will show that the local accuracy of pressure
obtained by the present method can reach the second order.

The remainder of this paper is arranged as follows. In Section 2, the governing equa-
tions and the basic numerical schemes are presented. Section 3 is the main part of the
paper, in which the treatment of the immersed boundary is described. In Section 4, a
numerical experiment for the verification of the convergence rate is carried out and flows
past a circular cylinder and a NACA0012 airfoil are simulated to further validate the
present IB method. Finally, in Section 5, summary and conclusion are given.

2 Governing equations and basic numerical schemes

In this work, two-dimensional incompressible flows of the fluid of constant density are
governed by Navier-Stokes equations in the following form
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Im · ∂w
∂t

+
∂fi

∂xi
=

∂si

∂xi
, i=1,2, (2.1)

where w is the vector of flow variables, fi and si are the convective and viscous flux
vectors, respectively,

w=

 p
u1
u2

, fi =

 ui
u1ui+pδ1i
u2ui+pδ2i

, si =

 0
τi1
τi2

, (2.2)

and Im = diag(0,1,1) is the modified identity matrix. In (2.2), ui represents the velocity
components, p the pressure and τij the viscous stress tensor. It is well known that the
governing equations (2.1) have a unique solution when the no-slip condition is applied
at the solid boundary.

We suppose that Ω⊂R2 is a connected open set containing one or more solid bodies. A
triangulation of Ω for spatial discretization is denoted by Th. In this work, the Garlerkin
finite element approach proposed by Mavriplis and Jameson [13] is employed for spatial
discretization.

The flow variables are stored at the vertices of triangles and they are approximated by
piecewise linear functions. Let F denote the convective flux tensor and S the viscous flux
tensor. After applying the spatial discretization and employing the concept of a lumped
mass matrix, the semi-discrete form of Navier-Stokes equations (for an interior node P)
can be written as

Im · ∂(ΩPwP)

∂t
=

ne

∑
e=1

FA+FB

2
·LAB−

ne

∑
e=1

3
2
·Se ·LAB, (2.3)

where the summations are over all the triangles sharing node P and ΩP represents the
sum of area of all these triangles, as illustrated in Fig. 1. In formula (2.3), LAB denotes

6 

 

t}=\sum\limits_{e=1}^{{{n}_{e}}}{\frac{{{\mathbf{F}}^{\Alpha }}+{{\mathbf{F}

}^{\Beta }}}{2}}\cdot {{\mathbf{L}}_{\Alpha \Beta }}-

\sum\limits_{e=1}^{{{n}_{e}}}{\frac{3}{2}}\cdot {{\mathbf{S}}^{e}}\cdot 

{{\mathbf{L}}_{\Alpha \Beta }}\]          (3) 

where the summations are over all the triangles sharing node \[\Rho \] and 

\[{{\Omega }_{\Rho }}\] represents the sum of area of all these triangles, as illustrated 

in Figure 1. In formula (3), \[{{\mathbf{L}}_{\Alpha \Beta }}\] denotes the directed 

(outward normal) length of the triangle edge opposite to \[\Rho \], 

\[{{\mathbf{F}}^{\Alpha }}\] and \[{{\mathbf{F}}^{\Beta }}\] are the convective 

fluxes at the both ends of this edge, and \[{{\mathbf{S}}^{e}}\] is the viscous flux at 

each triangle.  

 

Figure 1. Influence domain of an interior node P. 
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the directed (outward normal) length of the triangle edge opposite to P, FA and FB are the
convective fluxes at the both ends of this edge, and Se is the viscous flux at each triangle.

An artificial dissipation constructed as a biharmonic operator [14] is adopted to pre-
vent odd-even decoupling. At the far-field, the non-reflecting boundary conditions are
constructed by the linearized characteristics approach [14]. The treatment of the im-
mersed boundary will be discussed in the next section.

In the computation of unsteady flows, a dual time-stepping scheme [15] is employed
for time integration of the semi-discrete equations (2.3). The third-order temporal dis-
cretization is adopted in physical time marching and the five-stage, point-implicit scheme
proposed by Melon et al. [16] is used in pseudo time marching. To address the issue of
”freshly cleared” nodes for moving-boundary problems [14], the physical time step must
satisfy

∆t≤ hmin

3max(
∣∣Vn

1

∣∣,|Vn
2 |)

, (2.4)

where Vi denotes the velocity components of the body motion and hmin the minimum
mesh interval in the region near the solid wall.

3 Treatment of the immersed boundary

In the present IB method, the actual immersed boundary is replaced by a virtual bound-
ary, which consists of the cell-edges of the background mesh. Instead of the no-slip
condition, the corrected boundary condition is enforced on the virtual boundary. Then,
the governing equations can be solved in the same way as the conventional boundary-
conforming methods. Therefore, the local accuracy of pressure is expected to be of the
second order.

3.1 Construction of virtual boundary

The first step in the treatment of the immersed boundary is to construct the virtual bound-
ary, which consists of the selected cell-edges of the fixed background mesh. To reduce
the interpolation error resulting from the correction of boundary condition which will be
discussed later, the virtual boundary should be as close as possible to the actual one. As
described below, the construction of virtual boundary can be implemented in a simple
way.

For a given discretization of the actual immersed boundary (consisting of non-
overlapping segments for two-dimensional case), all the mesh nodes are classified into
two categories: fluid nodes (nodes in the fluid phase) and solid nodes (nodes in the solid
phase). Here, a cell edge both ends of which are fluid nodes is called a fluid edge. If one
of the two nodes opposite to a fluid edge is a fluid node and another is a solid node, this
edge is selected to be a segment of the virtual boundary. In Fig. 2, the fluid edge D1D2
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Figure 2: The virtual boundary consisting of mesh edges. Red dashed line: virtual boundary; blue solid line:
actual boundary; D1, D2: virtual boundary nodes (the two end nodes of edge D1D2); E1, E2: the two opposite
nodes of edge D1D2.
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Figure 3: A special case near the thin portion of a solid body. Blue solid line: actual boundary; D1, D2: VB
nodes (the two end nodes of edge D1D2); E1, E2: the two opposite nodes of edge D1D2.

is illustrated as an example, where D1 and D2 are the two end nodes of this edge and E1
and E2 are the two opposite nodes of this edge.

There exists a special case in the region near the thin portion of a solid body (for
example, the trailing edge of an airfoil), the width of which is smaller than one mesh
interval. In this special case, if the two end nodes of a fluid edge both are above or below
the solid body, and if one of the two opposite nodes is above the body while the other
is below the body, this edge is also selected to be a segment of the virtual boundary. In
Fig. 3, the fluid edge D1D2 is illustrated as an example, where D1 and D2 (both above the
solid body) are the two end nodes of this edge and E1 (above the body) and E2 (below
the body) are the two opposite nodes of this edge.

After the virtual boundary has been defined, all fluid nodes can be divided into two
groups: interior nodes and virtual boundary (VB) nodes. The virtual boundary will be
updated at each time step when the actual boundary is moving. Obviously, in the present
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IB method, all the solid nodes are blanked out of computation.
From the construction of the virtual boundary, we can see that compared to the ghost-

cell IB method [3] or the local domain-free discretization method [5], where the forcing
points are located inside the solid phase, the tedious task of handling the multi-valued
points (usually located in the vicinity of thin portion of the body) can be avoided.

The main issue to be addressed in extending the present IB method into three dimen-
sions is the construction of the virtual boundary. In three-dimensional case, the virtual
boundary should consist of the cell faces in the fluid phase which are closest to the solid
wall. For a cell face in the fluid phase, if one of its two opposite nodes is a fluid node and
another is a solid node, this face can be selected to be a triangular element of the virtual
boundary.

3.2 Corrected boundary condition for virtual boundary

Obviously, the no-slip condition cannot be applied directly at the virtual boundary and
Dirichlet condition for velocity at the virtual boundary must be corrected. This correction
is implemented by reconstructing the velocity at each node of the virtual boundary. In
this work, the reconstructed velocity is obtained by the interpolation along the wall nor-
mal and between the velocity at a point in the flow field and that at the actual boundary.
To conduct the interpolation for a given VB node, a reference point on the wall normal
passing through the VB node must be defined. The reference point may not be a mesh
node, at which the solution will be evaluated approximately in an appropriate way. To
reduce the interpolation error, this reference point should be close to the actual boundary
as possible. As illustrated in Fig. 4, we define the reference point F to be the intersection
between the normal line and the cell-edge nearest to the actual boundary, the two end
points (C2 and C3) of which are the interior nodes. Then, the value of any flow variable at
the reference point can be obtained by the following linear interpolation over the segment
C2C3

φF =
φC2 |FC3|+φC3 |C2F|

|C2C3|
, (3.1)

where φF, φC2 and φC3 , represent the flow variables at the points F, C2 and C3, respec-
tively, and the absolute value is the distance between two points. From the definition
of a reference point, we can see that for moving-boundary problems the reference point
corresponding to a given VB node must be updated at each physical time step.

According to the no-slip condition, at the wall-intercept point W, the velocity of the
fluid is equal to that of the body. Then, the velocity at the VB node D can be reconstructed
by interpolation between the wall-intercept point W and the reference point F

uD =
|FD|VW+|WD|uF

|FW| , (3.2)
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VB node; W: normal-wall intersection point; F: reference point. 
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Figure 4: Schematic diagram of interpolation for correction of boundary condition. Blue solid line: solid
boundary; red dashed line: wall normal; C1, C2, C3: interior nodes; D: VB node; W: normal-wall intersection
point; F: reference point.

where uD and uF denote the velocities at D and F respectively, and Vw denotes the ve-
locity of the body motion at W. In Eq. (3.2), the velocity at the reference point uF is taken
from the velocity field at the previous pseudo time step. So, in the dual-time stepping
scheme, the boundary conditions at the virtual boundary are treated explicitly in pseudo
time. At each physical time step, the solution of governing equations is found by march-
ing to a steady state in pseudo time [14, 15].

After the velocities at all VB nodes are reconstructed, the corrected Dirichlet condition
is specified. Thus, the governing equations are solved on the solution domain with a
virtual boundary.

Obviously, the above approach for the correction of boundary conditions at the virtual
boundary in two dimensions can be extended into three dimensions in a straight forward
way.

3.3 Evaluation of the pressure at the previous time step for some VB nodes

In the dual time-stepping scheme, for the pseudo time iteration at the current physical
time step, the initial values of solution are usually taken to be those at the previous time
step. For moving-boundary problems, due to the limitation of the physical time step
(2.4), any interior fluid nodes at the current physical time step must be a fluid node at
the previous time step. But, some VB nodes at the current time step (e.g., D1 and D2
in Fig. 5) were in the solid phase at the previous time step. They are ”freshly cleared”
VB nodes. Therefore, the flow variables at these nodes have no physical values for the
previous step. It means that the pressure at some VB nodes has no appropriate initial
values for the pseudo time iteration at the current physical time step. Due to this issue,
the convergence of the pseudo time iteration deteriorates greatly, as shown in our nu-
merical experiments. On the other hand, the lack of physical values of pressure at these
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Figure 5: ”Freshly cleared” VB nodes. Blue solid line: actual boundary at current step; red dashed line: actual
boundary at previous step; D1, D2: VB nodes at current step.

”freshly cleared” VB nodes for the previous time step will result in the spurious force
oscillations [10]. Therefore, to improve the convergence of the pseudo time iteration and
reduce the nonphysical oscillations, the pressure at the ”freshly cleared” VB nodes for the
previous time step must be reconstructed.

In this work, the value of pressure at a ”freshly cleared” VB node for the previous time
step is obtained by using the local simplified momentum equation. Ignoring the viscous
term and utilizing the no-slip boundary condition, the simplified momentum equation
in the region near the wall can be written as

∂p
∂n

=−
(

dV
dt

)
γ

·n, (3.3)

where n denotes the outward normal direction of the wall, V the known velocity vector of
the body motion, and γ the solid boundary. After approximating the partial differential
derivative at the left hand side of (3.3), pD, the pressure at the VB node D, is obtained as
following (with reference to Fig. 4)

pD = pF+|FD|
(

dV
dt

)
γ

·n, (3.4)

where pF is the pressure at the reference point F.
The neighbor nodes of a reference point (C2 and C3 in Fig. 4) are fluid nodes at the

current physical time step. Due to the limitation of the time step (2.4), the solid object
never transverses an entire mesh interval within one step. So, the two neighbor nodes
must also be fluid nodes at the previous time step. Therefore, the neighbor nodes and
then the reference point can always have the physical values at the previous time step.
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4 Numerical experiments

In this section, the convergence rate is firstly verified for the present method. Then, nu-
merical experiments for the flows past stationary and moving bodies are carried out to
validate the feasibility of the method. To enhance the local resolution, the meshes are re-
fined in the vicinity of the immersed boundary except for the test cases of the verification
of convergence rate.

4.1 Verification of convergence rate

We utilize the exact solution of Navier-Stokes equations with a forcing term to verify the
convergence rate of the present method. The exact solution is provided by Frutos and
Bosco in [17] and is described as follows

u1=2πsin2(πx1)sin(πx2)cos(πx2),
u2=−2πsin2(πx2)sin(πx1)cos(πx1),
p=20x1

2x2.
(4.1)

The forcing term and Dirichlet boundary conditions are derived from the above ana-
lytical solution. As shown in Fig. 6, the solution domain is chosen to be Ω\ω, where
Ω=[−0.5,0.5]×[−0.5,0.5] and ω is a circle with the radius of 0.25 and the center at (0,0).
We measure the errors in terms of L∞, L1 and L2 norms. L1 and L2 can represent the
global error and L∞, which effectively captures the error around the immersed boundary,
can represent the local error. Four, uniform and successively refined meshes are used to
perform error analysis and verify the convergence rate. The initial (first level) mesh is
illustrated in Fig. 6.

The exact solution (4.1) is denoted by φ. The mesh interval, the discrete solution and
the error of discretization on the kth level mesh are denoted by hk, φk

h and ek, respectively.
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Figure 6: Initial mesh for verification of convergence rate.
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Table 1: Errors and orders of convergence rates for u1.

Mesh interval Global error Local error
L1 error order L2 error order L∞ error order

2.0×10−2 1.84×10−3 - 2.61×10−3 - 1.73×10−2 -
1.0×10−2 4.33×10−4 2.09 6.17×10−4 2.08 4.78×10−3 1.86
5.0×10−3 1.09×10−4 1.99 1.53×10−4 2.01 1.38×10−3 1.78
2.5×10−3 2.95×10−5 1.89 4.20×10−5 1.87 3.86×10−4 1.84

Table 2: Errors and orders of convergence rates for p.

Mesh interval Global error Local error
L1 error order L2 error order L∞ error order

2.0×10−2 8.21×10−3 - 1.06×10−2 - 7.20×10−2 -
1.0×10−2 2.10×10−3 1.97 2.65×10−3 2.00 1.86×10−2 1.95
5.0×10−3 5.15×10−4 2.03 6.41×10−4 2.05 5.29×10−3 1.81
2.5×10−3 1.12×10−4 2.20 1.40×10−4 2.20 1.55×10−3 1.78

Assume the discrete solution is a γth-order approximation to the exact one. Then, we
have

φk
h−φ= ek =Chγ

k , (4.2)

where C is a constant independent of mesh interval. Therefore, the order of accuracy or
convergence rate can be calculated as following

γ=
log
(∥∥ek

∥∥/∥∥ek−1
∥∥)

log2
. (4.3)

The errors and the orders of convergence rates measured by different norms for velocity
u1 (identical to u2) and pressure p are presented in Table 1 and Table 2, respectively.

It can be seen from the tables that both velocity and pressure are globally and locally
second order accurate. Especially, by using the present discrete-forcing IB method, the
local accuracy of pressure can reach the second order. It should be noticed that the local
accuracy of pressure was reported to be around the first order in [10, 11] and was not
mentioned in [3, 8, 12]. Therefore, the advantage of the present method is validated.

4.2 Flows over a stationary circular cylinder

To validate the present method for practical problems, we firstly simulate the flows over
a stationary circular cylinder. The definition of Reynolds number is based on the diam-
eter of the cylinder D. For steady flows, Reynolds numbers are set to be 10, 20 and 40.
For unsteady flows, Reynolds numbers are 100 and 200. The computation domain is
[−15D,35D]×[−15D,15D] and the center of the cylinder is located at (0,0). The mesh
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Table 3: Comparison of drag coefficient and reattachment length for steady flows.

Re=10 Re=20 Re=40
CD L/D CD L/D CD L/D

Present work 2.83 0.24 2.05 0.91 1.53 2.23
Park et al. [18] (BFD) 2.78 2.01 1.51

Dennis et al. [19] (BFD) 2.85 0.27 2.05 0.94 1.52 2.35
Choi et al. [11] (BFD) 1.98 0.92 1.49 2.21
Choi et al. [11] (IB) 2.02 0.90 1.52 2.25
Cai et al. [20] (IB) 1.59 2.36

Taira et al. [21] (IB) 2.06 0.94 1.54 2.30
Tritton [22] (EXP) 2.86 2.08 1.59

interval in the vicinity of the solid boundary is about 1.2×10−2D. The non-dimensional
size of time step is set to be 10−2.

The results for steady flows at Re=10, 20 and 40, including drag coefficient and reat-
tachment length, are shown in Table 3. Some published experimental data and numerical
results of body-fitted grid (BFG) and IB methods are also given in the table for compari-
son.

Fig. 7 shows the variations of pressure coefficient and spanwise vorticity along the
cylinder surface for Re=40. Numerical results of Cai et al. [20], Choi et al. [11] with the
IB methods and Braza et al. [23] with the body-fitted grid method are also plotted in Fig. 7
for comparison. Following the work of Braza et al. the pressure coefficient shown in this
figure is defined as

Cp =
(

p−p0+
1
2

ρ∞U2
∞

)/(1
2

ρ∞U2
∞

)
,

where p0 is the pressure at the front stagnation point.
Together with the published experimental data and numerical results of body-fitted

grid and IB methods, the results for unsteady flows at Re=100,200, including drag and
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Figure 7: Flow variables along the cylinder surface for Re=40 (left: pressure coefficient; right: vorticity).
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Table 4: Comparison of drag and lift coefficients and Strouhal number for unsteady flows.

Re=100 Re=200
CD CL St CD CL St

Present work 1.30±0.006 ±0.315 0.159 1.29±0.040 ±0.64 0.192
Liu et al. [24] (BFD) 1.35±0.012 ±0.339 0.164 1.31±0.049 ±0.69 0.192

Rosenfeld et al. [25] (BFD) 1.31±0.040 ±0.65 0.20
Stalberg et al. [26] (BFD) 1.32±0.009 ±0.33 0.166

Taira et al. [21] (IB) 1.35±0.048 ±0.68 0.196
Cai et al. [20] (IB) 1.38±0.010 ±0.35 0.160 1.37±0.046 ±0.70 0.200

Choi et al. [11] (IB) 1.34±0.011 ±0.315 0.164 1.36±0.048 ±0.64 0.191
Tritton [22] (Exp) 1.27
Wille [27] (Exp) 1.30

Table 5: Global errors and orders of convergence rates for Re=20.

Mesh interval u1 u2 p
L1 error order L1 error order L1 error order

4.0×10−2 5.39×10−2 - 3.56×10−2 - 1.29×10−1 -
2.0×10−2 1.66×10−2 1.71 1.14×10−2 1.65 4.06×10−2 1.68
1.0×10−2 3.69×10−3 2.17 2.81×10−3 2.03 1.33×10−2 1.62

lift coefficients and Strouhal number, are shown in Table 4.
The comparisons in Fig. 7, Table 3 and Table 4 show that the results obtained by

the present method fall into a good agreement with the published numerical results or
experimental data.

We also examine the accuracy of the present method for the flow past a circular cylin-
der at Re= 20. For this test, to reduce the computational cost, we employ a small com-
putational domain with the size of 4D×4D. The flow is then computed on a hierarchy
of uniform meshes (101×101, 201×201, 401×401 and 801×801). Since an exact solu-
tion for this case does not exist, the numerical solution computed on the highly resolved
801×801 mesh is used as a baseline for computing the truncation error. The global errors
measured in L1 norm and the orders of convergence rates for two velocity components
and pressure are presented in Table 5. Nearly second order convergence of the global
errors can be observed. Some deviations from strict second-order convergence should be
attributed to the lack of a true exact solution of the governing equations and the small
computational domain.

4.3 Flows over a transversely oscillating circular cylinder

In this subsection, flows over a circular cylinder oscillating transversely in a free stream
are simulated to demonstrate the ability of the present method for moving-boundary
problems. The motion of the cylinder is described by the following harmonic function of
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(a) fe/ fo =0.8 (b) fe/ fo =0.9

(c) fe/ fo =1.0 (d) fe/ fo =1.1

(e) fe/ fo =1.12 (f) fe/ fo =1.2

Figure 8: Drag (blue) and lift (red) coefficients versus time for an oscillating cylinder.
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(a) (b)

Figure 9: Force coefficients (a) and phase angle (b) versus frequency fe/ fo.

time

xc
2(t)=−Asin(2π fet), (4.4)

where xc
2 denotes the location of the cylinder center, A the amplitude of oscillation, and

fe the frequency of oscillation. The simulations are performed at Re=185, A/D=0.2 and
0.8≤ fe/ fo≤1.2, where fo is the natural shedding frequency. The used mesh is the same
as that for the stationary circular cylinder and the non-dimensional time step is set to be
5×10−3.

Fig. 8 shows the evolution of the drag and lift coefficients. The results agree well with
those in [28, 29].

To make a quantitative comparison, together with the body-fitted grid result obtained
by Guilmineau et al. [29], the variations of the time-averaged drag coefficient (C̄D) and
the root mean square values of drag and lift coefficients (CDrms and CLrms) with fe/ fo
are exhibited in Fig. 9(a), and the phase angle (φ) between the lift coefficient and the
vertical displacement of the cylinder is also presented in Fig. 9(b). We can see that the
two numerical results agree well with each other.

4.4 Flows over a heaving-pitching airfoil

To validate the applicability of the present IB method for complex moving-boundary
flows, we consider a NACA0012 airfoil heaving and pitching in a free-steam of velocity
U∞. The heave motion h(t) and pitch motion θ(t) are described by harmonic functions
as below

h(t)=h0sin(ωt), θ(t)= θ0sin(ωt+ψ). (4.5)
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(a) (b)

Figure 10: Thrust coefficient versus time (a): ψ=70◦; (b): ψ=90◦.
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Figure 11: Comparison of the histories of thrust coefficient (ψ=115◦).

In the above formula, h0 denotes the amplitude of heaving, θ0 the amplitude of pitching,
ω the frequency of heaving and pitching and ψ the phase difference between heaving
and pitching. The chord length b of the airfoil is chosen to be the reference length. Five
principal parameters of computation are fixed: (1) h0/b=0.50, (2) θ0=30◦, (3) the dimen-
sionless distance of the pivot point from the leading edge d/b=0.25, (4) St= h0ω

πU∞
=0.25

and (5) Re=1100. The mesh spacing is about 0.0063b in the vicinity of the airfoil and the
non-dimensional time step is set to be 0.0025.

In Fig. 10, the time histories of thrust coefficient for ψ=70◦ and ψ=90◦ are compared
with the body-fitted grid result of Pedro et al. [30]. The agreement between the two
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numerical results is satisfactory. Some small oscillations occur in the present result, which
is the inherent feature of the sharp-interface IB methods [10].

For comparison, we construct an IB method by incorporating the treatment of an
immersed boundary in HCIB [8] into the present spatial discretization, which can be
regarded as a HCIB variant. In Fig. 11, the histories of thrust coefficient for ψ = 115◦

obtained by the present method and the HCIB variant are plotted together. It can be
observed from the partial view that, when using the present method, the non-physical
oscillations are reduced considerably and the variation of thrust coefficient with time
becomes smoother.

5 Summary and conclusions

Imposing the reconstructed velocity on the virtual boundary formed by the cell edges of
background mesh, a novel immersed boundary method is proposed in this work. The
reconstructed velocity is obtained via the interpolation along the direction normal to the
wall and in conjunction with the actual no-slip condition. By the present method, the
governing equations can be solved in the conventional way. Compared to the ghost-
cell IB method [3] or the local domain-free discretization method [5], the tedious task of
handling the multi-valued points can be avoided.

Verification for the convergence rate of solution has been performed. Both velocity
and pressure are globally and locally second order accurate. Numerical experiments for
benchmark problems are carried out for the further validation of the present IB method.
The results show good agreements with the published experimental or numerical data
and a slight improvement has also been observed in the simulation of moving-boundary
problems.
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