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TiO2 Based Photo-Catalysis for Virus Disinfection ?
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Abstract

This review considers the current literature that is focused on the interface nanostructure/cell-wall
microorganism to understand the annihilation mechanism. In this report, photocatalysis is discussed
for viral disinfection including TiO2 photocatalysis and other metal-containing photocatalysis. TiO2

based materials and its composites, metal-TiO2 systems, TiO2 heterojunction systems with other semi-
conductors, and TiO2 systems with graphene and other carbonaceous materials are discussed in detail.
Some practical uses of titanium dioxide for photocatalytic disinfection processes for the effective
prevention/eradication of microorganisms, considering the resistance that the microorganism could
develop without the appropriate regulatory aspects for human and ecosystem safety are also discussed.
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1 Introduction

Many illnesses including fever, heart problems, hepatitis, paralysis, respiratory infections are
caused by viruses. Viruses have a less infectious quantity of < 10–103 particles in comparison
with bacterial pathogens and a significant high illness risk of 10-10 000 times under a similar level
of exposure [1]. Unfortunately, viruses are difficult to be physically removed due to their small
sizes and unique surface properties [2]. Following section describes some disinfection techniques.

Free chlorine is the most commonly used for water treatment and has good viral inactivation
properties. The main drawback of chlorination is the formation of mutagenic and carcinogenic
disinfection byproducts (DBPs). These DBPs contribute to the recontamination and salting
of fresh water sources [3]. Another commonly used disinfection method is the ozonation. It
is also unstable in water and undertakes reactions with some water matrix components. The
main advantage of ozone is that it decomposes into hydroxyl radicals (·OH), which are strong
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oxidants in water [4], that make the ozonation more effective than Cl2 against bacterial cells and
viruses [5]. Like chlorination, ozonation can also produce DBPs in the presence of organic matter
e.g. aldehydes, carboxylic acids and ketones [6]. In recent years, germicidal UV has gained more
attraction for water disinfection, as low-pressure UV creates practically no disinfection byproducts
[7]. UV according to irradiation wavelengths are divided into UVA (315-400 nm), UVB (280-315
nm), UVC (200-280 nm) and vacuum UV (VUV) (100-200 nm). For microorganism inactivation,
UVC is the most effective one. UVC light destroys irradiated DNA, directly inducing pyrimidine
and purine dimers and pyrimidine adducts. UVC intensity of 7 mJ/cm2 inactivates bacteria cells
by 99% for water disinfection. The susceptibility of protozoa to UVC damage is similar to that
of bacteria; thus, 99% inactivation for Cryptosporidium can be achieved at 5 mJ/cm2 [8].

2 Photocatalysis for Viral Disinfection

According to general description of thermal catalysis, photocatalysis is a process in which speed-
ing up of a photoreaction takes place by the presence of a catalyst, which shows that both light
and a catalyst are needed to cause or to accelerate a chemical transformation [8]. As the pho-
toreaction takes place in more than one homogeneous medium, it is usually called “heterogeneous
photocatalysis”.

Semiconductor photocatalysis has been used for inactivation of organic pollutants and has
gained attraction by the researchers [9]. Among the first developers of photocatalytic viral dis-
infection were Sjogren and Sierka, who carried out TiO2 based photocatalysis to inactivate Es-
cherichia virus MS2 [10]. Subsequently many researchers has carried out disinfection of water
by TiO2 and TiO2 based photocatalysis [8]. In order to achieve more antiviral effects, metal
based photocatalysts are also being used. Metal-free photocatalysts are also gaining interest from
researchers as these are found ample in nature and are low cost, sustainable and safe.

Cho et al. [10] discovered different inactivation kinetics of bacteria and viruses and observed
that the virus MS2 was stronger than the bacterium E. coli due to the difference in the surface
structures of both. It was learned that intensive oxidation was required to denature the virus
structure. Fujishima and Honda [11] carried out the photocatalytic splitting of water on TiO2

electrodes and this led to the beginning of heterogeneous photocatalysis [8] subsequently leading
to the marvelous research activities to understand the fundamental process of heterogeneous
photocatalysis [12]. Many researchers have observed the effectiveness of TiO2 photocatalysis for
water disinfection [13].

Rapid recombination of charge carriers is the main disadvantage of TiO2 which lowers its
photocatalytic behavior. To overcome this, many techniques such as the morphological control
and the formation of heterojunction systems with other components like metals, semiconductors
and carbonaceous materials have been adopted [9]. Several studies indicated the alteration means
such as single doping, co-doping and impregnation with different metal and non-metal ions to
increase TiO2 photocatalytic performance and photoactivity in the visible light region [14, 15].

3 Fundamental Mechanism for TiO2 Photocatalysis

Titanium dioxide (TiO2) in heterogeneous photocatalysis has been gaining interest from re-
searchers in recent years [16]. Nanocrystalline TiO2 is found in three major polymeric forms
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including rutile, anatase and brookite [17]. Whereas anatase and rutile have tetragonal crys-
tal structures even though they do not belong to the same phase groups, on the other hand
brookite has an orthorhombic structure and the uncommon TiO2 phase is monoclinic [18]. In
pure TiO2, anatase phase shows higher catalytic ability and electron mobility than either the ru-
tile or brookite phases and hence more beneficial for photovoltaic and photocatalytic applications
[17]. The semiconductor TiO2 is being used as a photocatalyst for creating a number of reductive
and oxidative reactions on its surface. Photocatalytic reaction mainly depends on wavelength or
light energy and the catalyst. When the light falls on the surface of a semiconductor TiO2 and
if the photon energy (hv) is equivalent or greater than the band gap energy of semiconductor
usually 3.2 eV (anatase) or 3.0 eV (rutile) [19], lone electron will be excited to the empty con-
duction band in femtoseconds [19] thus forming a positively charged electron hole. The electron
holes induce oxidation process and electrons condition the reduction process. The electron holes
react water molecules or hydroxide ions (OH−) forming hydrogen peroxide (H2O2) molecules or
hydroxyl radicals (·OH). Electrons react with molecular oxygen (O2) forming superoxide anion
radicals (·O−

2 ). The Reactive Oxygen Species (ROS) destroy the organic pollutants, bacteria
and viruses and convert organic matter to CO2 and H2O. Fig. 1 shows the mechanism of TiO2

irradiation process.
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Fig. 1: Schematic diagram of photocatalysis process [20]

The series of chain oxidative-reductive reactions that occur at the photon activated surface was
widely postulated as follows [19]:

Photoexcitation: TiO2 + hv → e− + h+ (1)

Charge-carrier trapping of e− : e−CB → e−TR (2)

Charge-carrier trapping of h+ : h+
VB → h+

TR (3)

Electron-hole recombination: e−TR + h+
VB(h+

TR) → e−CB + heat (4)

Photoexcited e− scavenging: (O2)ads + e− → OH· (5)

Oxidation of hydroxyls: OH− + h+ → OH· (6)

Photodegradation by OH· : R− H + OH· → R/ + H2O (7)

Direct photoholes: R + h+ → R+ → Intermediate(s)

Final
Degredation Products (8)
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Protonation of superoxides: O·−
2 + OH· → HOO· (9)

Co-scavenging of e− : HOO ·+e− → H2O
− (10)

Formation of H2O2 : HOO− + H+ → H2O2 (11)

The e−TR and h+
TR in (Eq. (4)) represent the surface trapped valence band electron and conduction-

band hole respectively. It was reported that these trapped carriers are usually TiO2 surface
bounded and do not recombine immediately after photon excitation [19]. In the absence of elec-
tron scavengers (Eq. (4)), the photo excited electron recombines with the valence band hole in
nanoseconds with simultaneous dissipation of heat energy. Thus, the presence of electron scav-
engers is vital for prolonging the recombination and successful functioning of photocatalysis.
(Eq. (5)) depicts how the presence of oxygen in prevents the recombination of electron-hole pair,
while allowing the formation of superoxides radical (O·−

2 ). This O·−
2 radical can be further pro-

tonated to form the hydroperoxyl radical (HO·
2) and subsequently H2O2 as shown in (Eqs. (9)

and (10)), respectively. The HO·
2 radical formed was also reported to have scavenging property

and thus, the co-existence of these radical species can doubly prolong the recombination time
of the h+

TR in the entire photocatalysis reaction. However it should be noted that all these oc-
currences in photocatalysis were attributed to the presence of both dissolved oxygen (DO) and
water molecules. Without the presence of water molecules, the highly reactive hydroxyl radicals
(OH·) could not be formed and delay the photo degradation of liquid phase organics. This was
evidenced from a few reports that the photocatalysis reaction did not proceed in the absence of
water molecules [19].

4 Other Metal-containing Photocatalysts

Despite TiO2 based photocatalysts, there have been a number of metal containing visible light
photocatalysts including plasmon induced viral inactivation by Ag-AgI/Al2O3 [21] And Pt-WO3

[22]. Giannnakis et al. found three types of iron oxides namely Wustite, Maghemite, and nano-
Maghemite for photocatalytic antiviral activity under visible light irradiation [23].

5 TiO2 Based Materials and Its Composites

There have been a number of studies on photovoltaic disinfection based on TiO2, including bac-
teria, viruses, fungi, algae and others [24]. However, the biggest disadvantage of TiO2 is the
rapid restoration of its charge carriers, which considerably confines photocatalytic behavior. In
this regard, a number of strategies have been proposed to enhance the photoactivity, such as
morphological control and the formation of heterojunction systems with other components such
as metal, semiconductors and carbonaceous materials.

6 TiO2 Based Materials and 0D-3D Systems

It is notable that the photocatalytic execution of TiO2 relies strongly on its size and morphol-
ogy. Other précised morphologies have indicated extraordinary exhibitions for the photocatalytic
eradication of pathogenic microorganisms. For example, the nanotube architecture shows good
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performance in the destruction of microorganisms because of its inherent features such as huge
surface to volume ratio and improved light harvesting [25]. The arrangement of self-organized
TiO2 nanotube arrays is typically brought out through a traditional anodization measure uti-
lizing titanium foil as substrate [9]. Hierarchical structures, for example, nanorod spheres have
been accounted for the destruction of Escherichia coli and Staphylococcus aureus [26]. Complex
hierarchical structures like 3D dendritic microspheres based on rutile TiO2 nanoribbons as well
have been studied for antibacterial applications [27].

Other TiO2 based nanostructures like titanate nanotubes have been utilized for disinfection pur-
poses [28, 29]. Generally, these protonated nanotubes are set up through hydrothermal technique
under alkaline conditions and utilizing TiO2 as precursor [30].

7 Metal Doped TiO2 Systems

Different metal ions are doped in TiO2 in order to increase its photocatalytic activity [31, 32].
Metal ions when doped with TiO2 change the corresponding energy level structure as the metals
are more active, and electrons can be excited easily thus resulting in a broader range of absorption
in a TiO2 system [33-35]. Electrons generated by TiO2 excitation can be captured by the metals
as it is shown in figure. Furthermore, electrons inside TiO2 can not return to the original state as
metal ions act as a carrier trapping center. Metal ions higher than tetravalent are more effective
to capture electrons than titanium ions and metal ions lower than tetravalent trap holes. In this
way, metal doping improves TiO2 photocatalytic efficiency [36, 37].
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Fig. 2: Schematic diagram of metal ion doping TiO2 [38]

Various studies have stated the adjustment of TiO2 by methods for single doping, co-doping
and impregnation with different metal and nonmetal ions to increase its photocatalytic execution
as well as to exhibit photoactivity in the visible light region [14, 30]. In this sense, doping with
cations/anions in the crystal structure of TiO2 is utilized to make intra band gap states close to
the edges of the conduction (CB) and valence (VB) bands causing absorption in the visible light
area [39]. N-doped TiO2 has been accounted for in the photocatalytic elimination of microorgan-
isms such as Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Shigella flexneri,
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Listeria monocytogenes, Vibrio parahaemolyticus and Acinetobacter baumannii [40, 41]. On the
other hand, the deposition of metal nanoparticles on the surface of TiO2 additionally represents
an efficient approach in the photocatalytic improvement of this metal. The contact between the
metal nanoparticles and the surface of a semiconductor can make an electric field encouraging
an interfacial process of electron transfer from the photo-excited semiconductor to the deposited
metal [9].

Precious metal materials having large radius can be easily deposited on the surface of TiO2

particles and can serve active trap for electrons with a certain amount of precious metals deposited
[42-44]. Figure 3 shows the transfer of electrons from the surface of TiO2with a higher Fermi level
to the surface of the precious metal with a lower Fermi level. With the two surfaces Fermi levels
equal, the electrons will no more be transferred thus forming a Schottky barrier. This barrier
excellently separate photogenerated electron hole pairs and improve the photocatalytic activity
of TiO2 [45-47].

Oxidation

Reduction

H2O

O2

O2
-·

h+h+

e− e− e−

h+

·OH

VB

TiO2

Precious metal

Light excitation
CB

+

−

+

−

+

−

+

−

+

−

Fig. 3: Diagram of precious metal materials deposition [38]

Among the metals put down in TiO2, silver is one of the attractive metals. Keeping in view the
interesting properties of the silver, the Ag-TiO2 composites have been utilized in the removal of a
large number of microorganisms [48-52]. Copper is another metal broadly utilized in combination
with Titanium Dioxide for antimicrobial purposes. This metal alone exhibits good antibacterial
and antiviral properties since copper ions can penetrate across their cell membrane [53, 54]. Other
metal-TiO2 systems utilizing Au, Pt and Pd have been studied for the photocatalytic destruction
of microorganisms [55-58].

8 TiO2 Heterojunctions with Semiconductors

The arrangement of heterojunction systems is normally completed to give the spatial separation
of the photogenerated charge carriers in the catalysts, considerably improving the photocatalytic
execution compared with photoactivity shown with the pristine semiconductors. In an overall
manner, two semiconductors display a nearby contact shaping heterostructures dependent on the
physical junction of their particles. In this sense, as indicated by the valence (VB) and conduction
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(CB) band capacities of the semiconductors, there are three kinds of heterojunction systems which
are shown in Figure 4.
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Fig. 4: Two semiconductors based heterojuction systems [38]

A type-1 heterpjunction consists of two semiconductors with semiconductor A having higher
conduction band edge than that of semiconductor B. Likewise, the top of the VB of semiconductor
A displays a lower value than the top edge of the VB of semiconductor B. Under this arrangement,
the hole-electron pairs photogenerated in the semiconductor B move to the semiconductor A which
serves as a recombination point for these charge carriers. Thus the heterojunction type I usually
displays a poor photocatalytic performance. In type II heterojunction, the bottom edge of the
conduction band of the semiconductor A is more negative in comparison with the bottom of
the CB of the semiconductor B. Conversely, the top edge of the VB of semiconductor B has a
more positive potential than the VB of semiconductor A. These differences are responsible for
providing the efficient transfer of the photogenerated charge carriers between the semiconductors
thus decreasing their recombination and increasing the photocatalytic performance of the joined
system. Type III heterojunction displays a band formation similar to that of type II, however, the
difference in the potentials of the VB and CB is more prominent. This formation is usually known
as Z-scheme heterojunction, where a Z-shaped transport path is carried out [59]. Moreover, a
photocatalytic Z-scheme system can be sought out either directly or indirectly depending upon
how an electron mediator is necessary to achieve the transfer mechanism.

TiO2 has been generally studied in the formation of heterogeneous systems with different semi-
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conductors for the destruction of organic pollutants, hydrogen production from water splitting
and for CO2 photo-reduction [60, 61]. Nevertheless, only a few TiO2 coupled systems have been
studied for photocatalytic didinfection of microorganisms. The graphitic carbon nitride (g-C3N4)
is a polymer semiconductor having good photocatalytic abilities with its use for hydrogen pro-
duction through the water splitting process reported in last decade [62]. In recent times, the
g-C3N4/TiO2 hybrid system has been reported for the photocatalytic disinfection of E. coli bac-
teria under visible light irradiation [63]. The dose of the hybrid system was 0.6 g/L [63]. In
this study, the concentration of the potassium ions (K+) gradually increased with the increase
of photocatalytic treatment time. Since the outflow of potassium ions is connected with the
permeability of the cell membrane, this phenomenon shows the effective annihilation of the E.
coli bacteria in g-C3N4/TiO2 heterojunction system. Other coupled systems between TiO2 and
ZnAl layered double hydroxide (LDH), NiO, WO3, CuxOy, In2O3, Fe2O3, and NiFe2O4 have been
studied as well for the photocatalytic inactivation of microorganisms [64-68].

There have been some ternary systems that have been reported as well for the destruction of
pathogenic microorganisms. Usually these systems consist of two photoactive materials shaping
a binary heterojunction and a third component that is responsible for the efficient charge transfer
between both semiconductors like zero-valent metals (Ag, Cu) as well as layered materials with
high electron mobility [69]. In this sense, the Cu-ZnO/TiO2 system has been studied for the
degradation of bacterial colonies of E. coli and S. aureus under visible light irradiation. The
ternary Ag/AgX/TiO2 system (X=Cl, Br, I) has also been used in photocatalytic disinfection
process [69, 70]. Besides, other more complex systems have been reported, where every component
assumes a specific role in the hybrid composite, thus expanding the photocatalytic performance
of the overall system [71-73].

9 TiO2 Systems with Graphene and Other Carbonaceous

Materials

Graphene as a photocatalytic material has gained great interest since it was first reported by
Novoselov in 2004 [74]. Grapheme is composed of one atom thick layer of sp2 hybridized carbon
atoms forming six member rings arranged in a two dimensional hexagonal lattice [75]. Graphene
exhibits ballistic transport and this characteristic makes it suitable for coupling with TiO2 thus
increasing photocatalytic properties of the semiconductor and reducing the recombination rate
of the photogenerated charge carriers. In this sense, grapheme/TiO2 and reduced grapheme
oxide/TiO2 have been used in cleansing process of water polluted with pathogenic microorganisms
[76-79]. As indicated by the mechanism revealed, the photoexicited electrons in TiO2 can be
transported to the π-π conjugated network of the grapheme, thus increasing the efficiency of the
photocatalytic process.

For disinfection process, single-walled (SWCNTs) and multi-walled carbon nanotubes (MWC-
NTs) in conjunction with TiO2 forming composites have also been reported [80]. According to
Kongkan and Kamat, SWCNTs in contact with photoirradiated TiO2 can store up to one elec-
tron per 32 carbon atoms [81]. Thus the photogenerated electrons in TiO2 can be transferred
and stored in the CNTs. Because of CNTs high electron accepting properties, they can delocalize
these charge carriers and increasing the photocatalytic performance of TiO2. Other carbon based
materials like carbon quantum dots (CQDs), have also been combined with TiO2 for the destruc-
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tion of microorganisms. The CQDs display intriguing properties such as photoinduced electron
transfer, up and down conversion photoluminescence and electron storage [82, 83].

For the photocatalytic inhibition of E. coli bacteria, activated carbon supported TiO2 nanopar-
ticles (TiO2/AC) have been reported [84, 85]. The chitosan, another carbonaceous material, has
also been utilized in the preparation of TiO2 nanocomposites for the inactivation of E. coli and
S. aureus [86]. The assimilation of carbon atoms within the crystal structure of TiO2 gives a
prolonged absorption to the visible light range and an efficient separation of the photogenerated
charge carriers [87]. The least complex method for doing the preparation of C-doped TiO2 is the
use of carbohydrates, such as glucose and sucrose as carbon precursors [88]. Thus, the incorpo-
ration of the carbonaceous species in TiO2 happens during the calcination process of the organic
precursors.

10 Applications of TiO2 Based Photocatalysis

In recent years, the use of TiO2 for photocatalytic decontamination has been extended for com-
mercial applications. The most common use is the exclusion of bacteria in aqueous systems [89].
Photocatalytic treatment technology uses the hydroxyl radical (·OH) that deeply oxidize and de-
compose organic pollutants into non toxic inorganic small molecules [90]. Simultaneously, it also
successfully eradicates heavy metal ions. TiO2 thin films have been utilized in many everyday
commodities from industries like food, construction, environmental, medical etc. Coating of tex-
tile materials with photoactive materials in order to clean and remove pathogenic microorganisms
is another eco friendly application that can be exploited commercially. Numerous textiles, for
example, cotton, rayon and polyester can be coated or grafted with TiO2 with the help of sol-gel,
reflux, dip-coating, spin-coating methods. The strong oxidative ability of TiO2 can damage the
textile fibers if both TiO2 and textile fibers are in direct contact. To escape this problem, spa-
tial hindrances that prevent decomposition of fibers are created by blending photocatalysts with
materials such as silica (SiO2) and apatite [91].

11 Conclusion

Photocatalysis with the ability of forming electron hole pairs and creating band gap excitation
makes it favorable for disinfection purposes. In this regard, TiO2 is one of the most promis-
ing. The main problem of photocatalysis is the rapid charge recombination and back reaction
and difficulty in using visible light efficiently. During the previous years, attention has been
given to the development of modified TiO2 with the aim of achieving new properties and im-
proved performance. This review gives an overview of the fundamental mechanism of TiO2 based
photocatalysis, and its modification with other materials. Metal doped TiO2 systems, TiO2 het-
erojunction with other semiconductors and TiO2 systems with grapheme and other carbonaceous
materials have described briefly.
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