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Abstract. In this paper, we propose a novel Legendre neural network combined with
the extreme learning machine algorithm to solve variable coefficients linear delay
differential-algebraic equations with weak discontinuities. First, the solution interval
is divided into multiple subintervals by weak discontinuity points. Then, Legendre
neural network is used to eliminate the hidden layer by expanding the input pattern
using Legendre polynomials on each subinterval. Finally, the parameters of the neural
network are obtained by training with the extreme learning machine. The numerical
examples show that the proposed method can effectively deal with the difficulty of
numerical simulation caused by the discontinuities.
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1 Introduction

Delay differential-algebraic equations (DDAEs) arise in many areas of mathematical model,
such as circuit design, mechanical system, power system, control theory [1], multi-body
control system, bioeconomic system [2], fluid mechanics [3], chemical engineering. The
reference [4] has indicated that differential-algebraic equations (DAEs) are neither differen-
tial equations nor algebraic equations. Differential equations only involve differentiation,
while DAEs contain differentiation and integration, which changes the behavior of the
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solution [5], so the numerical methods for solving differential equations can not be directly
applied to solve DAEs. Furthermore, DDAEs are not only restricted by algebraic condi-
tions but also affected by time delays. Bellen and Zennaro [6] have verified that delays can
cause discontinuities and affect stability of the solution. Thus, algebraic conditions and
delays cause some difficulties in numerical simulation of DDAEs. In recent years, many
documents on its characteristics and theories of DDAEs have been discussed in [8–13],
stability results of numerical methods for DDAEs have been presented in [14–21], and
convergence analysis of numerical methods for DDAEs have been described in [22–26].
Furthermore, Ascher and Petzold [27] developed a numerical approach of high index
DDAEs. The above works are under the basis of the solutions being smooth. Few studies
have been carried out on the effects of DDAEs with weak discontinuities [28].

Neural networks have been widely used in the solution of mathematical physics
problems. Now popular neural networks include feedforward neural network, radial basis
function neural network, cosine basis function neural network, diagonal recurrent neural
network, cellular neural network, finite-element neural network, etc. The neural network
can obtain the weights and structure of the network by training and learning, showing
strong self-learning and adaptive ability. That is, the network structure, node weights
and step sizes can be automatically adjusted according to environmental requirements.
An advantage of neural networks to solve differential equations is that the solution of
the differential equations can be expressed as a differential function. Earlier in 1992,
Shelton et al. [29] applied neural network to deal with the coupled nonlinear ordinary
differential equations, and it was also used to solve (non) linear ordinary differential
equations [30–36], partial differential equations [37–44], delay differential equations [45,46],
stiff differential equations [47, 48], stochastic differential equations [49] and fractional
differential equations [50–52]. Kozlov and Tiumentsev [53] introduced a neural network
based on semi-empirical models for solving DAEs of index 2. Yang et al. [54] solved DAEs
based on the artificial neural network. Few scholars manage to solve DDAEs with weak
discontinuities at present.

Compared with the traditional methods, the advantages of the Legendre neural net-
work (LNN) to solve DDAEs are as follows [55, 56]. (1) LNN can overcome the iterative
process commonly used in traditional numerical methods. (2) The computational complex-
ity of LNN does not increase quickly with the increase of sample points. (3) LNN has fault
tolerance and tolerance capabilities. The contribution of each neuron and each connection
to the overall network function is small, so the failure of a few neurons and connections
has little effect on the network function. Based on the above advantages, in this paper,
LNN [58] combined with the extreme learning machine (ELM) algorithm [59,60] is applied
to solve the variable coefficients linear DDAEs with weak discontinuities. Firstly, the
interval is divided equally into multiple subintervals according to the weak discontinuity
points. Secondly, we eliminate the hidden layer by using the Legendre basis function that
is used to extend the input pattern. Thirdly, the weights of LNN are obtained by ELM
training neural network on each subinterval. Finally, we get the approximate solutions of
the DDAEs on the whole interval.
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2 Legendre orthogonal polynomial and its properties

Definition 2.1 ([7]). Let f (t), g(t)∈C[a,b], ρ(t) is the weight function in [a,b]. If

( f (t),g(t))=
∫ b

a
ρ(t) f (t)g(t)dt=0,

f (t) and g(t) are orthogonal with respect to ρ(t) in [a,b].

Definition 2.2 ([7]). Orthogonal polynomial with weight of ρ(t)= 1 in [−1,1] is called
Legendre polynomial Pn(t), and

P0(t)=1, P1(t)= t,··· , Pn(t)=
1

2nn!
dn

dtn (t
2−1)n, t∈ [−1,1], n=1,··· .

Next we will introduce properties of the Legendre polynomial.
Property 1. Pn(t) and Pm(t) are the Legendre polynomials and satisfy

(Pn(t),Pm(t))=
∫ 1

−1
Pn(t)Pm(t)dt=

 0, m 6=n,
2

2n+1
, m=n.

Property 2. P2n(t) only contains even power and P2n+1(t) only contains odd power, and
we have

Pn(−t)=(−1)nPn(t).

Property 3. We have recursion formula

(n+1)Pn+1(t)=(2n+1)tPn(t)−nPn−1(t), n=1,··· .

Property 4. Pn(t) has n different zeros in (−1,1).

Lemma 2.1 ([58]). Suppose that the vector P(t) is defined as P(t)= [P0(t),P1(t),··· ,PN(t)]T,
where Pn(t) (n=0,··· ,N) is the nth order Legendre polynomial on the interval [−1,1], and let
P′(t) be defined as P′(t)=[P′0(t),P

′
1(t),··· ,P′N(t)]T, where P′n(t), (n=0,··· ,N) is the derivative

of Pn(t). Then P′(t)=DP(t), where D is the Legendre operational matrix given by

0 0 0 0 0 ··· 0 0
1 0 0 0 0 ··· 0 0
0 3 0 0 0 ··· 0 0
1 0 5 0 0 ··· 0 0
0 3 0 7 0 ··· 0 0
1 0 5 0 9 ··· 0 0
...

...
...

...
...

...
...

0 3 0 7 0 ··· 0 0
1 0 5 0 9 ··· 2n−1 0


(N+1)×(N+1).
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3 Legendre neural network for solving linear variable
coefficients DDAEs with weak discontinuities

3.1 Legendre neural network and approximation

In this paper, Legendre polynomial is used as activation function to construct a single
layer neural network, which consists of three parts: input layer, output layer and hidden
layer. β is the output weight connecting the hidden node with the output node, where
β=[β0,β1,··· ,βN ]

T. The structure of neural network is shown in Fig. 1.

Figure 1: Legendre neural network.

Lemma 3.1 ([58]). For any continuous function x(t) : [a,b]→R, there are a natural number N,
constants ai, bi, βi (i= 0,··· ,N), and Legendre polynomial Pn(t) (n= 0,··· ,N), such that the
Legendre neural network with N+1 neurons is given by

xLNN(t)=
N

∑
i=0

βiPi(ait+bi), (3.1)

xLNN(t) is an approximation of x(t), and

‖x(t)−xLNN(t)‖=
∥∥∥x(t)−

N

∑
i=0

βiPi(ait+bi)
∥∥∥< ε,

where ε is a small positive constant.

We consider linear variable coefficients DDAEs with weak discontinuities as follows

E(t)x′(t)=A1(t)x(t)+B1(t)x(t−τ)+C1(t)y(t)
+D1(t)y(t−τ)+ f1(t), t∈ [0,T], (3.2a)

0=A2(t)x(t)+B2(t)x(t−τ)+C2(t)y(t)
+D2(t)y(t−τ)+ f2(t), t∈ [0,T], (3.2b)
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x(t)=ψ1(t), −τ≤ t≤0, (3.2c)
y(t)=ψ2(t), −τ≤ t≤0, (3.2d)

when t=0, the algebraic condition (3.2b) holds, τ is a positive constant, x(t)=[x1(t),x2(t),
··· ,xn(t)]T ∈Rn. If t = kτ, (k∈N), x(t) is the weak discontinuity. If t 6= kτ, x(t) is dif-
ferentiable. y(t)= [y1(t),y2(t),··· ,ym(t)]T ∈Rm and y(t) is continuous, E(t)∈Rn×n is a
nonsingular continuous matrix function, A1(t), B1(t)∈Rn×n, C1(t), D1(t)∈Rn×m, A2(t),
B2(t)∈Rm×n and C2(t), D2(t)∈Rm×m are all continuous matrix functions, f1(t)∈Rn×1,
f2(t)∈Rm×1, ψ1(t)∈Rn×1 and ψ2(t)∈Rm×1 are all continuous vector functions.

We take ai = 1, bi = 0 in the formula (3.1). Next we apply LNN to solve Eqs. (3.2)
and choose Legendre polynomial Pn(t) as activation function of neural network, the
approximation of x(t) can be denoted by

xiLNN(t)=
N

∑
j=0

βijPj(t), i=1,··· ,n,

let P(t)= [P0(t),P1(t),··· ,PN(t)]T, βi =[βi0,βi1,··· ,βiN ]
T, i=1,··· ,n, then

xiLNN(t)=P(t)T βi, i=1,··· ,n, (3.3)

similarly,

yjLNN(t)=
N

∑
i=0

β̂ jiPi(t), j=1,··· ,m,

where β̂ j =[β̂ j0, β̂ j1,··· , β̂ jN ]
T, j=1,··· ,m, and yjLNN(t) is approximate to yj(t) and satifies

yjLNN(t)=P(t)T β̂ j, j=1,··· ,m. (3.4)

Since x(t), y(t) are exact solutions of Eqs. (3.2) and they are continuous functions, ac-
cording to Lemma 3.1, the approximate solutions and true solutions satisfy the following
inequality

‖x(t)−xLNN(t)‖< ε, ‖y(t)−yLNN(t)‖< ε.

3.2 ELM algorithm for training the Legendre neural network

Given that the solutions of Eqs. (3.2) are weakly discontinuous, the [0,T] interval is divided
into [0,τ], [τ,2τ],··· ,[(k−1)τ,kτ],··· , where kτ are weak discontinuity points.

(1) When t∈ [0,τ], according to Lemma 2.1 and substitute Eqs. (3.3), (3.4) into Eqs. (3.2),
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then

[E(t)(In×n
⊗

PT(t)DT)−A1(t)(In×n
⊗

PT(t))]U−C1(t)(Im×m
⊗

PT(t))V
= f1(t)+B1(t)ψ1(t−τ)+D1(t)ψ2(t−τ),
−A2(t)(In×n

⊗
PT(t))U−C2(t)(Im×m

⊗
PT(t))V

= f2(t)+B2(t)ψ1(t−τ)+D2(t)ψ2(t−τ),
In×n

⊗
PT(0)=ψ1(0),

Im×m
⊗

PT(0)=ψ2(0),

(3.5)

where
⊗

is Kronecker product, and

U=


β1
β2
...

βn

, V=


β̂1
β̂2
...

β̂m

, In×n
⊗

PT(t)=


PT(t) 0 ··· 0

0 PT(t) ··· 0
...

...
. . .

...
0 0 ··· PT(t)

.

Eqs. (3.5) are written as
a11(t) a12(t)
a21(t) a22(t)
a31(0) a32(0)
a41(0) a42(0)

( U
V

)
=


g1(t)
g2(t)
ψ1(0)
ψ2(0)

, (3.6)

where

a11(t)=E(t)(In×n
⊗
(PT(t)DT))−A1(t)(In×n

⊗
PT(t)),

a12(t)=−C1(t)(Im×m
⊗

PT(t)),
a21(t)=−A2(t)(In×n

⊗
PT(t)),

a22(t)=−C2(t)(Im×m
⊗

PT(t)),
a31(t)= In×n

⊗
PT(t), a32(t)=0n×(m(N+1)),

a41(t)=0m×(n(N+1)), a42= Im×m
⊗

PT(t),

g1(t)= f1(t)+B1(t)ψ1(t−τ)+D1(t)ψ2(t−τ),
g2(t)= f2(t)+B2(t)ψ2(t−τ)+D2(t)ψ2(t−τ).

We divide arbitrarily [0,τ] into M segments and set t0,l , (l=0,··· ,M) are the interval
nodes. We take t0,0=0, where M satisfies N≤M, and we define

H(1)=



a11(t0,1) a12(t0,1)
a21(t0,1) a22(t0,1)

...
...

a11(t0,M) a12(t0,M)
a21(t0,M) a22(t0,M)
a31(t0,0) a32(t0,0)
a41(t0,0) a42(t0,0)


, Λ(1)=

[
U(1)

V(1)

]
, I(1)=



g1(t0,1)
g2(t0,1)

...
g1(t0,M)
g2(t0,M)
ψ1(t0,0)
ψ2(t0,0)


,
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the dimensions of H(1), Λ(1) and I(1) are (n+m)(M+1)×(n+m)(N+1), (n+m)(N+
1)×1 and (n+m)(M+1)×1 respectively. At each discrete point t0,l , (l = 0,··· ,M),
Eqs. (3.6) is equivalent to the matrix form

H(1)Λ(1)= I(1).

Applying the ELM algorithm, we can obtain

(Ũ(1),Ṽ(1))T =arg min
U(1),V(1)

‖H(1)(U(1),V(1))T− I(1)‖

in [0,τ], the approximate solutions of Eqs. (3.2) can be denoted as

x(1)LNN(t)=(In×n
⊗

PT(t))Ũ(1), y(1)LNN(t)=(Im×m
⊗

PT(t))Ṽ(1).

(2) Assume the numerical solutions of Eqs. (3.2) in [(k−2)τ,(k−1)τ] (k=2,···) have been
obtained and written as

x(k−1)
LNN (t)=(In×n

⊗
PT(t))Ũ(k−1), y(k−1)

LNN (t)=(Im×m
⊗

PT(t))Ṽ(k−1),

in order to find the numerical solutions of the equations in [(k−1)τ,kτ], we take the
numerical solutions x(k−1)

LNN (t) and y(k−1)
LNN (t) in [(k−2)τ,(k−1)τ] as the initial conditions

for Eqs. (3.2) on next subinterval. Next we only need to replace the ψ1(t), ψ2(t) in
Eqs. (3.5) with x(k−1)

LNN (t) and y(k−1)
LNN (t), and repeat the solving process for t ∈ [0,τ].

Similarly, [(k−1)τ, kτ] is divided into M parts, we can get

H(k)Λ(k)= I(k).

Applying the ELM algorithm, we obtain

(Ũ(k),Ṽ(k))T =arg min
U(k),V(k)

‖H(k)(U(k),V(k))T− I(k)‖

in [(k−1)τ,kτ], the approximate solutions of Eqs. (3.2) can be expressed as

x(k)LNN(t)=(In×n
⊗

PT(t))Ũ(k), y(k)LNN(t)=(Im×m
⊗

PT(t))Ṽ(k).

Substituting the weights into the approximate solutions on each subinterval, we
can obtain the numerical solutions of Eqs. (3.2) in [(k−1)τ,kτ]. Other intervals are
analogized according to the above solving process, and we can get the numerical
solutions of Eqs. (3.2) in [0,T].
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4 Steps for solving DDAEs by using Legendre neural network
and ELM algorithm

Step 1 The interval [0,T] is divided into [(k−1)τ,kτ], k=1,···, where kτ are weak discon-
tinuities, then we divide [(k−1)τ,kτ] into M segments and tk,l (l=0,··· ,M) are the
interval nodes.

Step 2 Construct approximate solutions by Legendre polynomials on kth subinterval,
x(k)LNN =(In×n

⊗
PT(t))U(k), y(k)LNN =(Im×m

⊗
PT(t))V(k).

Step 3 The approximate solutions x(k)LNN , y(k)LNN and their derivatives at kth discrete point
are brought into the original equations (3.2) to obtain the equation H(k)Λ(k)= I(k).

Step 4 Apply ELM optimization algorithm to minimize ‖H(k)Λ(k)− I(k)‖ and calculate the
neural network output weights Λ̃(k)=H(k)† I(k), where H(k)† is the Moore-Penrose
generalized inverse of matrix H(k).

Step 5 Substitute the Λ̃(k) into the numerical solutions of the original equations (3.2) on
the interval [(k−1)τ,kτ], we can get x(k)LNN , y(k)LNN .

Step 6 According to the above steps, similarly solve the original equations (3.2) on (k+1)th
subinterval and then obtain the numerical solutions in [0,T].

5 Connections between the proposed method and the hp-spectral
collocation method

The similarity between the two methods is that polynomials are used as a set of basis
functions and their linear combinations are used to give the form of an approximate
solution. At the same time, there are some differences between the two methods. The
spectral collocation method uses the orthogonality of the Legendre polynomial, and the
solution interval must be transformed to [−1,1] interval [57]. The proposed method does
not use the orthogonality of the polynomials, while Legendre polynomials are only used
as a set of activation functions. The theory of spectral collocation method is better but it is
limited in taking points, while our method can do arbitrary taking points and implement
easily.

6 Convergence discussion

Known by reference [59], given an arbitrary distinct set of samples (xi,ti), xi∈Rn, ti∈Rm,
standard single hidden layer feedforward network with Ñ hidden nodes is modeled as



H. L. Liu, J. W. Song, H. N. Liu, J. Xu and L. J. Li / Adv. Appl. Math. Mech., 13 (2021), pp. 101-118 109

follows
Ñ

∑
i=1

βig(ωixj+bi), j=1,··· ,N, (6.1)

where g is the activation function, ωi is the input weight, bi is the threshod, and βi is the
output weight. When the error between the output and the samples is zero, that is the
neural network completely approximates the samples, and the following equations hold

Ñ

∑
i=1

βig(ωixj+bi)= tj, j=1,··· ,N. (6.2)

Eqs. (6.2) are written in matrix form

HN×Ñ βÑ×m =TN×m. (6.3)

Next, we introduce an important lemma.

Lemma 6.1 ([59]). Given any small positive value ε>0 and activation function g :R→R which
is infinitely differentiable in any interval, there exists Ñ≤N such that for N arbitrary distinct
samples (xi,ti) where xi∈Rn and ti∈Rm for any wi and bi randomly chosen from any intervals of
Rn andR, respectively, according to any continuous probability distribution, then with probability
one, ‖HN×Ñ βÑ×m−TN×m‖< ε.

By Lemma 6.1, we induce the following Theorem 6.1.

Theorem 6.1. Given any small positive value ε> 0, we select M+1 sample points (ti,x(ti)),
(ti,y(ti)), where ti∈R, x(ti)∈Rn, y(ti)∈Rm, and Legendre activation function P(t) :R→R.
On each solution subinterval, we select N+1 hidden nodes which satisfy the condition N≤M,
using the proposed method to solve DDAEs Eqs. (3.2), then

‖H(k)Λ(k)− I(k)‖< ε in [(k−1)τ,kτ], k=1,··· .

Proof. Since the Legendre activation function P(t) is infinitely differentiable and the num-
ber of hidden nodes is less than or equal to the number of sample points, the conditions of
Lemma 6.1 are satisfied. Therefore,

‖H(k)Λ(k)− I(k)‖< ε in [(k−1)τ,kτ].

Thus, we complete the proof.

7 Numerical results

Example 7.1. We consider the linear DDAEs with weak discontinuties [9]

Ex′(t)=Ax(t)+Dx(t−τ)+ f (t), t∈ [0,3], (7.1)
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where τ=1, f (t)=0, and

E=

[
1 0
0 0

]
, A=

[
0 1
1 0

]
, D=

[
0 0
0 −1

]
,

the initial conditions 
x1(t)=

1
3
(t−1)3+(t−1)2−1, t∈ [−τ,0],

x2(t)=
1
3

t3+t2−1, t∈ [−τ,0],

the exact solutions

x1(t)=


1
3
(t−1)3+(t−1)2−1, t∈ [0,1],

(t−1)2−1, t∈ [1,2],
2t−4, t∈ [2,3],

x2(t)=


t2−1, t∈ [0,1],
2t−2, t∈ [1,2],
2, t∈ [2,3].

When t = 2, x2(t) is weakly discontinuous. Firstly, we take M = 30,N = 9 and use
overall simulation method to solve Eqs. (7.1) in [0,T]. Secondly, we apply the proposed
piecewise simulation method with M=10, N=9. The global error of the ith component in
tj is denoted as hxj

i

hxj
i =

|xj
i−xi(tj)|

max{1,xi(tj)}
,

where xj
i is the numerical solution of the ith component in tj. Similarly, the piecewise error

of the ith component in tj is denoted as Dxj
i . We use the same mark below.

Fig. 2 shows the effect of global approximation of the true solutions with M=30 and
N=9. The errors of x1(t) and x2(t) in [0,3] are recorded in Table 1. Since the solution x2(t)
of Eqs. (7.1) is weakly discontinuious, the global approximation approach is not suitable
for solving Eqs. (7.1).

According to Table 1, in the case of global simulation, the maximum error of x1(t) is
5.73e-02 and the maximum error of x2(t) is 3.94e-01. In the case of piecewise simulation,
the maximum errors of x1(t) and x2(t) are 7.19e-07 and 1.69e-06 respectively, which proves
the superiority and feasibility of the developed method.

Now, in order to verify that our proposed method is not restricted by taking points,
we select uniformly distributed random points on each subinterval to solve Eqs. (7.1).

Fig. 3, Fig. 4 and Fig. 5 show the simulation effect of the true solutions and the
numerical solutions by using developed piecewise approximation method with M=10,
N=9. According to the results in Table 2, random partition method is also applicable and
well implemented. For convenience, we will use equidistant points to solve.
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Figure 2: The global approximation in [0,3] of Example 7.1.

Table 1: Error comparison of Example 7.1.

t Dx1(t) hx1(t) Dx2(t) hx2(t)
0 2.30e-11 8.20e-11 1.04e-10 6.64e-10

0.2 1.40e-11 2.09e-04 7.90e-11 2.17e-03
0.4 1.00e-11 7.09e-04 2.00e-11 2.15e-03
0.6 1.50e-11 8.04e-04 5.40e-11 1.62e-03
0.8 2.40e-11 1.27e-04 6.20e-11 4.16e-03
1 3.40e-11 5.40e-07 1.99e-10 6.46e-03
1 7.25e-09 5.40e-07 2.53e-08 6.46e-03

1.2 1.32e-08 2.17e-03 6.63e-08 9.15e-03
1.4 2.46e-08 2.14e-03 1.51e-07 1.08e-02
1.6 4.49e-08 1.62e-03 2.58e-07 1.90e-02
1.8 7.90e-08 4.16e-03 3.66e-07 4.56e-03
2 1.34e-07 6.46e-03 5.19e-07 5.73e-02
2 8.76e-09 6.46e-03 5.26e-07 5.73e-02

2.2 1.48e-07 9.15e-03 1.23e-07 3.33e-02
2.4 2.71e-07 1.08e-02 3.35e-07 5.35e-02
2.6 4.14e-07 1.90e-02 5.37e-07 7.92e-03
2.8 5.41e-07 4.56e-03 9.53e-07 1.57e-01
3 7.19e-07 5.73e-02 1.69e-06 3.94e-01

Example 7.2. Given the following linear DDAEs with constant coefficients

Ex′(t)=Ax(t)+Bx(t−τ)+ f (t), t∈ [0,3], (7.2)
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Table 2: The random points errors of Example 7.1.

t 0.00 0.08 0.44 0.54 0.78 1.00
Dx1(t) 1.98e-13 5.54e-14 1.36e-11 2.07e-11 3.91e-11 5.73e-11
Dx2(t) 4.00e-11 1.30e-11 1.45e-10 1.84e-10 2.52e-10 3.92e-10

t 1.00 1.08 1.44 1.54 1.78 2.00
Dx1(t) 6.31e-09 6.45e-09 5.03e-09 1.46e-08 5.91e-08 1.42e-07
Dx2(t) 4.73e-08 5.61e-08 1.06e-07 1.15e-07 1.15e-07 1.22e-07

t 2.00 2.08 2.44 2.54 2.78 3.00
Dx1(t) 8.06e-09 1.04e-07 2.23e-07 2.70e-07 2.91e-07 3.27e-07
Dx2(t) 1.04e-07 7.15e-07 1.58e-07 4.33e-08 2.10e-07 2.93e-07

Figure 3: Simulation of random points in [0,1] of Example 7.1.

Figure 4: Simulation of random points in [1,2] of Example 7.1.

where τ=1, and

E=

[
1 0
0 0

]
, A=

[
1 1
2 1

]
, B=

[
−2 −1
0 0

]
, f (t)=0,

the initial conditions {
x1(t)= e−t, t∈ [−τ,0],
x2(t)=−2e−t, t∈ [−τ,0],
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Figure 5: Simulation of random points in [2,3] of Example 7.1.

Table 3: Errors of different methods for Example 7.2.

t Dx1(t) hx1(t) Vx1(t) Dx2(t) hx2(t) Vx2(t)
0.0 1.83e-14 1.16e-08 0.00e+00 2.80e-13 5.67e-09 0.00e+00
0.2 1.38e-12 5.09e-05 1.38e-12 4.76e-12 1.02e-04 2.77e-12
0.4 1.49e-12 6.00e-05 6.95e-10 5.95e-12 1.20e-04 1.39e-09
0.6 1.24e-12 5.46e-05 2.62e-08 2.36e-13 1.09e-04 5.24e-08
0.8 5.98e-13 4.60e-05 3.42e-07 4.97e-14 9.19e-05 6.85e-07
1.0 1.19e-12 3.78e-05 2.50e-06 2.29e-12 7.55e-05 5.01e-06
1.0 3.00e-12 3.78e-05 2.50e-06 3.00e-12 7.55e-05 5.01e-06
1.2 6.00e-12 3.09e-05 1.27e-05 1.70e-11 6.19e-05 2.54e-05
1.4 1.10e-11 2.53e-05 4.99e-05 6.40e-11 5.06e-05 9.97e-05
1.6 1.90e-11 2.07e-05 1.63e-04 1.52e-10 4.14e-05 3.26e-04
1.8 3.20e-11 1.70e-05 4.62e-04 3.20e-10 3.39e-05 9.24e-04
2.0 5.40e-11 1.39e-05 1.17e-03 6.07e-10 2.78e-05 2.35e-03
2.0 1.50e-10 1.39e-05 1.17e-03 5.92e-10 2.78e-05 2.35e-03
2.2 8.10e-11 1.14e-05 2.72e-03 5.95e-10 2.28e-05 5.44e-03
2.4 7.60e-11 9.31e-06 5.85e-03 7.16e-10 1.86e-05 1.17e-02
2.6 1.01e-10 7.63e-06 1.18e-02 3.30e-10 1.52e-05 2.37e-02
2.8 1.41e-10 6.24e-06 2.27e-02 7.27e-10 1.25e-05 4.53e-02
3.0 2.16e-10 5.10e-06 4.15e-02 1.21e-09 1.02e-05 8.30e-02

and the exact solutions {
x1(t)= e−t, t∈ [0,3],
x2(t)=−2e−t, t∈ [0,3].

In order to compare our proposed method and the traditional approximate analytical
solution method, we use the variational iteration method [61] to solve Eqs. (7.2), and the
errors of x1(t) and x2(t) are respectively denoted as Vx1(t) and Vx2(t).

In Table 3, we use piecewise simulation with M=10, N=9, overall simulation with
M=30, N=9 and variational iteration method to solve Eqs. (7.2). In case of iterating step
8 using variational iteration method, the maximum errors of x1(t) of the three methods
are 2.16e-10, 6.00e-05 and 4.15e-02 respectively. the maximum errors of x2(t) of the three
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Table 4: The piecewise error of Example 7.3.

interval M,N x1(t) x2(t)
[0,1] 10,9 1.39e-11 2.36e-11
[1,2] 70,9 2.27e-09 1.76e-09
[2,3] 460,9 2.20e-09 1.68e-08
[3,4] 380,9 1.98e-08 9.11e-09
[4,5] 333,9 2.08e-07 4.77e-08

methods are 1.21e-09, 1.20e-04 and 8.30e-02 respectively. It is obvious that the maximum
error is the lowest by using piecewise simulation, which verifies the superiority of our
proposed method.

Example 7.3. Given the following linear DDAEs with weak discontinuties

Ex′(t)=A(t)x(t)+B(t)x(t−τ)+ f (t), t∈ [0,5], (7.3)

where τ=1, and

E=

[
1 1
0 0

]
, A(t)=

[
t 0
0 2

]
, B(t)=

[
1 0
0 t

]
,

f1(t)=

{
(1−t)et, t∈ [0,1],
(1−t)et−et−1+1, t∈ [1,5],

f2(t)=

{
−2t, t∈ [0,1],
−t−t2, t∈ [1,5],

the initial conditions {
x1(t)=1, t∈ [−τ,0],
x2(t)=0, t∈ [−τ,0],

and the exact solutions {
x1(t)= et, t∈ [0,5],
x2(t)= t, t∈ [0,5].

On the [0,1], [1,2] and [1,3] intervals, we use the proposed piecewise simulation to
solve Eqs. (7.3) with M=10, N=9, M=70, N=9 and M=460, N=9. On the [3,4] and [4,5]
intervals, we take M=380, N=9 and M=333, N=9 respectively for piecewise simulation.
In order to compare the errors more easily in each subinterval, the mean relative error of
Eqs. (7.3) in each subinterval is given in Table 4.

Table 4 shows that as the number of discontinuities increases, we can change the
number of sample points, and our proposed method can still be effectively implemented.

8 Conclusions

In this paper, we propose a single hidden layer Ledendre neural network combined with
ELM algorithm to solve linear variable coefficients DDAEs with weak discontinuities.
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The convergence results of the proposed method are given and numerical experiments
demonstrate the effectiveness and superiority of the piecewise approximation method
to deal with DDAEs with weak discontinuities, while the global approximation is not
suitable for solving the equations with weak discontinuities. If the solutions of DDAEs
are smooth, the piecewise approximation method and the global approximation both can
be applied to solve such kind of equations. In the future, the issue of error accumulation
will be the focus of our subsequent research.
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