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1 Introduction

Fractional calculus has attracted many physicists, mathematicians and engineers due to

the contributions which have been made to both theory and applications of fractional

(partial) differential equations(see, e.g., [1] and references therein). Mueller [2] and Wu

[3] proved the existence of a solution of the stochastic fractional heat equation. Then,

Bonaccorsi and Tubaro [4] applied Mittag-Leffler’s function to explore stochastic evolu-

tion equations with fractional time derivatives. After that, Cui and Yan [5] studied the

existence of mild solutions for a class of fractional neutral stochastic integro-differential

equations with infinite delay in Hilbert spaces; In [6], Liu and Yan have established the

existence and uniqueness of solutions to a jump-type stochastic fractional partial differ-

ential equation with fractional noises by fixed point theorem.
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The averaging principle plays a crucial role to obtain the approximation solutions for

differential equations dating from mechanics, molecular dynamics, mathematics, mate-

rial science, and other areas of sciences and engineering. Some rigorous results on the

approximation theorem to the solutions of stochastic differential equations can be dated

back to Khasminskii [7,8]. Based on this work, recently, Xu et al. [9] have established the

averaging principle for the solutions of stochastic partial differential equations driven by

Lévy noise under Lipschitz and linear growth conditions. Peculiarly, they have proved

that the solutions to the simplified systems converge to that of the corresponding original

systems both in the sense of mean square and probability. Similar results were proposed

to the multivalued stochastic differential equations by [10]. Not only that, Pei et al. [11]

established the averaging principles for a class of stochastic partial differential equations

with slow component driven by fractional Brownian motion and a fast one driven by a

fast-varying diffusion. In case with Poisson random measure was studied in Pei et al.

[12] and α-noise in Bao et al. [13]. An averaging principle for the heat equation driven by

a general stochastic measure was studied by Radchenko [14].

On the other hand, there has been some recent interest in studying stochastic par-

tial differential equations driven by a fractional noise. For example, Duncan et al. [15]

considered linear stochastic evolution equations in a Hilbert space driven by an additive

cylindrical fractional Brownian motion with H ∈ ( 1
2 ,1) and Tindel et al. [16] provided

necessary and sufficient conditions for the existence and uniqueness of an evolution so-

lution. Many interesting works on stochastic partial differential equations driven by fBm

have been done and we refer to the literatures [17–19].

Based on the above brief discussion and to the author’s best knowledge, the averaging

principle for stochastic fractional partial differential equations with fractional noises has

not been considered. Therefore, in this paper, we will consider this issue by studying the

following stochastic fractional partial differential equation with fractional noises:







∂u

∂t
=Dα

δ u+ f (t,x,u)+σ(t,x)ḂH , in [0,T]×R,

u(0,·)=u0(·),
(1.1)

where Dα
δ is the fractional differential operator with respect to the spatial variable, to be

defined in the Appendix which was recently introduced by Debbi [20] and Debbi and

Dozzi [21], ḂH denotes the fractional noise on [0,T]×R with Hurst index H>
1
2 defined

on a complete probability space (Ω,F ,P) (see Section 2 for precise definitions). In fact,

we understand this equation in the Walsh [22] sense, and so we can rewrite Eq. (1.1) as

follows:

u(t,x)=
∫

R

Gα(t,x−y)u0(y)dy+
∫ t

0

∫

R

Gα(t−s,x−y)σ(s,y)BH(ds,dy)

+
∫ t

0

∫

R

Gα(t−s,x−y) f (s,y,u(s,y))dyds, (1.2)
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for all t∈[0,T] and x∈R, where Gα(·,∗) denotes the Green function associated to Eq. (1.1).

We can notice that the fixed principle and the Picard iteration scheme work in [23–25],

which can be used to prove the existence and uniqueness of solutions to Eq. (1.1). The

first subject of this paper is to establish the existence and uniqueness of the solution of

Eq. (1.2) via the fixed point principle. And then, we will consider the averaging principle

for Eq. (1.2) under some appropriate assumptions.

The rest of the paper is organized as follows. In Section 2, we give the definitions of

the fractional noises. Section 3 is devoted to proving the existence and uniqueness of the

mild solution to Eq. (1.2) in the Lp(p≥2) sense under some appropriate conditions. An

averaging principle for solutions to stochastic fractional partial differential equation with

fractional noises in Section 4.

2 Preliminaries

In this section, we present the definitions of the fractional noises (see Sec.2 in [6]).

Define (Ω,F ,(Ft)t≥0,P) for a complete probability space equipped with the filtration

(Ft)t≥0 satisfying the usual conditions. Let Bb(R) be a class of bounded Borel sets in R.

And BH([0,t]×A)(t,A)∈[0,T]×Bb(R) is a centered Gaussian family of random variables with

the covariance, for H∈ (0,1),

E

(

BH([0,t]×A)BH([0,s]×B)
)

= |A∩B|RH(t,s), (2.1)

with s,t∈ [0,T], A,B∈Bb(R) and covariance kernel RH(t,s)=
1
2 (t

2H+s2H−|t−s|2H). Here

|A| denotes the Lebesgue measure of the set A∈Bb(R). We denote by E the set of step

functions on [0,T]×R. Let H be the Hilbert space defined as the closure of E with respect

to the scalar product,
〈

1[0,t]×A,1[0,s]×B

〉

H
= |A∩B|RH(t,s),

thus the mapping 1[0,t]×A 7−→BH([0,t]×A) is an isometry between E and the linear space

span of BH([0,t]×A),A∈Bb(R),t∈ [0,T]. Moreover, the mapping can be extended to an

isometry from H to the Gaussian space associated with BH. This isometry will be denoted

by ϕ 7−→BH(ϕ) for ϕ∈H. Therefore, we can regard BH(ϕ) as the stochastic integral with

respect to BH. In general, we use the notation,

BH(ϕ)=
∫ T

0

∫

R

ϕ(s,y)BH(ds,dy), ϕ∈H.

On the other hand, it is well known that the covariance kernel RH(t,s) satisfies

RH(t,s)=
∫ t∧s

0
KH(t,r)KH(s,r)dr,
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where KH(t,s) is the square kernel defined, for 0< s< t, by

KH(t,s)= cHs
1
2−H

∫ t

s
(u−s)H− 3

2 uH− 1
2 du, (2.2)

where c2
H = H(2H−1)

β(2−2H,H− 1
2 )

, (β(·,·) denotes the Beta function). Particularly, for H>
1
2 ,

RH(t,s)=H(2H−1)
∫ t

0

∫ s

0
|u−v|2H−2dudv.

Definition 2.1. Let K∗
H :E 7−→ L2([0,T]×R) be a linear operator which satisfies

(K∗
Hψ)(s,x)=KH(T,s)ψ(s,x)+

∫ T

s
(ψ(t,x)−ψ(s,x))

∂KH

∂t
(t,s)dt.

Then the operator K∗
Hψ gives an isometry from H to L2([0,T]×R). As a result,

W(t,A)=BH
(

(K∗
H)

−1 ·1[0,t]×A

)

, (t,A)∈ [0,T]×Bb(R),

defines a space-time white noise. Moreover, one can view BH as

BH([0,t]×A)=
∫ t

0

∫

A
KH(t,s)W(ds,dy).

3 Existence and uniqueness

In this section, we discuss the existence and uniqueness of the global mild solution to Eq.

(1.1).

Recall Eq. (1.2) and Definition 2.1, the fractional integral term in Eq. (1.2) can be

expressed as

∫ t

0

∫

R

Gα(t−s,x−y)σ(s,y)BH(ds,dy)=
∫ t

0

∫

R

(K∗
HGασ)(t−·,x−·)W(ds,dy), (3.1)

with the space-time white noise W(t,x) for all (t,x)∈ [0,T]×R mentioned in Section 2.

Theorem 3.1. Let σ∈ L
2

2H−1 ([0,T]×R) with H >
1
2 , suppose that the following conditions are

satisfied

(1) f is uniformly Lipschitzian, i.e. there exists a constant L>0 such that for (t,x)∈ [0,T]×R

and u,v∈R,

| f (t,x,u)− f (t,x,v)|≤ L|u−v|. (3.2)

(2) f has linear growth on R, i.e. there exists a constant C>0 such that | f (t,x,u)|≤C(1+|u|),
for (t,x)∈ [0,T]×R and u∈R.
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Then, for all F0-measurable u0 : R×Ω−→R satisfying E[‖u0(·)‖
p
p]<∞, there exists a unique

mild solution u(t,x)(t,x)∈[0,T]×R to Eq. (1.1) and for all p∈
(

2(α+1)
α−1 ,+∞

)

with α>1,

sup
t∈[0,T]

E
[

‖u(t,·)‖
p
p

]

<∞.

In order to prove the theorem, we need the following two useful Lemmas:

Lemma 3.1. ([6]) Let p∈ [1,∞), ρ∈ [1,p] and r∈ [1,∞) such that

1

r
=

1

p
−

1

ρ
+1∈ [0,1].

Let Gα =Gα(t,x−y) be the Green kernel, π=Gα, or G2
α with (t,x,y)∈ [0,T]×R×R. Define an

operator J by

J(ν)(t,x) :=
∫ t

0

∫

R

π(t−s,x−y)ν(s,y)dyds, (3.3)

with ν∈ L1([0,T];Lρ). Then J : L1([0,T];Lρ)−→ L∞([0,T];Lρ) is a bounded linear operator and

satisfies the following.

(1) If π=Gα, then there exists a constant C>0 such that for all r∈ [1,1+α),

‖J(ν)(t,·)‖p ≤C
∫ t

0
(t−s)−

1−r
α ‖ν(s,·)‖ρds, ∀t∈ [0,T]. (3.4)

(2) If π=G2
α, then there exists a constant C>0 such that for all r∈

[

1, 1+α
2

)

,

‖J(ν)(t,·)‖p ≤C
∫ t

0
(t−s)−

2−r
α ‖ν(s,·)‖ρds, ∀t∈ [0,T]. (3.5)

Lemma 3.2. ([6,26]) If H>
1
2 , then

L
1
H ([0,T]×R)⊂H. (3.6)

Next, we will mainly prove Theorem 3.1 by the fixed point principle. Let B be the

space of all Lp(R)-valued Ft-adapted processes u(t,·) : [0,T]×R−→R with the norm

‖u‖B :=

[

sup
0≤t≤T

e−ηt
E
[

‖u(t,·)‖
p
p

]

]
1
p

, η>0, (3.7)

with ‖·‖p the usual norm of Lp(R). Then (B,‖·‖B) forms a Banach space. Further, for

u∈B, let us define an operator Aα by (as follows)

Aα(t,x) :=
3

∑
i=1

Ai
α(u)(t,x), (3.8)
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where

A1
α(u)(t,x)=

∫

R

Gα(t,x−y)u0(y)dy,

A2
α(u)(t,x)=

∫ t

0

∫

R

Gα(t−s,x−y) f (s,y,u(s,y))dyds,

A3
α(u)(t,x)=

∫ t

0

∫

R

Gα(t−s,x−y)σ(s,y)BH (dy,ds).

Proposition 3.1. Under the assumptions of Theorem 3.1, for each p> 2(α+1)
α−1 and u∈B, it holds

that Aα(u)∈B.

Proof. From (6) of Lemma A.1, Corollary A.2 and the Young inequality, we obtain that

∥

∥

∥
A1

α(u)(t,x)
∥

∥

∥

p
=

∥

∥

∥

∥

∫

R

Gα(t,x−y)u0(y)dy

∥

∥

∥

∥

p

≤t−
1
α

∥

∥

∥

∥

∫

R

Gα

(

1,t−
1
α (·−y)

)

u0(y)dy

∥

∥

∥

∥

p

≤t−
1
α

∥

∥

∥

[

Gα

(

1,t−
1
α ·
)

∗u0(·)
]

(·)
∥

∥

∥

p

≤t−
1
α

∥

∥

∥
Gα

(

1,t−
1
α ·
)∥

∥

∥

1
·‖u0(·)‖p

≤C‖u0(·)‖p<∞, (3.9)

which is due to the fact that E

[

‖u0(·)‖
p
p

]

<∞.

Now let us consider A2
α(u)(t,x). Applying (1) of Lemma 3.1 with 1

r =
1
p−

1
ρ+1=1 and

condition (2) of Theorem 3.1, we conclude that

E

[

∥

∥A2
α(u)(t,x)

∥

∥

p

p

]

≤CE

[

∫ t

0
(t−s)−

1−r
α ‖ f (s,·,u(s,·))‖pds

]p

≤CE

[

∫ t

0

(

1+‖u(s,·)‖p

)

ds

]p

≤Cp,T

[

1+ sup
0≤t≤T

E‖u(s,·)‖
p
p

]

≤Cp,T

[

1+‖u(s,·)‖
p
B

]

<∞, (3.10)

since u∈B.

In what follows, now we turn to A3
α(u)(t,x). Noticing that L

1
H ([0,T]×R)⊂H from

Lemma 3.2 when H>
1
2 , we deduce that

E
∥

∥A3
α(u)(t,x)

∥

∥

p

p
=
∫

R

E

∣

∣

∣

∣

∫ t

0

∫

R

Gα(t−s,x−y)σ(s,y)BH (dy,ds)

∣

∣

∣

∣

p

dx
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=
∫

R

E

∣

∣

∣

∣

∫ t

0

∫

R

(K∗
HGασ(t−·,x−·))(s,y)W(dy,ds)

∣

∣

∣

∣

p

dx

≤Cp

∫

R

〈K∗
HGασ(t−·,x−·),K∗

H Gασ(t−·,x−·)〉
p
2

L2([0,T]×R)
dx

=Cp

∫

R

〈Gασ(t−·,x−·),Gασ(t−·,x−·)〉
p
2
Hdx

≤Cp

∫

R

‖Gασ(t−·,x−·)‖
p

L
1
H ([0,T]×R)

dx. (3.11)

By using the Hölder inequality, it follows that

‖Gασ(t−·,x−·)‖
p

L
1
H ([0,T]×R)

dx

=

[

∫ t

0

∫

R

|Gα(t−s,x−y)σ(s,y)|
1
H dyds

]pH

≤

[

∫ t

0

∫

R

|Gα(t−s,x−y)|
1
H |σ(s,y)|

1
H dyds

]pH

≤

[

∫ t

0

(

∫

R

|Gα(t−s,x−y)|
1
H ·2H

dy

)
1

2H

·

(

∫

R

|σ(t−s,x−y)|
2

2H−1 dy

)
2H−1

2H

ds

]pH

≤

[

∫ t

0

(

∫

R

(t−s)−
2
α

∣

∣

∣
Gα(1,(t−s)−

2
α (x−y))

∣

∣

∣

2
dy

)
1

2H

·

(

∫

R

|σ(t−s,x−y)|
2

2H−1 dy

)
2H−1

2H

ds

]pH

≤

[

∫ t

0

(

∫

R

(t−s)−
2
α+

1
α |Gα(1,z)|2dz

)
1

2H

·

(

∫

R

|σ(t−s,x−y)|
2

2H−1 dy

)
2H−1

2H

ds

]pH

≤

[

Cα,H

∫ t

0
(t−s)−

1
2αH

(

∫

R

1

(1+|z|α+1)2
dz

)
1

2H

·

(

∫

R

|σ(t−s,x−y)|
2

2H−1 dy

)
2H−1

2H

ds

]pH

≤

[

Cα,H

∫ t

0
(t−s)−

1
2αH ·

(

∫

R

|σ(t−s,x−y)|
2

2H−1 dy

)
2H−1

2H

ds

]pH

≤Cα,p,H

(

∫ t

0
(t−s)−

1
2αH ·2Hds

)

p
2

·

(

∫ t

0

∫

R

|σ(t−s,x−y)|
2

2H−1 dyds

)
2H−1

2 ·p

≤C

[

∫ t

0
(t−s)−

1
α ds

]

p
2

·‖σ(·,·)‖
p

L2([0,T]×R)
<∞, (3.12)

where we have used the fact that σ ∈ L
2

2H−1 ([0,T]×R)⊂ L2([0,T]×R) when H >
1
2 , and

under the assumption 1− 1
α >0. So we have A3

α(u)(t,x)∈B for p≥2.

Therefore we have proved that the operator Aα defined by (3.8) is an operator from B

to itself. The proof is complete.
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In what follows, we will prove that the operator Aα :B 7→B is a contraction operator.

Proposition 3.2. ([6]) For p>
2(α+1)

α−1 , the operator Aα is a contraction on B under the conditions

of Theorem 3.1. That is to say, there exists a constant λ∈ (0,1) such that

‖Aα(u)−Aα(v)‖B
≤λ‖u−v‖B , for u,v∈B. (3.13)

Proof. Assume that u0 and v0 are initials of (Ft)t≥0-adapted random fields u,v∈B such

that u0=v0. Let us begin by considering A1
α(u). Note that, for ρ= p

3 , by (1) of Lemma 3.1

with 1
r =

1
p−

1
ρ +1=1− 2

p and condition (1) of Theorem 3.1, we have

E

[

∥

∥A2
α(u)(t,·)−A2

α(v)(t,·)
∥

∥

p

p

]

≤CE

[

∫ t

0
(t−s)−

1
α (1−r)‖ f (s,y,u(s,y))− f (s,y,v(s,y))‖p ds

]p

≤Cp

[

∫ t

0
(t−s)−

1
α (1−r)

E‖u(s,·)−v(s,·)‖pds

]p

. (3.14)

Thus

∥

∥A2
α(u)(t,·)−A2

α(v)(t,·)
∥

∥

p

B

= sup
0≤t≤T

e−ηt
E

[

∥

∥A2
α(u)(t,·)−A2

α(v)(t,·)
∥

∥

p

p

]

≤C sup
0≤t≤T

E

[

∫ t

0
e
−

η
p (t−s)(t−s)−

1
α (1−r)e

−
η
p s‖u(s,·)−v(s,·)‖pds

]p

≤Cp sup
0≤t≤T

E

[

∫ t

0
e−ηs‖u(s,·)−v(s,·)‖

p
pds

][

∫ t

0

(

e
− η

p (t−s)(t−s)−
1
α (1−r)

)

p
p−1

ds

]p−1

≤Cp sup
0≤t≤T

[

∫ t

0
e−ηs

E‖u(s,·)−v(s,·)‖
p
pds

][

∫ t

0

(

e
−

η
p (t−s)(t−s)−

1
α (1−r)

)

p
p−1

ds

]p−1

=CpTω(p,t)‖u−v‖
p
B

, (3.15)

where

ω(p,t)=

[

∫ t

0

(

e
−

η
p (t−s)(t−s)−

1
α (1−r)

)

p
p−1

ds

]p−1

.

Let τ= p
p−1

1
α(1−r), then

ω(p,t)≤

[

∫ +∞

0

(

e
− η

p (t−s)(t−s)−
1
α (1−r)

)

p
p−1

ds

]p−1

=

[

(p−1)τ+1

ητ+1

∫ +∞

0
e−xxτdx

]p−1
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=

[

(p−1)τ+1

ητ+1
Γ(τ+1)

]p−1

,

with p≥3. So

∥

∥A2
α(u)(t,·)−A2

α(v)(t,·)
∥

∥

B

≤CpT
1
p

[

(p−1)τ+1

ητ+1
Γ(τ+1)

]

p−1
p

·‖u−v‖B ≤λ‖u−v‖B , (3.16)

with λ∈(0,1) by choosing η>0 large enough, then A2
α is a contraction on B. Meanwhile,

we can quickly conclude from the expression for A3
α that A3

α is also a contraction on B.

Therefore, it follows from (3.8) that Aα(·) is a contraction on B if η>0 large enough.

Thus the proof of Proposition 3.2 is complete.

Motivated by Propositions 3.1 and 3.2 and the fixed point principle on the set {u∈B :

u(0)=u0}, we conclude that Eq. (1.1) admits a unique solution u∈B. Thus the conclusion

of Theorem 3.1 follows.

4 The averaging principle

In this section, we are going to prove the averaging principle of solutions for SPDEs with

fractional noises. Consider the Eq. (1.2) in the following form:

uε(t,x)=
∫

R

Gα(t,x−y)u0(y)dy+
∫ t

0

∫

R

Gα(t−s,x−y)σ(
s

ε
,y)BH(ds,dy)

+
∫ t

0

∫

R

Gα(t−s,x−y) f (s,y,uε(s,y))dyds. (4.1)

According to Theorem 3.1, Eq. (4.1) also has a unique mild solution uε(t,x), t∈ [0,T]
for ε> 0. We will examine whether the solution process uε(t,x) can be approximated to

the solution process ū(t,x) of the simplified equation:

ū(t,x)=
∫

R

Gα(t,x−y)u0(y)dy+
∫ t

0

∫

R

Gα(t−s,x−y)σ̄(y)BH(ds,dy)

+
∫ t

0

∫

R

Gα(t−s,x−y) f (s,y,ū(s,y))dyds. (4.2)

Based on the assumptions of Theorem 3.1, further, we make the following assump-

tions throughout this section:

Assumption 4.1. σ(s,y) :R+×R→R is measurable, bounded, and

|σ(s,y1)−σ(s,y2)|≤ Lσ |y1−y2|,
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where Lσ is a constant. Assume that there exist the following limit

σ(y)= lim
t→∞

1

t

∫ t

0
σ(s,y)ds.

It is easy to see that σ(y) satisfies the Assumption 4.1.

Assumption 4.2. Function Gσ(z,y)=
∫ z

0 (σ(s,y)−σ(y))
1
H ds, z∈R+, y∈R is bounded.

Lemma 4.1. Let h(z,y) and h(y) be measurable and functions

K(z,y)=(h(z,y)−h(y))
1
H and G(z,y)=

∫ z

0
(h(v,y)−h(y))

1
H dv, z∈R+, y∈R

are bounded. Then

sup
y∈R,s>0,t∈[0,T]

∣

∣

∣

∣

1

εγ

∫ t

0

∫

R

∣

∣

∣
Gα(t−s,x−y)(h(s/ε,y)−h(y))

∣

∣

∣

1
H

ds

∣

∣

∣

∣

pH

<+∞,

where γ is a constant relevant to p, H.

Proof. Using the substitution v=(t−s)/ε, we obtain

(

∫ t

0

∫

R

∣

∣

∣
Gα(t−s,x−y)

(

h(
s

ε
,y)− h̄(y)

)
∣

∣

∣

1
H

dyds

)pH

≤

(

∫ t

0

∫

R

|Gα(t−s,x−y)|
1
H

∣

∣

∣

(

h(
s

ε
,y)− h̄(y)

)∣

∣

∣

1
H

dyds

)pH

=

(

ε
∫ t

ε

0

∫

R

|Gα(vε,x−y)|
1
H

∣

∣

∣

∣

(

h(
t

ε
−v,y)− h̄(y)

)
∣

∣

∣

∣

1
H

dydv

)pH

=εpH

(

∫ t
ε

0
sup

y

∣

∣

∣

∣

(

h(
t

ε
−v,y)− h̄(y)

)∣

∣

∣

∣

1
H
(

∫

R

|Gα(vε,x−y)|
1
H dy

)

dv

)pH

.

Under the assumption 1− 1
αH + 1

α >0, we have

∫

R

|Gα(t−s,x−y)|
1
H dy≤ (t−s)−

1
αH

∫

R

∣

∣

∣
Gα(1,(t−s)−

1
αH (x−y))

∣

∣

∣

1
H

dy

≤(t−s)−
1

αH + 1
α

∫

R

|Gα(1,z)|
1
H dy≤ (t−s)−

1
αH + 1

α

∫

R

1

(1+|z|1+α)
1
H

dy

≤Cα,H(t−s)−
1
α+

1
αH .

Then, we can obtain

(

∫ t

0

∫

R

∣

∣

∣
Gα(t−s,x−y)

(

h(
s

ε
,y)− h̄(y)

)
∣

∣

∣

1
H

dyds

)pH



Averaging Principle for Stochastic Fractional PDEs with Fractional Noises 61

≤Cα,HεpH

(

∫ t
ε

0
sup

y

∣

∣

∣

∣

(

h(
t

ε
−v,y)− h̄(y)

)∣

∣

∣

∣

1
H

·(vε)−
1

αH + 1
α dv

)pH

.

Let |h(z,y)−h(y)|≤Ch, and we can denote

Fε(z)=
∫ z

0

∣

∣

∣
h(t/ε−v,y)−h(y)

∣

∣

∣

1
H

dv, 0≤ r≤ t/ε.

Then Fε(z) is bounded. Denoting |Fε(z)|≤CF, where CF does not depend on ε, we have

∫ t
ε

0
sup

y

∣

∣

∣

∣

(

h(
t

ε
−v,y)− h̄(y)

)∣

∣

∣

∣

1
H

·(vε)−
1

αH+ 1
α dv

≤sup
y

∫ t
ε

0

∣

∣

∣

∣

(

h(
t

ε
−v,y)− h̄(y)

)∣

∣

∣

∣

1
H

·(vε)−
1

αH+ 1
α dv

≤sup
y

∫ 1

0

∣

∣

∣

∣

(

h(
t

ε
−v,y)− h̄(y)

)∣

∣

∣

∣

1
H

·(vε)−
1

αH + 1
α dv

+sup
y

∫ t
ε

1

∣

∣

∣

∣

(

h(
t

ε
−v,y)− h̄(y)

)∣

∣

∣

∣

1
H

·(vε)−
1

αH + 1
α dv

= : B1+B2.

Noticing that

B1=sup
y

∫ 1

0

∣

∣

∣

∣

(

h(
t

ε
−v,y)− h̄(y)

)∣

∣

∣

∣

1
H

·(vε)−
1

αH + 1
α dv

≤Ch,H

∫ 1

0
(vε)−

1
αH + 1

α dv=Ch,α,Hε−
1

αH + 1
α . (4.3)

For B2, using the integration by parts and inequality |a−b|≤ |a|+|b|, we obtain

B2=sup
y

∫ t
ε

1

∣

∣

∣

∣

(

h(
t

ε
−v,y)− h̄(y)

)
∣

∣

∣

∣

1
H

·(vε)−
1

αH+ 1
α dv

=
∫ t

ε

1

∣

∣

∣
(vε)−

1
α+

1
αH dFε(v)

∣

∣

∣

=

∣

∣

∣

∣

∣

(vε)−
1

αH + 1
α ·Fε (v)|

t
ε
1 −

∫ t
ε

1
Fε(v)·ε(−

1

αH
+

1

α
−1)((vε)−

1
αH+ 1

α )dv

∣

∣

∣

∣

∣

≤CF

∣

∣

∣
t−

1
αH+ 1

α −ε−
1
α+

1
αH

∣

∣

∣
+CF

∣

∣

∣
t−

1
αH+ 1

α −ε−
1

αH + 1
α

∣

∣

∣

=2CFt−
1

αH + 1
α −2CFε−

1
αH + 1

α
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≤CF,T−2CFε−
1

αH + 1
α . (4.4)

And then, by (4.3), (4.4) and the inequality (a+b)p ≤2p−1(ap+bp), we get

(

∫ t

0

∫

R

∣

∣

∣
Gα(t−s,x−y)

(

h(
s

ε
,y)− h̄(y)

)∣

∣

∣

1
H

dyds

)pH

≤εpH
(

Ch,Hε−
1

αH + 1
α +CF,T−2CFε−

1
αH+ 1

α

)pH

≤εpH
(

C1ε−
1

αH + 1
α +CF,T

)pH

≤2pH−1εpH
(

C2ε(−
1

αH + 1
α )pH+C3

)

≤C4ε(−
1

αH + 1
α )pH+pH+C5εpH

≤Cε(−
1

αH + 1
α+1)pH, (4.5)

where C1 = Ch,H−2CF, (CF,T)
pH = C3, 2pH−1C2 = C4, 2pH−1C3 = C5, C =max{C4,C5}. So

when γ=(− 1
αH + 1

α +1)pH, we can get

sup
y∈R,s>0,t∈[0,T]

∣

∣

∣

∣

1

εγ

∫ t

0

∫

R

∣

∣

∣
Gα(t−s,x−y)(h(s/ε,y)−h(y))

∣

∣

∣

1
H

ds

∣

∣

∣

∣

pH

<+∞.

Thus, we complete the proof of this Lemma.

Remark 4.1. From Assumptions 4.1-4.2 and Lemma 4.1, it follows from that

(

∫ t

0

∫

R

∣

∣

∣
Gα(t−s,x−y)

(

σ(
s

ε
,y)−σ̄(y)

)
∣

∣

∣

1
H

dyds

)pH

≤Cεγ. (4.6)

Theorem 4.1. Assume that the conditions of Theorem 3.1 and Assumptions 4.1-4.2 hold. Then

there exist versions of uε and ū such that for γ= pH,

sup
ε>0,t∈[0,T],x∈R

ε−γ
E|uε(t,x)−u(t,x)|p

<+∞, a.s.

Proof. Using the inequality (a+b)p ≤2p−1(ap+bp), (4.1) and (4.2), we have

E|uε(t,x)−u(t,x)|

=E

∣

∣

∣

∣

∫ t

0

∫

R

Gα(t−s,x−y)(σ(
s

ε
,y)−σ̄(y))BH(ds,dy)

+
∫ t

0

∫

R

Gα(t−s,x−y) f (s,y,uε(s,y))− f (s,y,ū(s,y))dyds

∣

∣

∣

∣

p

≤2p−1
E

∣

∣

∣

∣

∫ t

0

∫

R

Gα(t−s,x−y)(σ(
s

ε
,y)−σ̄(y))BH(ds,dy)

∣

∣

∣

∣

p
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+2p−1
E

∣

∣

∣

∣

∫ t

0

∫

R

Gα(t−s,x−y) f (s,y,uε(s,y))− f (s,y,ū(s,y))dyds

∣

∣

∣

∣

p

= : I1+ I2.

For I1, by inequality (3.11) and Remark 4.2, we deduce that

I1=E

∣

∣

∣

∣

∫ t

0

∫

R

Gα(t−s,x−y)(σ(
s

ε
,y)−σ̄(y))BH(ds,dy)

∣

∣

∣

∣

p

=E

∣

∣

∣

∣

∫ t

0

∫

R

K∗Gα(t−·,x−·)(σ(
·

ε
,·)−σ̄(·))(s,y)W(ds,dy)

∣

∣

∣

∣

p

≤Cp

〈

K∗
HGα(t−·,x−·)(σ(

·

ε
,·),K∗

HGα(t−·,x−·)(σ(
·

ε
,·)
〉

p
2

L2([0,T]×R)

=Cp

〈

Gα(t−·,x−·(σ(
·

ε
,·)−σ̄(·))),Gα(t−·,x−·)(σ(

·

ε
,·)−σ̄(·))

〉

p
2

H

≤Cp

∥

∥

∥
Gα(t−·,x−·)(σ(

·

ε
,·)−σ̄(·))

∥

∥

∥

p

L
1
H ([0,T]×R)

=Cp

(

∫ t

0

∫

R

∣

∣

∣
Gα(t−s,x−y)

(

σ(
s

ε
,y)−σ̄(y)

)
∣

∣

∣

1
H

dyds

)pH

≤Cεγ. (4.7)

Then for I2, owing to the equality
∫

R
Gα(t−s,x−y)dy=1 and Hölder inequality, we have

I2=E

∣

∣

∣

∣

∫ t

0

∫

R

Gα(t−s,x−y) f (s,y,uε(s,y))− f (s,y,ū(s,y))dyds

∣

∣

∣

∣

p

≤Lp
E

∣

∣

∣

∣

∫ t

0
ds
∫

R

Gα(t−s,x−y)|uε(s,y)−ū(s,y)|dy

∣

∣

∣

∣

p

≤Lp
E

∣

∣

∣

∣

∣

∫ t

0
sup

y
|uε(s,y)−ū(s,y)|ds

∫

R

Gα(t−s,x−y)dy

∣

∣

∣

∣

∣

p

≤LpTp−1
∫ t

0
sup

y
E|uε(s,y)−ū(s,y)|pds

≤CL,T,p

∫ t

0
sup

y
E|uε(s,y)−ū(s,y)|pds. (4.8)

Finally, we get

sup
ε>0,t∈[0,T],x∈R

E|uε(t,x)−u(t,x)|p≤Cεγ+CL,T,p

∫ t

0
sup

y
E|uε(s,y)−ū(s,y)|p

ds,

by Gronwall’s inequality, the above inequality can be expressed as

sup
ε>0,t∈[0,T],x∈R

E|uε(t,x)−u(t,x)|p≤Cεγ.

That finishes the proof.
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A Appendix. The Green function ([6,23,24])

The fractional differential operator Dδ
α is an extension of the inverse of the generalized

Riesz-Feller potential when α>2. It is given for α>0 by the following Definition

Definition A.1. The fractional differential Dδ
α ϕ is given by

Dα
δ ϕ=F−1

{

ψα(λ)F(ϕ(x),λ)
}

, (AA.1)

ψα(λ)=−|λ|αe−iδ π
2 sgn(λ), (AA.2)

δ≤min{α−[α]2, 2+[α]2−α}, [α]2 is the largest even integer less than or equal to α (even part

of α), and for α=0 when α∈2N+1, and F (respectively F−1) is the Fourier (respectively Fourier

inverse) transform.

The operator Dδ
α is a closed, densely defined operator on L2(R) and it is the infinites-

imal generator of a semigroup which is not symmetric and not a contraction. This op-

erator is a generalization of various well-known operators, such as the Laplacian oper-

ator (when α= 2), the inverse of the generalized Riesz-Feller potential (when α> 2), the

Riemann-Liouville differential operator (when δ=2+[α]2−α or δ=α−[α]2, see [6,22,23,25]

for more details). It is self-adjoint only when δ=0 and in this case, it coincides with the

fractional power of the Laplacian. We refer the readers to Debbi [22] and Debbi and Dozzi

[23] for more details about this operator. Let the Green function Gα(t,x) associated with

Eq. (1.1) be the fundamental solution of the Cauchy problem






∂

∂t
Gα(t,x)=Dα

δ Gα(t,x), t>0, x∈R,

Gα(0,x)=δ0(x),
(AA.3)

where δ0 is the Dirac distribution at the point zero. Using Fourier’s calculus we obtain

Gα(t,x)=F−1
{

eψα(λ)t
}

=
1

2π

∫

R

exp
(

−iλx−t|λ|αe−iδ π
2 sgn(λ)

)

dλ. (AA.4)

The function Gα(t,·) has the following properties (see e.g., [22,23]).

Lemma A.1. For α∈ (0,∞)\N

(1)
∫

R

Gα(t,x)dx=1.

(2) Gα(t,x) is real but in general it is not symmetric relatively to x and it is not everywhere

positive.

(3) Gα(t,x) satisfies the semigroup property, or the Chapman-Kolmogorov equation, i.e. for

0< s< t

Gα(t+s,x)=
∫

R

Gα(t,ξ)Gα(s,x−ξ)dξ.
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(4) For 0<α≤2, the function Gα(t,·) is the density of a Lévy stable process in time t.

(5) For fixed t, Gα(t,·)∈C∞ and ∂β

∂xβ Gα(t,x) is bounded and tends to zero when |x| tends to ∞

for β∈R+.

(6) ∂n

∂xn Gα(t,x) = t−
n+1

α
∂n

∂ζn Gα (1,ζ)|
ζ=t−

1
α x

, for all n≥ 0 (when n= 0, it is called the scaling

property).

Remark A.1. The proof of this Lemma can be found in [23].

Corollary A.1. Let α∈ (1,+∞), then there exists a constant Kα such that

|Gα(1,x)|≤Kα

(

1+|x|1+α
)−1

, (AA.5)

∣

∣

∣
G
(n)
α (1,x)

∣

∣

∣
≤Kα

1+|x|α+n−1

(1+|x|α+n)2
. (AA.6)

Corollary A.2. Let α∈ (1,+∞), for n≥1, and T≥0, for γ such that 1
α+n+1 <γ<

α+1
n+1 ,

∫ T

0

∫

R

∣

∣

∣

∣

∂n

∂xn
Gα(t,x)

∣

∣

∣

∣

γ

dxdt<∞. (AA.7)
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