An $h p$-Version of C^{0}-Continuous Petrov-Galerkin Time-Stepping Method for Second-Order Volterra Integro-Differential Equations with Weakly Singular Kernels

Shuangshuang Li, Lina Wang and Lijun Yi*
Department of Mathematics, Shanghai Normal University, Shanghai 200234, China.

Received 2 May 2020; Accepted (in revised version) 12 June 2020.

Abstract

An $h p$-version of C^{0}-CPG time-stepping method for second-order Volterra integro-differential equations with weakly singular kernels is studied. In contrast to the methods reducing second-order problems to first-order systems, here the CG and DG methodologies are combined to directly discretise the second-order derivative. An a priori error estimate in the H^{1}-norm, fully explicit with respect to the local discretisation and regularity parameters, is derived. It is shown that for analytic solutions with start-up singularities, exponential rates of convergence can be achieved by using geometrically refined time steps and linearly increasing approximation orders. Theoretical results are illustrated by numerical examples.

AMS subject classifications: 65R20, 65M60, 65M15
Key words: $h p$-version, second-order Volterra integro-differential equation, weakly singular kernel, continuous Petrov-Galerkin method, exponential convergence.

1. Introduction

Let T and $\alpha \in[0,1)$ be real numbers, $I:=(0, T]$ and $D:=\{(t, s): 0 \leq s \leq t \leq T\}$. In this work, we study numerical methods for the following linear second-order Volterra integro-differential equations (VIDEs):

$$
\begin{align*}
& u^{\prime \prime}(t)=p(t) u^{\prime}(t)+q(t) u(t)+f(t)+\int_{0}^{t}(t-s)^{-\alpha} K(t, s) u(s) d s, \quad t \in I, \tag{1.1}\\
& u(0)=u_{0}, \quad u^{\prime}(0)=u_{1} .
\end{align*}
$$

[^0]The functions $p, q, f: I \rightarrow \mathbb{R}$ and $K(t, s): D \rightarrow \mathbb{R}$ are assumed to be continuous on their respective domains. If $0<\alpha<1$, the Eq. (1.1) is referred to as the weakly singular VIDE. Hereafter, sometimes we will write \dot{u} and \ddot{u} for u^{\prime} and $u^{\prime \prime}$, respectively.

Equations of the form (1.1) arise in various areas of physics and engineering — cf. [9] and the references therein. In the last few decades, the numerical analysis of VIDEs attracted considerable attention and the list of numerical methods developed includes collocation [5, 14, 20, 28], Runge-Kutta [4, 38], continuous and discontinuous Galerkin methods $[21,23]$. We also refer the reader to the monographs $[6,22]$. However, to the best of authors' knowledge, most of the methods deal with VIDEs of the first-order. For the second-order VIDEs, numerical approaches are not well studied and are mainly restricted to collocation methods [1, 7, 29, 32].

It is well-known that the solutions of integral and integro-differential equations of Volterra type with weakly singular kernels are generally not smooth at the initial point [6]. Such singular behavior may result in a low convergence rate of the corresponding numerical method even if high order polynomials are used. In order to overcome the problems generated by the solution singularities, a number of special approaches such as collocation method with graded meshes [5], nonpolynomial spline collocation method [3], and hybrid collocation method [11] were developed. These methods are mainly based on the h-version approach with diminishing time steps and polynomials of a fixed order. Therefore, the best possible convergence order can be only algebraic. In contrast, the p - and $h p$-version approaches employ approximation polynomials of various order. In particular, since $h p$-version methods allow locally varying mesh sizes and approximation orders, smooth solutions with possible local singularities can be approximated with a high algebraic order or even with exponential convergence rate [26].

In recent years, p - and $h p$-versions of Galerkin finite element methods are widely used in approximations of VIDEs. For example, an $h p$-version of the discontinuous Galerkin time-stepping method for the first-order VIDEs and parabolic VIDEs is, respectively, studied in $[8,24]$, an $h p$-version of the continuous Petrov-Galerkin method for the first-order linear and nonlinear VIDEs is considered in [35-37], and $h p$-versions of the discontinuous and continuous Galerkin methods for nonlinear initial value problems are discussed in [25, $33,34]$. Some other high-order methods such as spectral Galerkin and collocation methods have been also applied to Volterra type equations - cf. Refs. [10,12,13,15,17,19,27,31,32]. However, the $h p$-methods for the second-order VIDEs are not well studied and so far, to the best of our knowledge, the problem mentioned has been studied only in [18] for the equations with smooth kernels.

The present work extends the approach of [18] to the second-order VIDE (1.1) with weakly singular kernels. In the method under consideration, the trial spaces consist of C^{0} continuous piecewise polynomials, whereas test spaces use discontinuous piecewise polynomials. At each time step, the formulation can be decoupled into local problems, so that the method can be viewed as a time-stepping scheme. Such a C^{0}-CPG time-stepping method has been before employed in time discretisation of the second-order linear evolution problems $[16,30]$, but the error analysis is based on the traditional h-version approach. We provide certain local time steps conditions, which ensure the well-posedness of the hp-
version C^{0}-CPG formulation. We also establish a priori error bound in the H^{1}-norm, fully explicit in local time steps, local approximation orders, and the local regularity of exact solutions. Besides, we prove that for analytic solutions with start-up singularities, the $C^{0}-\mathrm{CPG}$ method based on a special $h p$-discretisation can achieve the exponential convergence.

The outline of the paper is as follows. In Section 2, we introduce an $h p$-version of the C^{0}-CPG method for (1.1) and show the existence and uniqueness of discrete solutions. Section 3 deals with a priori error estimates for the $h p$-version of the $C^{0}-\mathrm{CPG}$ method. Numerical examples presented in Section 4 are aimed to verify the theoretical results. Finally, some concluding remarks are given in Section 5.

2. An $h p$-Version of C^{0}-CPG Time-Stepping Method

Let \mathscr{T}_{h} be the partition

$$
0=t_{0}<t_{1}<t_{2}<\cdots<t_{N-1}<t_{N}=T
$$

of the interval $(0, T)$ into subintervals $I_{n}:=\left(t_{n-1}, t_{n}\right), n=1, \ldots, N, k_{n}:=t_{n}-t_{n-1}$ the length of the subinterval I_{n} and $k:=\max _{1 \leq n \leq N} k_{n}$. For each subinterval I_{n} we assign a local approximation order $r_{n} \geq 1$, store all the orders in the polynomial degree vector $\mathbf{r}=\left(r_{1}, r_{2}, \cdots, r_{N}\right)$, and define $h p$-version trial $S^{\mathbf{r}, 1}\left(\mathscr{T}_{h}\right)$ and test $S^{\mathbf{r}-1,0}\left(\mathscr{T}_{h}\right)$ spaces as follows:

$$
\begin{aligned}
& S^{\mathbf{r}, 1}\left(\mathscr{T}_{h}\right)=\left\{u \in H^{1}(I):\left.u\right|_{I_{n}} \in P_{r_{n}}\left(I_{n}\right), 1 \leq n \leq N\right\} \\
& S^{\mathbf{r}-\mathbf{1}, 0}\left(\mathscr{T}_{h}\right)=\left\{u \in L^{2}(I):\left.u\right|_{I_{n}} \in P_{r_{n}-1}\left(I_{n}\right), 1 \leq n \leq N\right\},
\end{aligned}
$$

where $P_{j}\left(I_{n}\right), j=r_{n}, r_{n}-1$ denotes the set of all polynomials of degree at most j on I_{n}. It is clear that the functions in $S^{\mathbf{r}-1,0}\left(\mathscr{T}_{h}\right)$ can be discontinuous at the interior points of the partition \mathscr{T}_{h}.

Let $\varphi:(0, T) \rightarrow \mathbb{R}$ be a piecewise continuous function with respect to the partition \mathscr{T}_{h} and let φ_{n}^{-}and φ_{n}^{+}be the left and right limits of φ at the nodes $\left\{t_{n}\right\}_{n=0}^{N}$, i.e.

$$
\begin{array}{ll}
\varphi_{n}^{-}=\lim _{s \rightarrow 0, s>0} \varphi\left(t_{n}-s\right), & 1 \leq n \leq N \\
\varphi_{n}^{+}=\lim _{s \rightarrow 0, s>0} \varphi\left(t_{n}+s\right), & 0 \leq n \leq N-1
\end{array}
$$

The jumps at the interior nodes are defined by $[\varphi]_{n}=\varphi_{n}^{+}-\varphi_{n}^{-}$for $1 \leq n \leq N-1$.
The $h p$-version of C^{0}-CPG method for the Eq. (1.1) consists in finding $U \in S^{\mathbf{r}, 1}\left(\mathscr{T}_{h}\right)$ such that the equation

$$
\begin{align*}
& \sum_{n=1}^{N} \int_{I_{n}} \ddot{U} \varphi d t+\sum_{n=1}^{N}[\dot{U}]_{n-1} \varphi_{n-1}^{+} \\
= & \sum_{n=1}^{N} \int_{I_{n}}(p \dot{U}+q U+f) \varphi d t+\sum_{n=1}^{N} \int_{I_{n}}\left(\int_{0}^{t}(t-s)^{-\alpha} K(t, s) U(s) d s\right) \varphi d t \tag{2.1}\\
& U(0)=u_{0}
\end{align*}
$$

is satisfied for all $\varphi \in S^{\mathrm{r}-1,0}\left(\mathscr{T}_{h}\right)$. Note that $\dot{U}_{0}^{-}:=u_{1}$.
Let us show how the scheme (2.1) is derived. Setting $v:=u^{\prime}$, we write the first equation in (1.1) as

$$
v^{\prime}(t)=p(t) v(t)+q(t) u(t)+f(t)+\int_{0}^{t}(t-s)^{-\alpha} K(t, s) u(s) d s, \quad t \in I .
$$

If $U \in S^{\mathbf{r}, 1}\left(\mathscr{T}_{h}\right)$ is an approximation of u and V an approximation of v, then the standard discontinuous Galerkin method for the first-order VIDEs [8] allows to determine $V \in$ $S^{\mathrm{r}-1,0}\left(\mathscr{T}_{h}\right)$ by solving the variational equation

$$
\begin{align*}
& \sum_{n=1}^{N} \int_{I_{n}} V^{\prime} \varphi d t+\sum_{n=1}^{N}[V]_{n-1} \varphi_{n-1}^{+} \\
= & \sum_{n=1}^{N} \int_{I_{n}}(p V+q U+f) \varphi d t+\sum_{n=1}^{N} \int_{I_{n}}\left(\int_{0}^{t}(t-s)^{-\alpha} K(t, s) U(s) d s\right) \varphi d t \tag{2.2}
\end{align*}
$$

valid for all $\varphi \in S^{\mathbf{r}-1,0}\left(\mathscr{T}_{h}\right)$. In order to enforce the relation $v=u^{\prime}$, an additional variational equation should be added in the usual way. However, here we set $V=U^{\prime}$ in (2.2), thus obtaining (2.1).

Since the test functions are discontinuous, the problem (2.1) can be split into local problems on intervals $I_{n}, 1 \leq n \leq N$. Therefore, the C^{0}-CPG method (2.1) can be interpreted as a time stepping scheme - i.e. if U is given on the time intervals $I_{m}, 1 \leq m \leq n-1$, the term $\left.U\right|_{I_{n}} \in P_{r_{n}}\left(I_{n}\right)$ is determined by solving the equation

$$
\begin{align*}
& \int_{I_{n}} \ddot{U} \varphi d t+\dot{U}_{n-1}^{+} \varphi_{n-1}^{+} \\
= & \dot{U}_{n-1}^{-} \varphi_{n-1}^{+}+\int_{I_{n}}(p \dot{U}+q U+f) \varphi d t+\int_{I_{n}}\left(\int_{0}^{t}(t-s)^{-\alpha} K(t, s) U(s) d s\right) \varphi d t, \tag{2.3}\\
& \left.U\right|_{I_{n}}\left(t_{n-1}\right)=\left.U\right|_{I_{n-1}}\left(t_{n-1}\right)
\end{align*}
$$

valid for all $\varphi \in P_{r_{n}-1}\left(I_{n}\right)$. Here, we set $\left.U\right|_{I_{1}}\left(t_{0}\right)=u_{0}$ and $\dot{U}_{0}^{-}=u_{1}$.
In order to show the well-posedness of the discrete solutions defined by (2.1), we need a few technical results.
Lemma 2.1 (cf. Yi \& Guo [37, Lemma 2.2]). Let $\left\{t_{n}\right\}_{n=0}^{N}$ be a partition \mathscr{T}_{h}. If $\alpha<1$ and $g \in L^{2}\left(t_{n-1}, t_{n}\right)$, then

$$
\begin{equation*}
\int_{t_{n-1}}^{t_{n}}\left(\int_{t_{n-1}}^{t}(t-s)^{-\alpha} g(s) d s\right)^{2} d t \leq \frac{k_{n}^{2(1-\alpha)}}{(1-\alpha)^{2}} \int_{t_{n-1}}^{t_{n}} g^{2}(s) d s \tag{2.4}
\end{equation*}
$$

and if $g \in L^{2}\left(0, t_{n}\right)$, then

$$
\begin{equation*}
\int_{0}^{t_{n}}\left(\int_{0}^{t}(t-s)^{-\alpha} g(s) d s\right)^{2} d t \leq \frac{t_{n}^{2(1-\alpha)}}{(1-\alpha)^{2}} \int_{0}^{t_{n}} g^{2}(s) d s \tag{2.5}
\end{equation*}
$$

Lemma 2.2 (cf. Schötzau \& Schwab [25, Lemma 2.4]). On each interval I_{n}, the inequality

$$
\int_{I_{n}}|\varphi|^{2} d t \leq \frac{1}{k_{n}}\left(\int_{I_{n}} \varphi d t\right)^{2}+\frac{1}{2} \int_{I_{n}}\left(t_{n}-t\right)\left(t-t_{n-1}\right)|\dot{\varphi}|^{2} d t
$$

holds for all $\varphi \in P_{r_{n}}\left(I_{n}\right), r_{n} \geq 0$.
Lemma 2.3 (The Poincaré-Friedrichs inequality - cf. Braess [2]). Let $J=(a, b) \subset \mathbb{R}$ and $h:=b-a$. If $u \in H^{1}(J)$ and $u(a)=0$, then it satisfies the inequality

$$
\|u\|_{L^{2}(J)} \leq h\|\dot{u}\|_{L^{2}(J)} .
$$

Now we can address the existence and uniqueness of the discrete solutions. Setting

$$
\begin{equation*}
\bar{p}:=\max _{t \in I}|p(t)|, \quad \bar{q}:=\max _{t \in I}|q(t)|, \quad \bar{K}:=\max _{(t, s) \in D}|K(t, s)| \tag{2.6}
\end{equation*}
$$

we define the constants $C_{n}, 1 \leq n \leq N$ by

$$
C_{n}= \begin{cases}\bar{p}+\bar{q} k_{n}+\frac{\bar{K} k_{n}^{2-\alpha}}{1-\alpha}, & \text { if } r_{n}=1 \tag{2.7}\\ \sqrt{\frac{5}{2}}\left(\bar{p}+\bar{q} k_{n}+\frac{\bar{K} k_{n}^{2-\alpha}}{1-\alpha}\right), & \text { if } r_{n}>1\end{cases}
$$

Theorem 2.1. If the partition \mathscr{T}_{h} satisfies the inequalities

$$
\begin{equation*}
C_{n} k_{n}<1, \quad 1 \leq n \leq N \tag{2.8}
\end{equation*}
$$

with the constants $C_{n}>0$ defined in (2.7), then the discrete problem (2.1) has a unique solution $U \in S^{\mathbf{r}, 1}\left(\mathscr{T}_{h}\right)$.

Proof. Since the $h p$-version of the C^{0}-CPG method (2.1) is a time-stepping scheme, it suffices to prove the existence and uniqueness of the discrete solution of the Eq. (2.3) for $n=1$. For $n \geq 2$ the proof is analogous. Thus let us first show the uniqueness of the solution of (2.3) for $n=1$. Assume that there are two solutions U_{1} and U_{2} of (2.3) on I_{1}. The difference $E=U_{1}-U_{2}$ satisfies the equation

$$
\begin{align*}
& \int_{I_{1}} \ddot{E} \varphi d t+\dot{E}_{0}^{+} \varphi_{0}^{+} \\
= & \dot{E}_{0}^{-} \varphi_{0}^{+}+\int_{I_{1}} p \dot{E} \varphi d t+\int_{I_{1}} q E \varphi d t+\int_{I_{1}}\left(\int_{0}^{t}(t-s)^{-\alpha} K(t, s) E(s) d s\right) \varphi d t \tag{2.9}
\end{align*}
$$

for all $\varphi \in P_{r_{1}-1}\left(I_{1}\right)$. Using integration by parts in (2.9) gives

$$
\begin{align*}
& -\int_{I_{1}} \dot{E} \dot{\varphi} d t+\dot{E}_{1}^{-} \varphi_{1}^{-} \\
= & \dot{E}_{0}^{-} \varphi_{0}^{+}+\int_{I_{1}} p \dot{E} \varphi d t+\int_{I_{1}} q E \varphi d t+\int_{I_{1}}\left(\int_{0}^{t}(t-s)^{-\alpha} K(t, s) E(s) d s\right) \varphi d t \tag{2.10}
\end{align*}
$$

for all $\varphi \in P_{r_{1}-1}\left(I_{1}\right)$. We next consider the following two cases.

Case I. $r_{1}=1$. It is clear that $\ddot{E}=0$ and $\dot{E}_{0}^{-}=0$. Choosing $\varphi=\dot{E}$ in (2.9) and using (2.6) along with the Cauchy-Schwarz inequality and the inequality (2.4) gives

$$
\begin{aligned}
& \|\dot{E}\|_{L^{\infty}\left(I_{1}\right)}^{2}=\left|\dot{E}_{0}^{+}\right|^{2} \\
= & \int_{I_{1}} p|\dot{E}|^{2} d t+\int_{I_{1}} q E \dot{E} d t+\int_{I_{1}}\left(\int_{0}^{t}(t-s)^{-\alpha} K(t, s) E(s) d s\right) \dot{E} d t \\
\leq & \bar{p}\|\dot{E}\|_{L^{\infty}\left(I_{1}\right)} \int_{I_{1}}|\dot{E}| d t+\bar{q}\|\dot{E}\|_{L^{\infty}\left(I_{1}\right)} \int_{I_{1}}|E| d t+\bar{K}\|\dot{E}\|_{L^{\infty}\left(I_{1}\right)} \int_{I_{1}}\left(\int_{0}^{t}(t-s)^{-\alpha}|E(s)| d s\right) d t \\
\leq & \bar{p} k_{1}^{1 / 2}\|\dot{E}\|_{L^{\infty}\left(I_{1}\right)}\|\dot{E}\|_{L^{2}\left(I_{1}\right)}+\bar{q} k_{1}^{1 / 2}\|\dot{E}\|_{L^{\infty}\left(I_{1}\right)}\|E\|_{L^{2}\left(I_{1}\right)}+\bar{K} k_{1}^{1 / 2}\|\dot{E}\|_{L^{\infty}\left(I_{1}\right)} \frac{k_{1}^{1-\alpha}}{1-\alpha}\|E\|_{L^{2}\left(I_{1}\right)}
\end{aligned}
$$

It follows that

$$
\begin{equation*}
\|\dot{E}\|_{L^{\infty}\left(I_{1}\right)} \leq \bar{p} k_{1}^{1 / 2}\|\dot{E}\|_{L^{2}\left(I_{1}\right)}+\bar{q} k_{1}^{1 / 2}\|E\|_{L^{2}\left(I_{1}\right)}+\bar{K} k_{1}^{1 / 2} \frac{k_{1}^{1-\alpha}}{1-\alpha}\|E\|_{L^{2}\left(I_{1}\right)} \tag{2.11}
\end{equation*}
$$

and since $\|\dot{E}\|_{L^{\infty}\left(I_{1}\right)}=k_{1}^{-1 / 2}\|\dot{E}\|_{L^{2}\left(I_{1}\right)}$, the inequality (2.11) can be written as

$$
\begin{equation*}
\left(1-\bar{p} k_{1}\right)\|\dot{E}\|_{L^{2}\left(I_{1}\right)} \leq \bar{q} k_{1}\|E\|_{L^{2}\left(I_{1}\right)}+\bar{K} \frac{k_{1}^{2-\alpha}}{1-\alpha}\|E\|_{L^{2}\left(I_{1}\right)} \tag{2.12}
\end{equation*}
$$

Taking into account that $E(0)=0$ and applying Lemma 2.3 to (2.12), we obtain

$$
\left(1-\bar{p} k_{1}-\bar{q} k_{1}^{2}-\frac{\bar{K} k_{1}^{3-\alpha}}{1-\alpha}\right)\|E\|_{L^{2}\left(I_{1}\right)} \leq 0
$$

for $\bar{p} k_{1}<1$. Therefore, if

$$
\left(\bar{p}+\bar{q} k_{1}+\frac{\bar{K} k_{1}^{2-\alpha}}{1-\alpha}\right) k_{1}<1
$$

then $E=0$.
Case II. $r_{1}>1$. Choosing $\varphi=\left(t-t_{0}\right) \ddot{E}$ in (2.9) yields $\varphi_{0}^{+}=0$. Recalling the definitions (2.6) and using the Cauchy-Schwarz inequality along with the inequality (2.4) yields

$$
\begin{aligned}
& \int_{I_{1}}|\ddot{E}(t)|^{2}\left(t-t_{0}\right) d t \\
\leq & \bar{p}\left(\int_{I_{1}}\left|\dot{E}(t)^{2}\left(t-t_{0}\right)\right| d t\right)^{1 / 2}\left(\int_{I_{1}}|\ddot{E}(t)|^{2}\left(t-t_{0}\right) d t\right)^{1 / 2} \\
& +\bar{q}\left(\int_{I_{1}}\left|E(t)^{2}\left(t-t_{0}\right)\right| d t\right)^{1 / 2}\left(\int_{I_{1}}|\ddot{E}(t)|^{2}\left(t-t_{0}\right) d t\right)^{1 / 2} \\
& +\bar{K}\left(\int_{I_{1}}\left(\int_{0}^{t}(t-s)^{-\alpha}|E(s)| d s\right)^{2}\left(t-t_{0}\right) d t\right)^{1 / 2}\left(\int_{I_{1}}|\ddot{E}(t)|^{2}\left(t-t_{0}\right) d t\right)^{1 / 2}
\end{aligned}
$$

$$
\begin{aligned}
\leq & \bar{p} k_{1}^{1 / 2}\|\dot{E}\|_{L^{2}\left(I_{1}\right)}\left(\int_{I_{1}}|\ddot{E}(t)|^{2}\left(t-t_{0}\right) d t\right)^{1 / 2}+\bar{q} k_{1}^{1 / 2}\|E\|_{L^{2}\left(I_{1}\right)}\left(\int_{I_{1}}|\ddot{E}(t)|^{2}\left(t-t_{0}\right) d t\right)^{1 / 2} \\
& +\bar{K} k_{1}^{1 / 2} \frac{k_{1}^{1-\alpha}}{1-\alpha}\|E\|_{L^{2}\left(I_{1}\right)}\left(\int_{I_{1}}|\ddot{E}(t)|^{2}\left(t-t_{0}\right) d t\right)^{1 / 2}
\end{aligned}
$$

It follows that

$$
\begin{align*}
& \int_{I_{1}}|\ddot{E}(t)|^{2}\left(t-t_{0}\right) d t \\
\leq & 3 \bar{p}^{2} k_{1}\|\dot{E}\|_{L^{2}\left(I_{1}\right)}^{2}+3 \bar{q}^{2} k_{1}\|E\|_{L^{2}\left(I_{1}\right)}^{2}+3 \bar{K}^{2} k_{1} \frac{k_{1}^{2(1-\alpha)}}{(1-\alpha)^{2}}\|E\|_{L^{2}\left(I_{1}\right)}^{2} . \tag{2.13}
\end{align*}
$$

Choosing $\varphi=t_{1}-t$ in (2.10) implies $\varphi_{1}^{-}=0$. Therefore, the definitions (2.6), the CauchySchwarz inequality and the inequality (2.4) give

$$
\begin{aligned}
\int_{I_{1}} \dot{E}(t) d t \leq & \bar{p}\left(\int_{I_{1}}|\dot{E}(t)|^{2} d t\right)^{1 / 2}\left(\int_{I_{1}}\left(t_{1}-t\right)^{2} d t\right)^{1 / 2} \\
& +\bar{q}\left(\int_{I_{1}}|E(t)|^{2} d t\right)^{1 / 2}\left(\int_{I_{1}}\left(t_{1}-t\right)^{2} d t\right)^{1 / 2} \\
& +\bar{K}\left(\int_{I_{1}}\left(\int_{0}^{t}(t-s)^{-\alpha}|E(s)| d s\right)^{2} d t\right)^{1 / 2}\left(\int_{I_{1}}\left(t_{1}-t\right)^{2} d t\right)^{1 / 2} \\
\leq & \frac{\sqrt{3}}{3} \bar{p} k_{1}^{3 / 2}\|\dot{E}\|_{L^{2}\left(I_{1}\right)}+\frac{\sqrt{3}}{3} \bar{q} k_{1}^{3 / 2}\|E\|_{L^{2}\left(I_{1}\right)}+\frac{\sqrt{3}}{3} \bar{K} \frac{k_{1}^{1-\alpha}}{1-\alpha} k_{1}^{3 / 2}\|E\|_{L^{2}\left(I_{1}\right)}
\end{aligned}
$$

Consequently, we have

$$
\begin{equation*}
\left(\int_{I_{1}} \dot{E}(t) d t\right)^{2} \leq \bar{p}^{2} k_{1}^{3}\|\dot{E}\|_{L^{2}\left(I_{1}\right)}^{2}+\bar{q}^{2} k_{1}^{3}\|E\|_{L^{2}\left(I_{1}\right)}^{2}+\bar{K}^{2} \frac{k_{1}^{2(1-\alpha)}}{(1-\alpha)^{2}} k_{1}^{3}\|E\|_{L^{2}\left(I_{1}\right)}^{2} \tag{2.14}
\end{equation*}
$$

It follows from Lemma 2.2 and the inequalities (2.13), (2.14) that

$$
\begin{aligned}
\|\dot{E}\|_{L^{2}\left(I_{1}\right)}^{2} & \leq \frac{1}{k_{1}}\left(\int_{I_{1}} \dot{E} d t\right)^{2}+\frac{k_{1}}{2} \int_{I_{1}}|\ddot{E}|^{2}\left(t-t_{0}\right) d t \\
& \leq \frac{5}{2} \bar{p}^{2} k_{1}^{2}\|\dot{E}\|_{L^{2}\left(I_{1}\right)}^{2}+\frac{5}{2} \bar{q}^{2} k_{1}^{2}\|E\|_{L^{2}\left(I_{1}\right)}^{2}+\frac{5}{2} \bar{K}^{2} \frac{k_{1}^{2(1-\alpha)}}{(1-\alpha)^{2}} k_{1}^{2}\|E\|_{L^{2}\left(I_{1}\right)}^{2}
\end{aligned}
$$

or equivalently

$$
\begin{equation*}
\left(1-\frac{5}{2} \bar{p}^{2} k_{1}^{2}\right)\|\dot{E}\|_{L^{2}\left(I_{1}\right)}^{2} \leq \frac{5}{2} \bar{q}^{2} k_{1}^{2}\|E\|_{L^{2}\left(I_{1}\right)}^{2}+\frac{5}{2} \bar{K}^{2} \frac{k_{1}^{2(1-\alpha)}}{(1-\alpha)^{2}} k_{1}^{2}\|E\|_{L^{2}\left(I_{1}\right)}^{2} \tag{2.15}
\end{equation*}
$$

Since $E(0)=0$, the application of Lemma 2.3 to (2.15) show that if $(5 / 2) \bar{p}^{2} k_{1}^{2}<1$, then

$$
\begin{equation*}
\left(1-\frac{5}{2} \bar{p}^{2} k_{1}^{2}-\frac{5}{2} \bar{q}^{2} k_{1}^{4}-\frac{5}{2} \bar{K}^{2} \frac{k_{1}^{2(3-\alpha)}}{(1-\alpha)^{2}}\right)\|E\|_{L^{2}\left(I_{1}\right)}^{2} \leq 0 \tag{2.16}
\end{equation*}
$$

Assuming now that $C_{1} k_{1}<1$, where C_{1} is the constant defined in (2.7), we obtain $E=0$.
Thus the uniqueness of the solution is established for any $r_{n} \geq 1$. Since (2.3) is a linear finite dimensional problem, its solvability follows from the uniqueness property.

Remark 2.1. The mesh condition (2.8) in Theorem 2.1 implies that the well-posedness of discrete solutions is completely independent of the local approximation orders $r_{n}, 1 \leq$ $n \leq N$. It is worth noting that (2.8) is only a sufficient condition and is needed because of our proof method. It is not necessary for the well-posedness and numerical experiments show that the $h p$-version of the C^{0}-CPG scheme can still be convergent, even if (2.8) is not satisfied.

3. Error Analysis

In order to study the errors of the method, we introduce a projection operator that has been previously used [18] during the study of the C^{0}-CPG method for the second-order VIDEs with smooth kernels. Here we also assume that the partition \mathscr{T}_{h} satisfies the condition (2.8).

Let $\Lambda=[-1,1]$ and $r \geq 1$. For any function $u \in H^{1}(\Lambda)$ such that $u^{\prime}(\xi)$ is continuous at $\xi=1$, the projection operator $\Pi_{\Lambda}^{r}: H^{1}(\Lambda) \longrightarrow P_{r}(\Lambda)$ is defined by

$$
\begin{align*}
& \int_{\Lambda}\left(u-\Pi_{\Lambda}^{r} u\right)^{\prime} \varphi d \xi=0 \quad \text { for all } \quad \varphi \in P_{r-2}(\Lambda) \tag{3.1}\\
& \Pi_{\Lambda}^{r} u(-1)=u(-1), \quad\left(\Pi_{\Lambda}^{r} u\right)^{\prime}(1)=u^{\prime}(1)
\end{align*}
$$

Note that the first condition is not required if $r=1$. For $r \geq 2$, we can choose $\varphi=1$ in (3.1) and use integration by parts to obtain $\Pi_{\Lambda}^{r} u(1)=u(1)$.

For a general interval $J=(a, b)$, we set $\Pi_{J}^{r} u=\left[\Pi_{\Lambda}^{r}(u \circ \mathscr{M})\right] \circ \mathscr{M}^{-1}$ with $\mathscr{M}: \Lambda \rightarrow J$ be the linear transformation $\xi \mapsto t=(a+b+(b-a) \xi) / 2$. Let \mathscr{T}_{h} be an arbitrary partition of $(0, T)$. Then for any $u \in H^{2}(I)$ we can define a piecewise polynomial $\mathscr{I} u$ by

$$
\left.\mathscr{I} u\right|_{I_{n}}=\Pi_{I_{n}}^{r_{n}} u, \quad 1 \leq n \leq N .
$$

It follows from (3.1) that

$$
(\mathscr{I} u)_{n-1}^{+}=u_{n-1}^{+}, \quad(\dot{\mathscr{I}} u)_{n}^{-}=\dot{u}_{n}^{-}, \quad 1 \leq n \leq N
$$

Moreover, if $r_{n} \geq 2$, then $\mathscr{I} u \in S^{r, 1}\left(\mathscr{T}_{h}\right)$ and

$$
\begin{equation*}
\int_{I_{n}}(u-\mathscr{I} u)^{\prime} \varphi d t=0, \quad \forall \varphi \in P_{r_{n}-2}\left(I_{n}\right) \tag{3.2}
\end{equation*}
$$

We recall the following lemma.

Lemma 3.1 (Approximation properties of $\mathscr{I} u$, cf. Li et al. [18]). Let \mathscr{T}_{h} be a partition of $(0, T)$. If $\left.u\right|_{I_{n}} \in H^{s_{0, n}+1}\left(I_{n}\right)$ for $s_{0, n} \geq 1$, then for any real $s_{n}, 0 \leq s_{n} \leq \min \left\{r_{n}, s_{0, n}\right\}$, the inequality

$$
\begin{equation*}
\|u-\mathscr{I} u\|_{H^{1}(0, T)}^{2} \leq C \sum_{n=1}^{N}\left(\frac{k_{n}}{2}\right)^{2 s_{n}} \frac{\Gamma\left(r_{n}+1-s_{n}\right)}{\Gamma\left(r_{n}+1+s_{n}\right)}\|u\|_{H^{s_{n}+1}\left(I_{n}\right)}^{2} \tag{3.3}
\end{equation*}
$$

holds with a constant $C>0$ independent of k_{n}, r_{n} and s_{n}.
Now we can derive abstract error estimates for the method under consideration. Let u be the exact solution of (1.1) and U be the approximate solution derived by the method (2.1). As usual, we represent the error $e:=u-U$ in the form

$$
e=(u-\mathscr{I} u)+(\mathscr{I} u-U):=\eta+\xi .
$$

To derive the error bound, we need the discrete Gronwall inequality.
Lemma 3.2 (Discrete Gronwall inequality, - cf. e.g. [6]). Let $\left\{a_{n}\right\}_{n=1}^{N}$ and $\left\{b_{n}\right\}_{n=1}^{N}$ be sequences of nonnegative real numbers and $b_{1} \leq b_{2} \leq \cdots \leq b_{N}$. If there is a constant $C \geq 0$ and weights $w_{i}>0,1 \leq i \leq N-1$ such that

$$
a_{1} \leq b_{1}, \quad a_{n} \leq b_{n}+C \sum_{i=1}^{n-1} w_{i} a_{i}, \quad 2 \leq n \leq N
$$

then

$$
a_{n} \leq b_{n} \exp \left(C \sum_{i=1}^{n-1} w_{i}\right), \quad 1 \leq n \leq N
$$

Since Lemma 3.1 can be used to bound η, our task reduces to the estimate of ξ.
Lemma 3.3. For any $1 \leq n \leq N$ and $r_{n} \geq 1$, the following estimates hold:

$$
\begin{align*}
& \left|\dot{\xi}_{n}^{-}\right|^{2} \leq C\left(\|\eta\|_{L^{2}\left(0, t_{n}\right)}^{2}+\|\xi\|_{L^{2}\left(0, t_{n}\right)}^{2}+\|\dot{\eta}\|_{L^{2}\left(0, t_{n}\right)}^{2}+\|\dot{\xi}\|_{L^{2}\left(0, t_{n}\right)}^{2}\right) \tag{3.4}\\
& \left(\int_{I_{n}} \dot{\xi} d t\right)^{2} \leq C k_{n}^{2}\left(\|\eta\|_{L^{2}\left(0, t_{n}\right)}^{2}+\|\xi\|_{L^{2}\left(0, t_{n}\right)}^{2}+\|\dot{\eta}\|_{L^{2}\left(0, t_{n}\right)}^{2}+\|\dot{\xi}\|_{L^{2}\left(0, t_{n}\right)}^{2}\right) \tag{3.5}\\
& \int_{I_{n}}\left(t-t_{n-1}\right)|\ddot{\xi}|^{2} d t \leq C k_{n}\left(\|\eta\|_{L^{2}\left(0, t_{n}\right)}^{2}+\|\xi\|_{L^{2}\left(0, t_{n}\right)}^{2}+\|\dot{\eta}\|_{L^{2}\left(0, t_{n}\right)}^{2}+\|\dot{\xi}\|_{L^{2}\left(0, t_{n}\right)}^{2}\right), \tag{3.6}
\end{align*}
$$

where constant $C>0$ depends on $\bar{p}, \bar{q}, \bar{K}$ and t_{n} only.
Proof. The Eqs. (1.1) and (2.3) yield the local Galerkin orthogonality property, i.e.

$$
\begin{align*}
& \int_{I_{n}} \ddot{e} \varphi d t+\dot{e}_{n-1}^{+} \varphi_{n-1}^{+} \\
= & \dot{e}_{n-1}^{-} \varphi_{n-1}^{+}+\int_{I_{n}} p \dot{e} \varphi d t+\int_{I_{n}} q e \varphi d t+\int_{I_{n}}\left(\int_{0}^{t}(t-s)^{-\alpha} K(t, s) e(s) d s\right) \varphi d t \tag{3.7}
\end{align*}
$$

for all $\varphi \in P_{r_{n}-1}\left(I_{n}\right)$.
We again consider the situations $r_{n}=1$ and $r_{n}>1$, separately.

Case I. $r_{n}=1$. Integration by parts in the left-hand side of (3.7) gives

$$
\begin{equation*}
\dot{e}_{n}^{-} \varphi_{n}^{-}=\dot{e}_{n-1}^{-} \varphi_{n-1}^{+}+\int_{I_{n}} p \dot{e} \varphi d t+\int_{I_{n}} q e \varphi d t+\int_{I_{n}}\left(\int_{0}^{t}(t-s)^{-\alpha} K(t, s) e(s) d s\right) \varphi d t \tag{3.8}
\end{equation*}
$$

Choose now $\varphi=1$ in (3.8). Since $\dot{e}_{0}^{-}=0$ and $\dot{\eta}_{n}^{-}=0$ for $1 \leq n \leq N$, we obtain

$$
\begin{align*}
\dot{\xi}_{n}^{-} & =\dot{\xi}_{n-1}^{-}+\int_{I_{n}} p \dot{e} d t+\int_{I_{n}} q e d t+\int_{I_{n}}\left(\int_{0}^{t}(t-s)^{-\alpha} K(t, s) e(s) d s\right) d t \\
& \leq \dot{\xi}_{n-1}^{-}+\bar{p} \int_{I_{n}}|\dot{e}(t)| d t+\bar{q} \int_{I_{n}}|e(t)| d t+\bar{K} \int_{I_{n}}\left(\int_{0}^{t}(t-s)^{-\alpha}|e(s)| d s\right) d t \\
& \leq \dot{\xi}_{n-1}^{-}+\bar{p} k_{n}^{1 / 2}\|\dot{e}\|_{L^{2}\left(I_{n}\right)}+\bar{q} k_{n}^{1 / 2}\|e\|_{L^{2}\left(I_{n}\right)}+\bar{K} k_{n}^{1 / 2}\left\|\int_{0}^{t}(t-s)^{-\alpha}|e(s)| d s\right\|_{L^{2}\left(I_{n}\right)} \tag{3.9}
\end{align*}
$$

Here, we set $\dot{\xi}_{0}^{-}=0$. Iterating (3.9) yields

$$
\begin{equation*}
\dot{\xi}_{n}^{-} \leq \bar{p} \sum_{i=1}^{n} k_{i}^{1 / 2}\|\dot{e}\|_{L^{2}\left(I_{i}\right)}+\bar{q} \sum_{i=1}^{n} k_{i}^{1 / 2}\|e\|_{L^{2}\left(I_{i}\right)}+\bar{K} \sum_{i=1}^{n} k_{i}^{1 / 2}\left\|\int_{0}^{t}(t-s)^{-\alpha}|e(s)| d s\right\|_{L^{2}\left(I_{i}\right)} \tag{3.10}
\end{equation*}
$$

Squaring both sides of (3.10), using Cauchy-Schwarz inequality and (2.5) gives

$$
\begin{aligned}
\left|\dot{\xi}_{n}^{-}\right|^{2} \leq & 3 \bar{p}^{2}\left(\sum_{i=1}^{n} k_{i}^{1 / 2}\|\dot{e}\|_{L^{2}\left(I_{i}\right)}\right)^{2}+3 \bar{q}^{2}\left(\sum_{i=1}^{n} k_{i}^{1 / 2}\|e\|_{L^{2}\left(I_{i}\right)}\right)^{2} \\
& +3 \bar{K}^{2}\left(\sum_{i=1}^{n} k_{i}^{1 / 2}\left\|\int_{0}^{t}(t-s)^{-\alpha}|e(s)| d s\right\|_{L^{2}\left(I_{i}\right)}\right)^{2} \\
\leq & 3 \bar{p}^{2} t_{n}\|\dot{e}\|_{L^{2}\left(0, t_{n}\right)}^{2}+3 \bar{q}^{2} t_{n}\|e\|_{L^{2}\left(0, t_{n}\right)}^{2}+3 \bar{K}^{2} t_{n} \frac{t_{n}^{2(1-\alpha)}}{(1-\alpha)^{2}}\|e\|_{L^{2}\left(0, t_{n}\right)}^{2} \\
\leq & C\left(\|\eta\|_{L^{2}\left(0, t_{n}\right)}^{2}+\|\xi\|_{L^{2}\left(0, t_{n}\right)}^{2}+\|\dot{\eta}\|_{L^{2}\left(0, t_{n}\right)}^{2}+\|\dot{\xi}\|_{L^{2}\left(0, t_{n}\right)}^{2}\right)
\end{aligned}
$$

and the inequality (3.4) is proven for $r_{n}=1$. This yields the estimate (3.5) - i.e.

$$
\left(\int_{I_{n}} \dot{\xi} d t\right)^{2}=k_{n}^{2}\left|\dot{\xi}_{n}^{-}\right|^{2} \leq C k_{n}^{2}\left(\|\eta\|_{L^{2}\left(0, t_{n}\right)}^{2}+\|\xi\|_{L^{2}\left(0, t_{n}\right)}^{2}+\|\dot{\eta}\|_{L^{2}\left(0, t_{n}\right)}^{2}+\|\dot{\xi}\|_{L^{2}\left(0, t_{n}\right)}^{2}\right)
$$

and (3.6) follows directly from the fact that $\ddot{\xi}=0$ if $r_{n}=1$.
Case II. $r_{n}>1$. Since $\dot{\eta}_{n}^{-}=0$ for any $1 \leq n \leq N$, we can use integration by parts in (3.7) and (3.2) to obtain

$$
\begin{align*}
& \dot{\xi}_{n}^{-} \varphi_{n}^{-}-\int_{I_{n}} \dot{\xi} \dot{\varphi} d t \\
= & \dot{\xi}_{n-1}^{-} \varphi_{n-1}^{+}+\int_{I_{n}} p \dot{e} \varphi d t+\int_{I_{n}} q e \varphi d t+\int_{I_{n}}\left(\int_{0}^{t}(t-s)^{-\alpha} K(t, s) e(s) d s\right) \varphi d t \tag{3.11}
\end{align*}
$$

for all $\varphi \in P_{r_{n}-1}\left(I_{n}\right)$. Integrating the result by parts yields

$$
\begin{align*}
& \dot{\xi}_{n-1}^{+} \varphi_{n-1}^{+}+\int_{I_{n}} \ddot{\xi} \varphi d t \\
= & \dot{\xi}_{n-1}^{-} \varphi_{n-1}^{+}+\int_{I_{n}} p \dot{e} \varphi d t+\int_{I_{n}} q e \varphi d t+\int_{I_{n}}\left(\int_{0}^{t}(t-s)^{-\alpha} K(t, s) e(s) d s\right) \varphi d t \tag{3.12}
\end{align*}
$$

for all $\varphi \in P_{r_{n}-1}\left(I_{n}\right)$. For $\varphi=\dot{\xi}$, the Eq. (3.12) takes the form

$$
\begin{aligned}
& \frac{1}{2}\left|\dot{\xi}_{n}^{-}\right|^{2}+\frac{1}{2}\left|\dot{\xi}_{n-1}^{+}\right|^{2} \\
= & \dot{\xi}_{n-1}^{-} \dot{\xi}_{n-1}^{+}+\int_{I_{n}} p \dot{e} \dot{\xi} d t+\int_{I_{n}} q e \dot{\xi} d t+\int_{I_{n}}\left(\int_{0}^{t}(t-s)^{-\alpha} K(t, s) e(s) d s\right) \dot{\xi} d t \\
\leq & \frac{1}{2}\left|\dot{\xi}_{n-1}^{-}\right|^{2}+\frac{1}{2}\left|\dot{\xi}_{n-1}^{+}\right|^{2}+\bar{p} \int_{I_{n}}|\dot{e} \dot{\xi}| d t+\bar{q} \int_{I_{n}}|e \dot{\xi}| d t+\bar{K} \int_{I_{n}}\left(\int_{0}^{t}(t-s)^{-\alpha}|e(s)| d s\right)|\dot{\xi}| d t \\
\leq & \frac{1}{2}\left|\dot{\xi}_{n-1}^{-}\right|^{2}+\frac{1}{2}\left|\dot{\xi}_{n-1}^{+}\right|^{2}+\bar{p}\|\dot{e}\|_{L^{2}\left(I_{n}\right)}\|\dot{\xi}\|_{L^{2}\left(I_{n}\right)}+\bar{q}\|e\|_{L^{2}\left(I_{n}\right)}\|\dot{\xi}\|_{L^{2}\left(I_{n}\right)} \\
& +\bar{K}\left\|\int_{0}^{t}(t-s)^{-\alpha}|e(s)| d s\right\|_{L^{2}\left(I_{n}\right)}\|\dot{\xi}\|_{L^{2}\left(I_{n}\right)}
\end{aligned}
$$

which implies that

$$
\begin{align*}
&\left|\dot{\xi}_{n}^{-}\right|^{2} \leq\left|\dot{\xi}_{n-1}^{-}\right|^{2} \\
&+2 \bar{p}\|\dot{e}\|_{L^{2}\left(I_{n}\right)}\|\dot{\xi}\|_{L^{2}\left(I_{n}\right)}+2 \bar{q}\|e\|_{L^{2}\left(I_{n}\right)}\|\dot{\xi}\|_{L^{2}\left(I_{n}\right)} \\
&+2 \bar{K}\left\|\int_{0}^{t}(t-s)^{-\alpha}|e(s)| d s\right\|_{L^{2}\left(I_{n}\right)}\|\dot{\xi}\|_{L^{2}\left(I_{n}\right)} \\
& \leq\left|\dot{\xi}_{n-1}^{-}\right|^{2}+\bar{p}\|\dot{e}\|_{L^{2}\left(I_{n}\right)}^{2}+\bar{p}\|\dot{\xi}\|_{L^{2}\left(I_{n}\right)}^{2}+\bar{q}\|e\|_{L^{2}\left(I_{n}\right)}^{2}+\bar{q}\|\dot{\xi}\|_{L^{2}\left(I_{n}\right)}^{2} \tag{3.13}\\
&+\bar{K}\left\|\int_{0}^{t}(t-s)^{-\alpha}|e(s)| d s\right\|_{L^{2}\left(I_{n}\right)}^{2}+\bar{K}\|\dot{\xi}\|_{L^{2}\left(I_{n}\right)}^{2}
\end{align*}
$$

Iterating (3.13) and using (2.5) gives

$$
\begin{aligned}
& \left|\dot{\xi}_{n}^{-}\right|^{2} \leq \bar{p}\|\dot{e}\|_{L^{2}\left(0, t_{n}\right)}^{2}+\bar{p}\|\dot{\xi}\|_{L^{2}\left(0, t_{n}\right)}^{2}+\bar{q}\|e\|_{L^{2}\left(0, t_{n}\right)}^{2}+\bar{q}\|\dot{\xi}\|_{L^{2}\left(0, t_{n}\right)}^{2} \\
& +\bar{K}\left\|\int_{0}^{t}(t-s)^{-\alpha} e(s) d s\right\|_{L^{2}\left(0, t_{n}\right)}^{2}+\bar{K}\|\dot{\xi}\|_{L^{2}\left(0, t_{n}\right)}^{2} \\
& \leq \bar{p}\|\dot{e}\|_{L^{2}\left(0, t_{n}\right)}^{2}+\bar{p}\|\dot{\xi}\|_{L^{2}\left(0, t_{n}\right)}^{2}+\bar{q}\|e\|_{L^{2}\left(0, t_{n}\right)}^{2}+\bar{q}\|\dot{\xi}\|_{L^{2}\left(0, t_{n}\right)}^{2} \\
& +\bar{K} \frac{t_{n}^{2(1-\alpha)}}{(1-\alpha)^{2}}\|e\|_{L^{2}\left(0, t_{n}\right)}^{2}+\bar{K}\|\dot{\xi}\|_{L^{2}\left(0, t_{n}\right)}^{2} \\
& \leq C\left(\|\eta\|_{L^{2}\left(0, t_{n}\right)}^{2}+\|\xi\|_{L^{2}\left(0, t_{n}\right)}^{2}+\|\dot{\eta}\|_{L^{2}\left(0, t_{n}\right)}^{2}+\|\dot{\xi}\|_{L^{2}\left(0, t_{n}\right)}^{2}\right),
\end{aligned}
$$

so that (3.4) is also proven for $r_{n}>1$. Furthermore, choosing $\varphi=\left(t_{n-1}-t\right)$ in (3.11) and using (2.5), gives

$$
\begin{aligned}
& -k_{n} \dot{\xi}_{n}^{-}+\int_{I_{n}} \dot{\xi} d t \\
= & \int_{I_{n}} p(t) \dot{e}(t)\left(t_{n-1}-t\right) d t+\int_{I_{n}} q(t) e(t)\left(t_{n-1}-t\right) d t \\
& +\int_{I_{n}}\left(\int_{0}^{t}(t-s)^{-\alpha} K(t, s) e(s) d s\right)\left(t_{n-1}-t\right) d t \\
\leq & \bar{p} \int_{I_{n}}\left|\dot{e}(t)\left(t_{n-1}-t\right)\right| d t+\bar{q} \int_{I_{n}}\left|e(t)\left(t_{n-1}-t\right)\right| d t \\
& +\bar{K} \int_{I_{n}}\left(\int_{0}^{t}(t-s)^{-\alpha}|e(s)| d s\right)\left|t_{n-1}-t\right| d t \\
\leq & \frac{\sqrt{3}}{3} k_{n}^{3 / 2} \bar{p}\|\dot{e}\|_{L^{2}\left(I_{n}\right)}+\frac{\sqrt{3}}{3} k_{n}^{3 / 2} \bar{q}\|e\|_{L^{2}\left(I_{n}\right)}+\frac{\sqrt{3}}{3} k_{n}^{3 / 2} \bar{K}\left\|_{0}^{t}(t-s)^{-\alpha}|e(s)| d s\right\|_{0} \\
\leq & \frac{\sqrt{3}}{3} k_{n}^{3 / 2} \bar{p}\|\dot{e}\|_{L^{2}\left(I_{n}\right)}+\frac{\sqrt{3}}{3} k_{n}^{3 / 2} \bar{q}\|e\|_{L^{2}\left(I_{n}\right)}+\frac{\sqrt{3}}{3} k_{n}^{3 / 2} \bar{K} \frac{t_{n}^{1-\alpha}}{1-\alpha}\|e\|_{L^{2}\left(0, t_{n}\right)} .
\end{aligned}
$$

This and (3.4) imply the estimate (3.5). Indeed, we have

$$
\begin{aligned}
\left(\int_{I_{n}} \dot{\xi} d t\right)^{2} & \leq 4 k_{n}^{2}\left|\dot{\xi}_{n}^{-}\right|^{2}+\frac{4}{3} k_{n}^{3} \bar{p}^{2}\|\dot{e}\|_{L^{2}\left(I_{n}\right)}^{2}+\frac{4}{3} k_{n}^{3} \bar{q}^{2}\|e\|_{L^{2}\left(I_{n}\right)}^{2}+\frac{4}{3} k_{n}^{3} \bar{K}^{2} \frac{t_{n}^{2(1-\alpha)}}{(1-\alpha)^{2}}\|e\|_{L^{2}\left(0, t_{n}\right)}^{2} \\
& \leq C k_{n}^{2}\left(\|\eta\|_{L^{2}\left(0, t_{n}\right)}^{2}+\|\xi\|_{L^{2}\left(0, t_{n}\right)}^{2}+\|\dot{\eta}\|_{L^{2}\left(0, t_{n}\right)}^{2}+\|\dot{\xi}\|_{L^{2}\left(0, t_{n}\right)}^{2}\right)
\end{aligned}
$$

Finally, choosing $\varphi=\left(t-t_{n-1}\right) \ddot{\xi}$ in (3.12) and using (2.5), we obtain

$$
\begin{aligned}
& \int_{I_{n}}\left(t-t_{n-1}\right)|\ddot{\xi}|^{2} d t \\
= & \int_{I_{n}} p(t) \dot{e}(t)\left(t-t_{n-1}\right) \ddot{\xi} d t+\int_{I_{n}} q(t) e(t)\left(t-t_{n-1}\right) \ddot{\xi} d t \\
& +\int_{I_{n}}\left(\int_{0}^{t}(t-s)^{-\alpha} K(t, s) e(s) d s\right)\left(t-t_{n-1}\right) \ddot{\xi} d t \\
\leq & \bar{p} \int_{I_{n}}\left|\dot{e}(t)\left(t-t_{n-1}\right) \ddot{\xi}\right| d t+\bar{q} \int_{I_{n}}\left|e(t)\left(t-t_{n-1}\right) \ddot{\xi}\right| d t \\
& +\bar{K} \int_{I_{n}}\left(\int_{0}^{t}(t-s)^{-\alpha}|e(s)| d s\right)\left|\left(t-t_{n-1}\right) \ddot{\xi}\right| d t \\
\leq & \bar{p} k_{n}^{1 / 2}\|\dot{e}\|_{L^{2}\left(I_{n}\right)}\left(\int_{I_{n}}\left(t-t_{n-1}\right)|\ddot{\xi}|^{2} d t\right)^{1 / 2}+\bar{q} k_{n}^{1 / 2}\|e\|_{L^{2}\left(I_{n}\right)}\left(\int_{I_{n}}\left(t-t_{n-1}\right)|\ddot{\xi}|^{2} d t\right)^{1 / 2}
\end{aligned}
$$

$$
\begin{aligned}
& \quad+\bar{K} k_{n}^{1 / 2}\left\|\int_{0}^{t}(t-s)^{-\alpha}|e(s)| d s\right\|_{L^{2}\left(0, t_{n}\right)}\left(\int_{I_{n}}\left(t-t_{n-1}\right)|\ddot{\xi}|^{2} d t\right)^{1 / 2} \\
& \leq \\
& \leq \bar{p} k_{n}^{1 / 2}\|\dot{e}\|_{L^{2}\left(I_{n}\right)}\left(\int_{I_{n}}\left(t-t_{n-1}\right)|\ddot{\xi}|^{2} d t\right)^{1 / 2}+\bar{q} k_{n}^{1 / 2}\|e\|_{L^{2}\left(I_{n}\right)}\left(\int_{I_{n}}\left(t-t_{n-1}\right)|\ddot{\xi}|^{2} d t\right)^{1 / 2} \\
& \quad+\bar{K} k_{n}^{1 / 2} \frac{t_{n}^{1-\alpha}}{1-\alpha}\|e\|_{L^{2}\left(0, t_{n}\right)}\left(\int_{I_{n}}\left(t-t_{n-1}\right)|\ddot{\xi}|^{2} d t\right)^{1 / 2}
\end{aligned}
$$

which implies that

$$
\begin{aligned}
\int_{I_{n}}\left(t-t_{n-1}\right)|\ddot{\xi}|^{2} d t & \leq\left(\bar{p} k_{n}^{1 / 2}\|\dot{e}\|_{L^{2}\left(I_{n}\right)}+\bar{q} k_{n}^{1 / 2}\|e\|_{L^{2}\left(I_{n}\right)}+\bar{K} k_{n}^{1 / 2} \frac{t_{n}^{1-\alpha}}{1-\alpha}\|e\|_{L^{2}\left(0, t_{n}\right)}\right)^{2} \\
& \leq C k_{n}\left(\|\eta\|_{L^{2}\left(0, t_{n}\right)}^{2}+\|\xi\|_{L^{2}\left(0, t_{n}\right)}^{2}+\|\dot{\eta}\|_{L^{2}\left(0, t_{n}\right)}^{2}+\|\dot{\xi}\|_{L^{2}\left(0, t_{n}\right)}^{2}\right)
\end{aligned}
$$

This completes the proof of (3.6) for $r_{n}>1$.
We are ready to present an abstract error bound for the $h p$-version of C^{0}-CPG method (2.1).

Theorem 3.1. If u is the solution of (1.1) and U its approximate solution obtained by the method (2.1), then for any $r_{n} \geq 2$ and any sufficiently small k_{n}, the following estimate holds:

$$
\begin{equation*}
\|u-U\|_{H^{1}(0, T)} \leq C\|u-\mathscr{I} u\|_{H^{1}(0, T)} \tag{3.14}
\end{equation*}
$$

where $C>0$ is a constant, which depends on $\bar{p}, \bar{q}, \bar{K}$, and T only.
Proof. It follows from Lemma 2.2 and estimates (3.5), (3.6) that

$$
\begin{aligned}
\int_{I_{n}}|\dot{\xi}|^{2} d t & \leq \frac{1}{k_{n}}\left(\int_{I_{n}} \dot{\xi} d t\right)^{2}+\frac{k_{n}}{2} \int_{I_{n}}\left(t-t_{n-1}\right)|\ddot{\xi}|^{2} d t \\
& \leq C k_{n}\left(\|\eta\|_{L^{2}\left(0, t_{n}\right)}^{2}+\|\xi\|_{L^{2}\left(0, t_{n}\right)}^{2}+\|\dot{\eta}\|_{L^{2}\left(0, t_{n}\right)}^{2}+\|\dot{\xi}\|_{L^{2}\left(0, t_{n}\right)}^{2}\right)
\end{aligned}
$$

for $r_{n} \geq 1$. If k_{n} is sufficiently small, the above inequality can be rewritten as

$$
\|\dot{\xi}\|_{L^{2}\left(I_{n}\right)}^{2} \leq C k_{n}\left(\|\eta\|_{H^{1}\left(0, t_{n}\right)}^{2}+\|\xi\|_{L^{2}\left(0, t_{n}\right)}^{2}+\|\dot{\xi}\|_{L^{2}\left(0, t_{n-1}\right)}^{2}\right)
$$

or equivalently,

$$
\frac{\|\dot{\xi}\|_{L^{2}\left(I_{n}\right)}^{2}}{k_{n}} \leq C\left(\|\eta\|_{H^{1}\left(0, t_{n}\right)}^{2}+\|\xi\|_{L^{2}\left(0, t_{n}\right)}^{2}\right)+\sum_{i=1}^{n-1} k_{i} \frac{\|\dot{\xi}\|_{L^{2}\left(I_{i}\right)}^{2}}{k_{i}}
$$

The discrete Gronwall inequality — cf. Lemma 3.2, implies

$$
\frac{\|\dot{\xi}\|_{L^{2}\left(I_{n}\right)}^{2}}{k_{n}} \leq C\left(\|\eta\|_{H^{1}\left(0, t_{n}\right)}^{2}+\|\xi\|_{L^{2}\left(0, t_{n}\right)}^{2}\right) \cdot \exp \left(C \sum_{i=1}^{n-1} k_{i}\right)
$$

Consequently, we have

$$
\begin{align*}
\|\dot{\xi}\|_{L^{2}\left(I_{n}\right)}^{2} & \leq C k_{n} e^{C t_{n-1}}\left(\|\eta\|_{H^{1}\left(0, t_{n}\right)}^{2}+\|\xi\|_{L^{2}\left(0, t_{n}\right)}^{2}\right) \\
& \leq C k_{n}\left(\|\eta\|_{H^{1}\left(0, t_{n}\right)}^{2}+\|\xi\|_{L^{2}\left(0, t_{n}\right)}^{2}\right) . \tag{3.15}
\end{align*}
$$

Summing the estimates (3.15) in i from 1 to n yields

$$
\begin{equation*}
\|\dot{\xi}\|_{L^{2}\left(0, t_{n}\right)}^{2} \leq C \sum_{i=1}^{n} k_{i}\left(\|\eta\|_{H^{1}\left(0, t_{i}\right)}^{2}+\|\xi\|_{L^{2}\left(0, t_{i}\right)}^{2}\right) \leq C t_{n}\left(\|\eta\|_{H^{1}\left(0, t_{n}\right)}^{2}+\|\xi\|_{L^{2}\left(0, t_{n}\right)}^{2}\right) . \tag{3.16}
\end{equation*}
$$

Since $\xi \in H^{1}(0, T)$ for $r_{n} \geq 2,1 \leq n \leq N$, we can write

$$
\begin{equation*}
\left|\xi_{n-1}^{+}\right|^{2}=\left|\xi_{n-1}^{-}\right|^{2}=\left(\int_{0}^{t_{n-1}} \dot{\xi} d t\right)^{2} \leq t_{n-1}\|\dot{\xi}\|_{L^{2}\left(0, t_{n-1}\right)}^{2} \tag{3.17}
\end{equation*}
$$

and since

$$
\xi(t)=\int_{t_{n-1}}^{t} \dot{\xi} d t+\xi_{n-1}^{+},
$$

we obtain

$$
\begin{align*}
\|\xi\|_{L^{2}\left(I_{n}\right)}^{2} & \leq \int_{I_{n}}\left(\int_{t_{n-1}}^{t_{n}}|\dot{\xi}| d t+\left|\xi_{n-1}^{+}\right|\right)^{2} d t=k_{n}\left(\int_{I_{n}}|\dot{\xi}| d t+\left|\xi_{n-1}^{+}\right|\right)^{2} \\
& \leq 2 k_{n}^{2}\|\dot{\xi}\|_{L^{2}\left(I_{n}\right)}^{2}+2 k_{n}\left|\xi_{n-1}^{+}\right|^{2} \leq 2 k_{n}^{2}\|\dot{\xi}\|_{L^{2}\left(I_{n}\right)}^{2}+2 k_{n} t_{n-1}\|\dot{\xi}\|_{L^{2}\left(0, t_{n-1}\right)}^{2} \\
& \leq C k_{n}\|\dot{\xi}\|_{L^{2}\left(0, t_{n}\right)}^{2} . \tag{3.18}
\end{align*}
$$

Substituting (3.16) into (3.18) gives

$$
\|\xi\|_{L^{2}\left(I_{n}\right)}^{2} \leq C k_{n}\left(\|\eta\|_{H^{1}\left(0, t_{n}\right)}^{2}+\|\xi\|_{L^{2}\left(0, t_{n}\right)}^{2}\right) .
$$

If k_{n} is sufficiently small, the above inequality can be rewritten as

$$
\|\xi\|_{L^{2}\left(I_{n}\right)}^{2} \leq C k_{n}\|\eta\|_{H^{1}\left(0, t_{n}\right)}^{2}+C k_{n}\|\xi\|_{L^{2}\left(0, t_{n-1}\right)}^{2},
$$

or equivalently,

$$
\frac{\|\xi\|_{L^{2}\left(I_{n}\right)}^{2}}{k_{n}} \leq C\|\eta\|_{H^{1}\left(0, t_{n}\right)}^{2}+C \sum_{i=1}^{n-1} k_{i} \frac{\|\xi\|_{L^{2}\left(I_{i}\right)}^{2}}{k_{i}} .
$$

Applying the discrete Gronwall inequality - cf. Lemma 3.2, yields

$$
\frac{\|\xi\|_{L^{2}\left(I_{n}\right)}^{2}}{k_{n}} \leq C\|\eta\|_{H^{1}\left(0, t_{n}\right)}^{2} \cdot \exp \left(C \sum_{i=1}^{n-1} k_{i}\right),
$$

or

$$
\begin{equation*}
\|\xi\|_{L^{2}\left(I_{n}\right)}^{2} \leq C k_{n} e^{C t_{n-1}}\|\eta\|_{H^{1}\left(0, t_{n}\right)}^{2} . \tag{3.19}
\end{equation*}
$$

Summing (3.19) in i from 1 to n leads to the inequality

$$
\begin{equation*}
\|\xi\|_{L^{2}\left(0, t_{n}\right)}^{2} \leq C \sum_{i=1}^{n} k_{i}\|\eta\|_{H^{1}\left(0, t_{i}\right)}^{2} \leq C t_{n}\|\eta\|_{H^{1}\left(0, t_{n}\right)}^{2}, \tag{3.20}
\end{equation*}
$$

and combining estimates (3.15), (3.19) and (3.20) gives

$$
\begin{align*}
& \|\xi\|_{H^{1}\left(I_{n}\right)}^{2}=\|\xi\|_{L^{2}\left(I_{n}\right)}^{2}+\|\dot{\xi}\|_{L^{2}\left(I_{n}\right)}^{2} \\
& \leq C k_{n}\left(\|\eta\|_{H^{1}\left(0, t_{n}\right)}^{2}+\|\xi\|_{L^{2}\left(0, t_{n}\right)}^{2}\right) \leq C k_{n}\|\eta\|_{H^{1}\left(0, t_{n}\right)}^{2} . \tag{3.21}
\end{align*}
$$

Summing (3.21) in n from 1 to N, we get

$$
\begin{equation*}
\|\xi\|_{H^{1}(0, T)}^{2} \leq C \sum_{n=1}^{N} k_{n}\|\eta\|_{H^{1}\left(0, t_{n}\right)}^{2} \leq C T\|\eta\|_{H^{1}(0, T)}^{2}, \tag{3.22}
\end{equation*}
$$

and the estimate (3.14) follows from the triangle inequality and (3.22).
Remark 3.1. The C^{0}-CPG scheme is designed for $r_{n} \geq 1$, but the main result of Theorem 3.1 is valid only for $r_{n} \geq 2$ because our proof uses the global continuity of piecewise polynomials $\mathscr{I} u$ and for $r_{n}=1$ the corresponding can be discontinuous.

3.1. Convergence of the $h p$-version of C^{0}-CPG method

We now evaluate the errors for the $h p$-version of C^{0}-CPG time-stepping method on an arbitrary partition \mathscr{T}_{h}.

Theorem 3.2. Let \mathscr{T}_{h} be a partition of $(0, T)$, u the exact solution of (1.1), and U the approximate solution obtained by the method (2.1). If $\left.u\right|_{I_{n}} \in H^{s_{0, n}+1}\left(I_{n}\right)$ for $s_{0, n} \geq 1$, then for $r_{n} \geq 2$ and sufficiently small k_{n}, the estimate

$$
\begin{equation*}
\|u-U\|_{H^{1}(0, T)}^{2} \leq C \sum_{n=1}^{N}\left(\frac{k_{n}}{2}\right)^{2 s_{n}} \frac{\Gamma\left(r_{n}+1-s_{n}\right)}{\Gamma\left(r_{n}+1+s_{n}\right)}\|u\|_{H^{s_{n}+1}\left(I_{n}\right)}^{2} \tag{3.23}
\end{equation*}
$$

holds for any real $s_{n}, 0 \leq s_{n} \leq \min \left\{r_{n}, s_{0, n}\right\}$ with a constant $C>0$ independent of k_{n}, r_{n} and s_{n}.

Moreover, if \mathscr{T}_{h} is a quasi-uniform partition of ($0, T$), i.e. if there is a constant $C_{q}>0$ such that $k \leq C_{q} k_{n}$ for all $1 \leq n \leq N, r_{n} \equiv r \geq 2$ and $u \in H^{s+1}(I)$ for $s \geq 1$, then

$$
\begin{equation*}
\|u-U\|_{H^{1}(0, T)} \leq C \frac{k^{\min \{s, r\}}}{r^{s}}\|u\|_{H^{s+1}(0, T)} \tag{3.24}
\end{equation*}
$$

with a constant $C>0$ independent of k and r.
Proof. The estimate (3.23) immediately follows from Theorem 3.1 and the approximation properties of $\mathscr{I} u$, cf. Lemma 3.1. The estimate (3.24) follows from (3.23) and Stirling's formula.

Remark 3.2. The estimate (3.23) is fully explicit with respect to the local time steps k_{n}, the local approximation order r_{n}, and the local regularity s_{n} of the exact solution.

Remark 3.3. The estimate (3.24) implies that the $h p$-version of C^{0}-CPG method converges if the time step k diminishes or/and if the polynomial degree r increases. In particular, (3.24) shows that the p-version approach can produce arbitrary high-order algebraic convergence rate (or spectral convergence), provided that the exact solution u is smooth enough.

3.2. Exponential convergence for singular solutions

As we know, the solution of VIDEs (1.1) with weakly singular kernels - i.e. if $0<\alpha<1$, are generally not smooth at $t=0^{+}[6,29]$. Such singular behavior of u near $t=0$ may lead to suboptimal convergence rates if we use quasi-uniform time partition.

In this section, we consider the $h p$-version of C^{0}-CPG method for problems, the solutions of which have start-up singularities as $t \rightarrow 0$. More precisely, we assume that the solution u of the problem (1.1) is analytic in ($0, T]$ and satisfies the analytic regularity

$$
\begin{equation*}
\left|u^{(s)}(t)\right| \leq C d^{s} \Gamma(s+1) t^{\theta-s}, \quad t \in(0, T], \quad s \in \mathbb{N}_{0}, \quad \theta>2 \tag{3.25}
\end{equation*}
$$

for positive constants C and d, which may depend on u.
We show that the $h p$-version of C^{0}-CPG time-stepping method based on geometrically refined time steps and linearly increasing approximation orders, leads to exponential rates of convergence for the solutions satisfying condition (3.25).

We begin with some definitions -cf. [8, 25,37].
Definition 3.1 (Geometric partition). A geometric partition $\mathscr{T}_{M, \sigma}$ of $(0, T)$ with grading factor $\sigma \in(0,1)$ and M levels of refinement is obtained by first quasi-uniformly partitioning ($0, T$) into (coarse) intervals $\left\{J_{\ell}\right\}_{\ell=1}^{L}$, and then the first interval $J_{1}=\left(0, T_{1}\right)$ near $t=0$ is further subdivided into $M+1$ subintervals $\left\{I_{m}\right\}_{m=1}^{M+1}$ by using the time steps

$$
t_{0}=0, \quad t_{m}=\sigma^{M-m+1} T_{1}, \quad 1 \leq m \leq M+1 .
$$

The parameter $\sigma \in(0,1)$ is called the geometric refinement factor. Obviously, the time steps $k_{m}=t_{m}-t_{m-1}$ satisfy $k_{m}=\lambda t_{m-1}$ with $\lambda:=(1-\sigma) / \sigma$ for $2 \leq m \leq M+1$.

Definition 3.2 (Linearly increasing approximation order). Let $\mathscr{T}_{M, \sigma}$ be a geometric mesh of $(0, T)$. An approximation degree vector \mathbf{r} on $\mathscr{T}_{M, \sigma}$ is called linear with slope $v>0$ if $r_{1}=2, r_{m}=\max \{2,\lfloor v m\rfloor\}$ for $2 \leq m \leq M+1$ on the geometrically refined elements $\left\{I_{m}\right\}_{m=1}^{M+1}$ and if $r_{\ell}=\max \{2,\lfloor\nu(M+1)\rfloor\}$ on the coarse element J_{ℓ} for $2 \leq \ell \leq L$.

The following result establishes the exponential rate of convergence in terms of the degree of freedom for the $h p$-version of C^{0}-CPG time-stepping method.

Theorem 3.3. Assume that the solution u of the Eq. (1.1) satisfies the condition (3.25), $\mathscr{T}_{M, \sigma}$ is a geometric mesh of $(0, T)$ satisfying (2.8) and U the approximate solution of (1.1) obtained
by the method (2.1). Then there exists a slope $v_{0}>0$ solely depending on σ and θ such that for all linear polynomial degree vectors \mathbf{r} with a slope $v \geq v_{0}$, the error estimate

$$
\begin{equation*}
\|u-U\|_{H^{1}(0, T)} \leq C e^{-b \sqrt{D}} \tag{3.26}
\end{equation*}
$$

holds with constants $C, b>0$ independent of $D=\operatorname{dim}\left(S^{\mathbf{r}-1,0}\left(\mathscr{T}_{M, \sigma}\right)\right)$.
Proof. The proof of (3.26) is similar to the corresponding proofs of [8,25,37], but we present it here in order to make the paper self-contained.

By Theorem 3.1, we only have to estimate the term $u-\mathscr{I} u$. For this purpose, we choose $v \geq 1$ such that $r_{m}=\lfloor v m\rfloor \geq 2$ on the geometrically refined intervals $\left\{I_{m}\right\}_{m=2}^{M+1}$ and $r_{\ell}=\lfloor v(M+1)\rfloor \geq 2$ on the coarse intervals $\left\{J_{\ell}\right\}_{\ell=2}^{L}$. By Theorem 3.1, we have

$$
\begin{equation*}
\|u-U\|_{H^{1}(0, T)}^{2} \leq C\left(\sum_{1 \leq m \leq M+1}\|u-\mathscr{I} u\|_{H^{1}\left(I_{m}\right)}^{2}+\sum_{2 \leq \ell \leq L}\|u-\mathscr{I} u\|_{H^{1}\left(J_{\ell}\right)}^{2}\right) . \tag{3.27}
\end{equation*}
$$

On the first subinterval I_{1}, we use Lemma 3.1 with $s_{0,1}=s_{1}=1$ and (3.25) thus obtaining

$$
\begin{equation*}
\|u-\mathscr{I} u\|_{H^{1}\left(I_{1}\right)}^{2} \leq C\left(\frac{k_{1}}{2}\right)^{2}\|u\|_{H^{2}\left(I_{1}\right)}^{2} \leq C k_{1}^{2 \theta-1}=C \sigma^{M(2 \theta-1)} . \tag{3.28}
\end{equation*}
$$

On the subintervals $I_{m}, 2 \leq m \leq M+1$, we use Lemma 3.1 and get

$$
\begin{align*}
\sum_{2 \leq m \leq M+1}\|u-\mathscr{I} u\|_{H^{1}\left(I_{m}\right)}^{2} & \leq C \sum_{2 \leq m \leq M+1}\left(\frac{k_{m}}{2}\right)^{2 s_{m}} \frac{\Gamma\left(r_{m}+1-s_{m}\right)}{\Gamma\left(r_{m}+1+s_{m}\right)}\|u\|_{H^{s} m+1\left(I_{m}\right)}^{2} \\
& \leq C \sum_{2 \leq m \leq M+1}\left(\frac{k_{m}}{2}\right)^{2 s_{m}+1} \frac{\Gamma\left(r_{m}+1-s_{m}\right)}{\Gamma\left(r_{m}+1+s_{m}\right)}\|u\|_{W^{s_{m}+1, \infty}\left(I_{m}\right)}^{2} \tag{3.29}
\end{align*}
$$

for $0 \leq s_{m} \leq \min \left\{r_{m}, s_{0, m}\right\}$. Since away from $t=0$ the solution u is analytic, for $2 \leq m \leq$ $M+1$ the regularity exponents $s_{0, m}$ can be chosen arbitrarily large. For convenience, we set

$$
e_{m}=\left(\frac{k_{m}}{2}\right)^{2 s_{m}+2} \frac{\Gamma\left(r_{m}+1-s_{m}\right)}{\Gamma\left(r_{m}+1+s_{m}\right)}\|u\|_{W^{s_{m}+1, \infty}\left(I_{m}\right)}^{2}, \quad 2 \leq m \leq M+1 .
$$

In view of (3.25), for any $s_{m} \geq 0$ we have

$$
\|u\|_{W^{s_{m}+1, \infty}\left(I_{m}\right)}^{2} \leq C d^{2 s_{m}} \Gamma\left(2 s_{m}+1\right) \sigma^{2(M-m+2)\left(\theta-s_{m}-1\right)}, \quad 2 \leq m \leq M+1 .
$$

Since $k_{m}=\lambda t_{m-1}$ with $t_{m-1}=\sigma^{M-m+2} T_{1}$, it yields

$$
\begin{aligned}
e_{m} & \leq C\left(\frac{\lambda \sigma^{M-m+2}}{2}\right)^{2 s_{m}+2} \frac{\Gamma\left(r_{m}+1-s_{m}\right)}{\Gamma\left(r_{m}+1+s_{m}\right)} d^{2 s_{m}} \Gamma\left(2 s_{m}+1\right)\left(\sigma^{M-m+2}\right)^{2\left(\theta-s_{m}-1\right)} \\
& \leq C \sigma^{(M-m+2) 2 \theta}\left((\lambda d)^{2 s_{m}} \frac{\Gamma\left(r_{m}+1-s_{m}\right)}{\Gamma\left(r_{m}+1+s_{m}\right)} \Gamma\left(2 s_{m}+1\right)\right) .
\end{aligned}
$$

Selecting $s_{m}=\varepsilon_{m} r_{m}$ with an $\varepsilon_{m} \in(0,1)$ and using Stirling's formula gives

$$
e_{m} \leq C \sigma^{(M-m+2) 2 \theta} r_{m}^{1 / 2}\left(\left(\lambda d \varepsilon_{m}\right)^{2 \varepsilon_{m}} \frac{\left(1-\varepsilon_{m}\right)^{1-\varepsilon_{m}}}{\left(1+\varepsilon_{m}\right)^{1+\varepsilon_{m}}}\right)^{r_{m}}
$$

Since the function

$$
g_{\lambda, d}(\varepsilon)=(\lambda d \varepsilon)^{2 \varepsilon} \frac{(1-\varepsilon)^{1-\varepsilon}}{(1+\varepsilon)^{1+\varepsilon}}
$$

satisfies the inequality

$$
0<\inf _{0<\varepsilon<1} g_{\lambda, d}(\varepsilon)=: g_{\lambda, d}\left(\varepsilon_{\min }\right)<1
$$

with $\varepsilon_{\min }=1 / \sqrt{1+\lambda^{2} d^{2}}$, we set

$$
g_{\min }:=g_{\lambda, d}\left(\varepsilon_{\min }\right)
$$

and choose

$$
\varepsilon_{m}=\varepsilon_{\min }, \quad 2 \leq m \leq M+1 .
$$

Then

$$
e_{m} \leq C \sigma^{(M-m+2) 2 \theta} r_{m}^{1 / 2} g_{\min }^{r_{m}} \leq C \sigma^{2 M \theta}(\nu(M+1))^{1 / 2}\left(\sigma^{(2-m) 2 \theta} g_{\min }^{\nu m}\right)
$$

If

$$
v_{0}:=\max \left\{\frac{2 \theta \log \sigma}{\log \left(g_{\min }\right)}, 1\right\}
$$

then $g_{\min }^{v m} \leq \sigma^{2 m \theta}$ for $v \geq v_{0}$. Consequently,

$$
\begin{equation*}
e_{m} \leq C \sigma^{2 M \theta}(\nu(M+1))^{1 / 2} \sigma^{4 \theta} \leq C \sigma^{2 M \theta}(\nu(M+1))^{1 / 2}, \quad 2 \leq m \leq M+1 \tag{3.30}
\end{equation*}
$$

Substituting (3.30) into (3.29) yields

$$
\begin{align*}
& \sum_{2 \leq m \leq M+1}\|u-\mathscr{I} u\|_{H^{1}\left(I_{m}\right)}^{2} \\
\leq & C \sum_{2 \leq m \leq M+1} \frac{1}{k_{m}} \sigma^{2 M \theta}(v(M+1))^{1 / 2} \leq C(v(M+1))^{1 / 2} \sum_{2 \leq m \leq M+1} \frac{\sigma^{2 M \theta}}{(1-\sigma) \sigma^{M-m+1}} \\
\leq & C(v(M+1))^{1 / 2} \sigma^{(2 \theta-1) M} \sum_{2 \leq m \leq M+1} \sigma^{(m-1)} \leq C(v(M+1))^{1 / 2} \sigma^{(2 \theta-1) M} . \tag{3.31}
\end{align*}
$$

Moreover, taking into account standard approximation properties for analytic functions cf. [26], we have

$$
\begin{equation*}
\sum_{2 \leq \ell \leq L}\|u-\mathscr{I} u\|_{H^{1}\left(J_{\ell}\right)}^{2}=\|u-\mathscr{I} u\|_{H^{1}\left(T_{1}, T\right)}^{2} \leq C e^{-b r_{\ell}} \leq C e^{-b\lfloor\nu(M+1)\rfloor} . \tag{3.32}
\end{equation*}
$$

Finally, combining (3.27), (3.28), (3.31) and (3.32) gives

$$
\|u-U\|_{H^{1}(0, T)}^{2} \leq C\left(\sigma^{M(2 \theta-1)}+(\nu(M+1))^{1 / 2} \sigma^{(2 \theta-1) M}+e^{-b\lfloor\nu(M+1)\rfloor}\right) \leq C e^{-b M}
$$

as $M \rightarrow \infty$. Since $D=\operatorname{dim}\left(S^{r-1,0}\left(\mathscr{T}_{M, \sigma}\right)\right) \leq C M^{2}$ for sufficiently large M, the estimate (3.26) follows.

4. Numerical Examples

In order to illustrate the performance of the $h p$-version of C^{0}-CPG time-stepping method, we apply it to the VIDE (1.1) with

$$
p(t)=\frac{t}{1+t}, \quad q(t)=1, \quad K(t, s)=e^{s}
$$

and $T=1$. The right-hand side f is chosen so that the corresponding equation (1.1) has the solution $u(t)=t^{3-\alpha} e^{-t}$ with $0 \leq \alpha<1$. The discrete L^{∞}-errors are calculated as

$$
\|u-U\|_{L^{\infty}(I)} \approx \max _{1 \leq n \leq N, 0 \leq j \leq 20}\left\{\left|u\left(x_{j, n}\right)-U\left(x_{j, n}\right)\right|\right\}
$$

where $x_{j, n}=t_{n-1}+k_{n} j / 20$ for $0 \leq j \leq 20$.
We start with the situation, when the solution is smooth - i.e. we choose $\alpha=0$ and obtain analytic solution $u=t^{3} e^{-t}$ on [$0, T$]. Fig. 1 shows the performance of the h-version of C^{0}-CPG time-stepping method with uniform step-size k and fixed uniform approximation order r. The H^{1}-errors are plotted against the number of the degrees of freedom in a log-log scale for $r=1,2,3,4$. Note that the convergence of H^{1} errors is $\mathscr{O}\left(k^{r}\right)$, consistent with the error estimate (3.24). Besides, Table 1 presents various numerical errors and experimental rates of convergence for different approximation orders r. Note that maxe $e\left(t_{n}\right):=\max _{1 \leq n \leq N}\left|(u-U)\left(t_{n}\right)\right|$ is the maximum nodal error and $\max e^{\prime}\left(t_{n}^{-}\right)=\max _{1 \leq n \leq N}\left|(u-U)^{\prime}\left(t_{n}^{-}\right)\right|$is the maximum nodal error of the derivative. Table 1 clearly shows the convergence orders

$$
\|u-U\|_{L^{2}(I)}=\mathscr{O}\left(k^{r+1}\right), \quad\|u-U\|_{H^{1}(I)}=\mathscr{O}\left(k^{r}\right), \quad\|u-U\|_{L^{\infty}(I)}=\mathscr{O}\left(k^{r+1}\right),
$$

and the superconvergence orders

$$
\begin{aligned}
& \max _{1 \leq n \leq N}\left|(u-U)\left(t_{n}\right)\right|=\mathscr{O}\left(k^{2 r-1}\right), \\
& \max _{1 \leq n \leq N}\left|(u-U)^{\prime}\left(t_{n}^{-}\right)\right|=\mathscr{O}\left(k^{2 r-1}\right)
\end{aligned}
$$

Figure 1: H^{1}-errors of the h-version, $\alpha=0$.

Figure 2: H^{1}-errors of the p-version, $\alpha=0$.

Table 1: Numerical errors and convergence orders of the h-version, $\alpha=0$.

r	k	$\\|e\\|_{L^{2}(I)}$	order	$\\|e\\|_{H^{1}(I)}$	order	$\\|e\\|_{L^{\infty}(I)}$	order	$\max e\left(t_{n}\right)$	order	$\max e^{\prime}\left(t_{n}^{-}\right)$	order
1	$1 / 64$	$4.25 \mathrm{E}-03$	1.04	$1.01 \mathrm{E}-02$	1.04	$8.13 \mathrm{E}-03$	1.04	$8.13 \mathrm{E}-03$	1.04	$8.04 \mathrm{E}-03$	1.04
	$1 / 128$	$2.11 \mathrm{E}-03$	1.02	$5.04 \mathrm{E}-03$	1.02	$4.04 \mathrm{E}-03$	1.02	$4.04 \mathrm{E}-03$	1.02	$3.99 \mathrm{E}-03$	1.02
	$1 / 256$	$1.05 \mathrm{E}-03$	1.01	$2.51 \mathrm{E}-03$	1.01	$2.01 \mathrm{E}-03$	1.01	$2.01 \mathrm{E}-03$	1.01	$1.99 \mathrm{E}-03$	1.01
2	$1 / 32$	$1.01 \mathrm{E}-06$	3.05	$1.25 \mathrm{E}-04$	2.03	$4.19 \mathrm{E}-06$	2.96	$1.78 \mathrm{E}-07$	2.96	$3.98 \mathrm{E}-07$	2.99
	$1 / 64$	$1.27 \mathrm{E}-07$	3.02	$3.14 \mathrm{E}-05$	2.02	$5.44 \mathrm{E}-07$	2.98	$2.31 \mathrm{E}-08$	2.98	$5.10 \mathrm{E}-08$	3.00
	$1 / 128$	$1.60 \mathrm{E}-08$	3.01	$7.86 \mathrm{E}-06$	2.01	$6.92 \mathrm{E}-08$	2.99	$2.94 \mathrm{E}-09$	2.99	$6.46 \mathrm{E}-09$	3.00
3	$1 / 16$	$1.01 \mathrm{E}-07$	4.10	$1.20 \mathrm{E}-05$	3.07	$3.80 \mathrm{E}-07$	3.99	$1.04 \mathrm{E}-09$	5.15	$1.76 \mathrm{E}-09$	5.15
	$1 / 32$	$6.38 \mathrm{E}-09$	4.05	$1.50 \mathrm{E}-06$	3.04	$2.48 \mathrm{E}-08$	4.00	$3.21 \mathrm{E}-11$	5.09	$5.46 \mathrm{E}-11$	5.09
	$1 / 64$	$4.00 \mathrm{E}-10$	4.03	$1.88 \mathrm{E}-07$	3.02	$1.58 \mathrm{E}-09$	4.00	$9.97 \mathrm{E}-13$	5.05	$1.70 \mathrm{E}-12$	5.05
4	$1 / 8$	$2.48 \mathrm{E}-08$	5.19	$2.09 \mathrm{E}-06$	4.15	$7.68 \mathrm{E}-08$	5.02	$7.04 \mathrm{E}-11$	7.25	$1.19 \mathrm{E}-10$	7.26
	$1 / 16$	$7.82 \mathrm{E}-10$	5.10	$1.31 \mathrm{E}-07$	4.08	$2.57 \mathrm{E}-09$	5.01	$5.54 \mathrm{E}-13$	7.15	$9.36 \mathrm{E}-13$	7.15
	$1 / 32$	$2.45 \mathrm{E}-11$	5.05	$8.24 \mathrm{E}-09$	4.04	$8.30 \mathrm{E}-11$	5.01	$4.50 \mathrm{E}-15$	7.02	$7.77 \mathrm{E}-15$	6.99

for $r>1$. For $r=1$, the convergence rates of the errors in all norms are of order 1. A theoretical explanation of these observations (except the errors in H^{1}-norm) remains an open problem in our context.

We next test the performance of the p-version C^{0}-CPG time-stepping method on uniform partitions with fixed uniform step-size k. In Fig. 2, we increase the polynomial degree r and plot the H^{1}-errors against the number of degrees of freedom in a linear-log scale. It can be seen that for any fixed time partition, an exponential rate of convergence is achieved, consistent with Remark 3.3. We also observe that in p-version, the global H^{1}-errors of 10^{-15} can be reached for at most 15 degrees of freedom. However, this is not the case for h-version, as shown in Fig. 1. Therefore, for smooth solutions, it is more advantageous to use p-refinement rather than h-refinement.

Consider next the situation with $\alpha=0.5$, when the solution $u=t^{2.5} e^{-t}$ has a singularity at $t=0$. The third-order derivative of u is unbounded near $t=0$ and $u \in H^{3-\varepsilon}(I)$ for any $\varepsilon>0$. Fig. 3 shows the performance of the h-version of the method on uniform partitions. The H^{1}-errors of the h-version method against the degrees of freedom are plotted in the $\log -\log$ scale. The optimal order $r+1$ is not obtained due to the loss of smoothness of u at $t=0$. Fig. 4 shows that the p-version method also achieves the algebraic rates of convergence, although performing slightly better than the h-version method.

We now consider the performance of the $h p$-version of C^{0}-CPG time-stepping method based on geometrically refined time steps and linearly increasing degree of polynomials. In Fig. 5, we plot the H^{1}-errors against the square root of the number of degrees of freedom for fixed slope $v=2.5$ and various grading factors σ. Each curve exhibits the exponential convergence rate, confirming Theorem 3.3. In Fig. 6, we plot the H^{1}-errors for $\sigma=0.1$ and various slopes v. Note that exponential rates of convergence are achieved for each v. However, the optimal choice of the parameters σ and v remains an open problem in our context.

Figure 3: H^{1}-errors of the h-version, $\alpha=0.5$.

Figure 5: H^{1}-errors of the $h p$-version with fixed v, $\alpha=0.5$.

Figure 4: H^{1}-errors of the p-version, $\alpha=0.5$.

Figure 6: H^{1}-errors of the $h p$-version with fixed σ, $\alpha=0.5$.

5. Concluding Remarks

In this work we study an $h p$-version of C^{0}-CPG time-stepping method for the secondorder VIDEs with weakly singular kernels. In contrast to the methods transforming secondorder problems into the first-order systems, here we combine the CG and DG methodologies thus obtaining a direct discretisation of the second-order derivative. We derive an a priori error estimate in the H^{1}-norm fully explicit with respect to the local discretisation and regularity parameters. For analytic solutions with start-up singularities, we prove that exponential rates of convergence can be attained by using geometrically refined time steps and linearly increasing approximation orders.

Acknowledgment

The work is supported in part by the National Natural Science Foundation of China (Grant Nos. 11771298, 11871043, 11301343).

References

[1] M. Aguilar and H. Brunner, Collocation methods for second-order Volterra integro-differential equations, Appl. Numer. Math. 4, 455-470 (1988).
[2] D. Braess, Finite Elements: Theory, Fast Solvers and Applications in Solid Mechanics, Cambridge University Press (2007).
[3] H. Brunner, Nonpolynomial spline collocation for Volterra equations with weakly singular kernels, SIAM J. Numer. Anal. 20, 1106-1119 (1983).
[4] H. Brunner, Implicit Runge-Kutta methods of optimal order for Volterra integro-differential equations, Math. Comp. 42, 95-109 (1984).
[5] H. Brunner, Polynomial spline collocation methods for Volterra integrodifferential equations with weakly singular kernels, IMA J. Numer. Anal. 6, 221-239 (1986).
[6] H. Brunner, Collocation Methods for Volterra Integral and Related Functional Equations, Cambridge University Press (2004).
[7] H. Brunner, A. Makroglou and R.K. Miller, Mixed interpolation collocation methods for first and second order Volterra integro-differential equations with periodic solution, Appl. Numer. Math. 23, 381-402 (1997).
[8] H. Brunner and D. Schötzau, hp-discontinuous Galerkin time-stepping for Volterra integrodifferential equations, SIAM J. Numer. Anal. 44, 224-245 (2006).
[9] T.A. Burton, Volterra Integral and Differential Equations, Academic Press (1983).
[10] H.T. Cai and Y.P. Chen, A fractional order collocation method for second kind Volterra integral equations with weakly singular kernels, J. Sci. Comput. 75, 970-992 (2018).
[11] Y.Z. Cao, T. Herdman and Y.S. Xu, A hybrid collocation method for Volterra integral equations with weakly singular kernels, SIAM J. Numer. Anal. 41, 364-381 (2003).
[12] Y.P. Chen and T. Tang, Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel, Math. Comp. 79, 147-167 (2010).
[13] D.M. Hou, Y.M. Lin, M. Azaiez and C.J. Xu, A Müntz-collocation spectral method for weakly singular Volterra integral equations, J. Sci. Comput. 81, 2162-2187 (2019).
[14] Q.Y. Hu, Stieltjes derivatives and β-polynomial spline collocation for Volterra integrodifferential equations with singularities, SIAM J. Numer. Anal. 33, 208-220 (1996).
[15] C. Huang and M. Stynes, Spectral Galerkin methods for a weakly singular Volterra integral equation of the second kind, IMA J. Numer. Anal. 37, 1411-1436 (2017).
[16] J.G. Huang, J.J. Lai and T. Tang, An adaptive time stepping method with efficient error control for second-order evolution problems, Sci. China Math. 56, 2753-2771 (2013).
[17] H.L. Jia, Y. Yang and Z.Q. Wang, An hp-version Chebyshev spectral collocation method for nonlinear Volterra integro-differential equations with weakly singular kernels, Numer. Math. Theory Methods Appl. 12, 969-994 (2019).
[18] S.S. Li, L.N. Wang and L.J. Yi, An hp-version of the C^{0}-continuous Petrov-Galerkin method for second-order Volterra integro-differential equations, Appl. Numer. Math. 152, 84-104 (2020).
[19] X.J. Li, T. Tang and C.J. Xu, Numerical solutions for weakly singular Volterra integral equations using Chebyshev and Legendre pseudo-spectral Galerkin methods, J. Sci. Comput. 67, 43-64 (2016).
[20] H. Liang and H. Brunner, The convergence of collocation solutions in continuous piecewise polynomial spaces for weakly singular Volterra integral equations, SIAM J. Numer. Anal. 57, 18751896 (2019).
[21] T. Lin, Y.P. Lin, M. Rao and S.H. Zhang, Petrov-Galerkin methods for linear Volterra integrodifferential equations, SIAM J. Numer. Anal. 38, 937-963 (2000).
[22] P. Linz, Analytical and Numerical Methods for Volterra Equations, SIAM Studies in Applied

Mathematics, Philadelphia (1985).
[23] K. Mustapha, A Superconvergent discontinuous Galerkin method for Volterra integro-differential equations, smooth and non-smooth kernels, Math. Comp. 82, 1987-2005 (2013).
[24] K. Mustapha, H. Brunner, H. Mustapha and D. Schötzau, An hp-version discontinuous Galerkin method for integro-differential equations of parabolic type, SIAM J. Numer. Anal. 49, 13691396 (2011).
[25] D. Schötzau and C. Schwab, An hp a-priori error analysis of the DG time-stepping method for initial value problem, Calcolo 37, 207-232 (2000).
[26] C. Schwab, p-and hp-Finite Element Methods, Oxford University Press (1998).
[27] J. Shen, C.T. Sheng and Z.Q. Wang, Generalized Jacobi spectral-Galerkin method for nonlinear Volterra integral equations with weakly singular kernels, J. Math. Study 48, 315-329 (2015).
[28] T. Tang, A note on collocation methods for Volterra integro-differential equations with weakly singular kernels, IMA J. Numer. Anal. 13, 93-99 (1993).
[29] T. Tang and W. Yuan, The numerical solution of second-order weakly singular Volterra integrodifferential equations, J. Comput. Math. 8, 307-320 (1990).
[30] N. Walkington, Combined DG-CG time stepping for wave equations, SIAM J. Numer. Anal. 52, 1398-1417 (2014).
[31] Z.Q. Wang, Y.L. Guo, and L.J. Yi, An hp-version Legendre-Jacobi spectral collocation method for Volterra integro-differential equations with smooth and weakly singular kernels, Math. Comp. 86, 2285-2324 (2017).
[32] Y.X. Wei and Y.P. Chen, Convergence analysis of the Legendre spectral collocation methods for second order Volterra integro-differential equations, Numer. Math. Theory Methods Appl. 4, 419-438 (2011).
[33] T.P. Wihler, An a priori error analysis of the hp-version of the continuous Galerkin FEM for nonlinear initial value problems, J. Sci. Comput. 25, 523-549 (2005).
[34] L.J. Yi, An L^{∞}-error estimate for the h-p version continuous Petrov-Galerkin method for nonlinear initial value problems, East Asian J. Appl. Math. 5, 301-311 (2015).
[35] L.J. Yi, An h-p version of the continuous Petrov-Galerkin finite element method for nonlinear Volterra integro-differential equations, J. Sci. Comput. 65, 715-734 (2015).
[36] L.J. Yi and B.Q. Guo, An h-p Petrov-Galerkin finite element method for linear Volterra integrodifferential equations, Sci. China Math. 57, 2285-2300 (2014).
[37] L.J. Yi and B.Q. Guo, An h-p version of the continuous Petrov-Galerkin finite element method for Volterra integro-differential equations with smooth and nonsmooth kernels, SIAM J. Numer. Anal. 53, 2677-2704 (2015).
[38] W. Yuan and T. Tang, The numerical analysis of implicit Runge-Kutta methods for a certain nonlinear integro-differential equation, Math. Comp. 54, 155-168 (1990).

[^0]: *Corresponding author. Email addresses: 1771027043@qq.com (S. Li), 1842988390@qq.com (L. Wang), ylj5152@shnu.edu.cn (L. Yi)

