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Abstract. We study the constrained system of linear equations

Ax=b, x∈R
(

Ak
)

for A∈Cn×n and b∈Cn,k= Ind(A). When the system is consistent, it is well
known that it has a unique ADb. If the system is inconsistent, then we seek for
the least squares solution of the problem and consider

min
x∈R

(

Ak
)

‖b−Ax‖2,

where ‖·‖2 is the 2-norm. For the inconsistent system with a matrix A of in-
dex one, it was proved recently that the solution is A ♯©b using the core inverse
A ♯© of A. For matrices of an arbitrary index and an arbitrary b, we show that
the solution of the constrained system can be expressed as A †©b where A †© is
the core-EP inverse of A. We establish two Cramer’s rules for the inconsistent
constrained least squares solution and develop several explicit expressions for
the core-EP inverse of matrices of an arbitrary index. Using these expressions,
two Cramer’s rules and one Gaussian elimination method for computing the
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core-EP inverse of matrices of an arbitrary index are proposed in this paper.
We also consider the W-weighted core-EP inverse of a rectangular matrix and
apply the weighted core-EP inverse to a more general constrained system of
linear equations.

AMS subject classifications: 15A09, 15A24, 15A29, 15A57

Key words: Bott-Duffin inverse, Core-EP inverse, weighted core-EP inverse, Cramer’s
rule, Gaussian elimination method.

1 Introduction

Let C be the field of complex numbers and Cm×n be the set of all m×n matrices
over C. For a matrix A ∈ C

m×n, AT,A∗,R(A),N (A), and Ind(A) stand for its
transpose, conjugate transpose, range, null space, and index. I is the identity
matrix of order n and ei is the i-th column of I. The Moore-Penrose inverse A† of
A is the unique matrix X∈Cn×m satisfying

AXA=A, (1.1)

XAX=X, (1.2)

(AX)∗=AX, (1.3)

(XA)∗=XA. (1.4)

The matrix X satisfying the 1st and 3rd matrix equations of the system of ma-

trix equations (1.1)-(1.4) is called a {1,3}-inverse of A, denoted by A(1,3) and the
collection of all {1,3}-inverses of A is denoted by A{1,3}. It is well known that
A† = A-1 for a nonsingular square matrix A and that A†b is the minimum norm
least squares solution of the system of linear equations Ax=b for a general matrix
A∈Cm×n and b∈Cm.

The Drazin inverse AD of a square matrix A∈Cn×n is the unique matrix X∈
C

n×n satisfying

XAX=X, XAk+1=Ak, AX=XA (1.5)

for k= Ind(A). It is well known that both A† and AD coincide with A-1 for non-
singular matrices. For the special case when Ind(A) is one, the Drazin inverse is
called the group inverse and is denoted by A#. The group inverse is a useful tool
in the study of Markov chains and the Drazin inverse is used to study the singu-
lar differential and difference equations [7]. It is well known that the constrained
system of linear equations

Ax=b, x∈R
(

Ak
)

(1.6)
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for k= Ind(A), is consistent if and only if b∈R(Ak) and the unique solution is
given by ADb if it is consistent [5, p. 167]. The result has been extended to the
tensor case [19].

When the constrained system of linear equations (1.6) is inconsistent, one
would naturally consider the least squares solution of the system and seeks to
solve the following constrained optimization problem:

min
x∈R

(

Ak
)

‖b−Ax‖2, (1.7)

where ‖·‖2 is the 2-norm in Cn.
It is shown that for A∈CCM

n , where

C
CM
n =

{

A : Ind(A)≤1, A∈C
n×n
}

,

the constrained least squares problem (1.7) has a unique solution A ♯©b [23, 26, 46]
where A ♯©, called the core inverse of A, is the unique matrix X∈Cn×n satisfying

AX=AA† , R(X)⊆R(A). (1.8)

It was pointed out that the core inverse of A was introduced in [2] as an alterna-
tive to the group inverse as it relates closely to the group inverse

A ♯©=A#AA† (1.9)

and that it is indeed the Bott-Duffin inverse of A with respect to R(A)

A ♯©=A
(−1)
(R(A))

=AA†
[

I+(A− I)AA†
]

-1. (1.10)

Since the birth of the core inverse of matrices of index one, researchers in the area
have shown great interest in the generalized inverse and have obtained many
algebraic and geometric properties of the inverse and designed Cramer’s rules,
Gauss elimination methods, and the neural network for its computation [2,20,21,
23, 28, 31, 37, 42–44, 46, 48].

The core inverse of a matrix of index one has been extended to matrices of
an arbitrary index in several different ways in the literature. The one proposed
in [30] is the unique matrix X satisfying

XAX=X, (AX)∗=AX, XAl+1=Al , R(X)⊆R(Al ) (1.11)

for l≥ Ind(A). This generalized inverse is called the core-EP inverse of A and is
denoted by A †©. It is actually the {2}-inverse of A with prescribed range R(Ak)
and nullspace N ((Ak)∗)

A †©=A
(2)

R(Ak),N ((Ak)∗)
. (1.12)
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We remark that the paper [30] actually defines the core-EP inverse of matrices
over a general field. It may not exist over a general field but it always exists and
is unique for the matrices over C and according to [30, Theorem 3.5, Remark 2],

A †©=Ak
(

(A∗)k Ak+1
)†

(A∗)k (1.13)

for k= Ind(A). In addition to the ones in (1.12) and (1.13), we have the following
useful explicit expressions for the core-EP inverse [27, 40]

A †©=AD Ak
(

Ak
)†
=Ak

(

Ak+1
) ♯©

=Ak
(

Ak+1
)†

, k= Ind(A) (1.14)

as well as a full rank decomposition-based expression and several numerical
methods for the core-EP inverse in the literature [27, 31, 32, 47].

The other extensions of the core inverse of A from CCM
n to Cn×n include the

generalized core inverse A⋄ [3], the DMP inverse Ad,† [25,29], and the weak group
inverse [41]. The generalized core inverse A⋄ and the DMP inverse Ad,† can be
expressed as

A⋄=(APA)
†=AA†

[

I+(A− I)AA†
]†

, Ad,†=AD AA†. (1.15)

When A∈CCM
n , we have

A †©=A⋄=Ad,†=A ♯©

due to (1.9), (1.10), (1.15), (1.14), and the facts that I+(A− I)AA† is nonsingular
and that AD =A# for matrices of index one.

For the weak group inverse of A in Cn×n, the pseudo core inverse in ring
with involution, and the core inverse of Hilbert space operators, please refer to
[12, 33, 41].

In this paper we further investigate the constrained optimization problem
(1.7). We show that the solution can be expressed as A †©b. Two Cramer’s rules
for the least squares solution A †©b to (1.7) and two determinantal formulas and
one Gaussian elimination method for computing the core-EP inverse A †© of A are
developed. Several other explicit expressions for the core-EP inverse will also be
established, extending the existing results for the core inverse in the literature to
the core-EP inverse. Finally, we extend a result for core-EP inverse of a square
matrix to the weighted core-EP inverse of a rectangular matrix and apply it to
a more general constrained system of linear equations.
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2 A constrained system of linear equations

We begin with a more general constrained system of linear equations considered
in [9]:

Ax=b, x∈T, (2.1)

where T is a subspace of Cn and when (2.1) is inconsistent, consider

min
x∈T

‖b−Ax‖2. (2.2)

The coefficient matrix A in (2.1) and (2.2) is allowed to be rectangular in the origi-
nal setting but we still assume that it is square here. It is shown in [9, Theorem 3.4]
that both (2.1) and (2.2) have a unique solution if and only if T∩N (A)={0} and

the unique solution is given by x=(A∗A)
(−1)
(T)

A∗b. We notice that the problems

(1.6) and (1.7) are special cases of the aforementioned problems when T=R(Ak).
Due to the fact that

T∩N (A)⊆R
(

Ak
)

∩N
(

Ak
)

={0},

we immediately have the following result.
Observe that having a zero minimum value of (2.2) is equivalent to having

a consistent system (2.1). Thus, (2.1) is contained in (2.2) as a special case when
the minimum value is zero.

Theorem 2.1. Let A∈Cn×n, b∈Cn, and k= Ind(A) The problem (1.7) has a unique

solution

x=(A∗A)
(−1)

(R(Ak))
A∗b=Ak

(

Ak
)†[

I+(A∗A− I)Ak
(

Ak
)†]-1

A∗b. (2.3)

Proof. We only need to show that the matrix involved in the Bott-Duffin inverse

is nonsingular. Assume that

[

I+(A∗A− I)Ak
(

Ak
)†]

x=0.

Then we have

x=
(

I−A∗A
)

Ak
(

Ak
)†

x (2.4)

implying that

(

Ak
)†

x=
(

Ak
)†
(I−A∗A)Ak

(

Ak
)†

x=
(

Ak
)†

x−
(

Ak
)†

A∗AAk
(

Ak
)†

x,
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which leads to
(

Ak
)†

A∗AAk
(

Ak
)†

x=0. Now, we have

∥

∥AAk
(

Ak
)†

x
∥

∥

2

2
=
(

AAk
(

Ak
)†

x
)∗

AAk
(

Ak
)†

x

= x∗Ak
(

(

Ak
)†

A∗AAk
(

Ak
)†

x
)

=0

leading to Ak(Ak)†x∈N (A)⊆N (Ak ). Therefore, Ak(Ak)†x∈N (Ak)∩R(Ak)={0}
which, together with (2.4), finally implies that x=0 and thus I+(A∗A−I)Ak(Ak)†

is nonsingular. The formula (2.3) follows directly from the expression for Bott-

Duffin inverse [5, Sec. 10].

For A ∈ CCM
n and an arbitrary b, due to the fact the unique solution of con-

strained systems (1.6) and (1.7) is A ♯©b [23, 26, 46], we have

A ♯©=AA†
[

I+(A∗A− I)AA†
]-1

A∗, (2.5)

which is different from (1.10). As indicated by the following example, the differ-
ence is real. For the matrix A∈CCM

n given by [2]

A=

(

1 1
0 0

)

we have

A†=

(

1
2 0
1
2 0

)

, A∗A=

(

1 1
1 1

)

, AA†=

(

1 0
0 0

)

leading to
[

I+(A∗A− I)AA†
]-1

A∗=

(

1 0
0 0

)

,

[

I+(A− I)AA†
]

-1= I.

(2.6)

As expected, both formulas (2.5) and (1.10) give

A ♯©=

(

1 0
0 0

)

but the first one of (2.6) involves two more matrix multiplications. In general,
the expression (2.5) is always computationally more intensive since it requires
two more matrix multiplications for computing the core-EP inverse than does the
expression (1.10).
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We feel that working with a general setting, the special structure of our prob-
lems is not explored in [9] at all. It is our goal to fully explore its special structure
and get a result which could reduce to (1.10) at a minimum.

To this end, we begin with a technical result.

Lemma 2.1. Let A ∈Cn×n and k= Ind(A). Any square matrix Y ∈Cn×n satisfying

R(Y)⊆R(Ak)∩N (A) must be the zero matrix.

Proof. Let x be an arbitrary vector in Cn. We can write

Yx∈R(Y)⊆R
(

Ak
)

∩N (A)⊆R
(

Ak
)

∩N
(

Ak
)

={0}

implying Yx=0 for any x. Thus, we have Y=O.

It is well known [5, pp.166-167] that AD = Ak(Ak+1)# for k= Ind(A). The two
expressions for the core-EP inverse in (1.14) have a similar nature. The following
result characterizes the core-EP inverse.

Theorem 2.2. Let A∈Cn×n and l≥k= Ind(A). Then, AlY is the core-EP inverse of A

if and only if Y is a {1,3}-inverse of Al+1.

Proof. Let X= Al(Al+1)(1,3). Obviously, R(X)⊆R(Al )=R(Ak) and AX = Al+1

(Al+1)(1,3) implying (AX)∗=AX. A simple calculation leads to

A(XAX−X)

=AXAX−AX=Al+1
(

Al+1
)(1,3)

Al+1
(

Al+1
)(1,3)

−Al+1
(

Al+1
)(1,3)

=O,

A
(

XAl+1−Al
)

=AXAl+1−Al+1=Al+1
(

Al+1
)(1,3)

Al+1−Al+1=O

implying that

R(XAX−X)⊆N (A),

R
(

XAl+1−Al
)

⊆N (A).

In addition, we have

XAX−X=Al
(

(

Al+1
)(1,3)

AX−
(

Al+1
)(1,3)

)

,

XAl+1−Al =Al
(

(

Al+1
)(1,3)

Al+1− I
)

implying that

R(XAX−X)⊆R
(

Al
)

=R
(

Ak
)

,
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R
(

XAl+1−Al
)

⊆R
(

Al
)

=R
(

Ak
)

.

It follows from Lemma 2.1 that XAX = X and XAl+1 = Al. Therefore, all four

conditions of (1.11) are verified. The uniqueness of the core EP inverse implies

that A †©=Al(Al+1)(1,3).

Now, assume that AlY is the core-EP inverse of A. Then, A †© = AlY must

satisfy all the conditions of (1.11). We can write

Al+1YAl+1=A
(

AlY
)

Al+1=A
(

A †©Al+1
)

=AAl =Al+1

implying Y∈Al+1{1}. We also have

Al+1Y=A
(

AlY
)

=AA †©

implying that
(

Al+1Y
)∗

=
(

AA †©
)∗

=AA †©=Al+1Y.

So, we also have Y∈Al+1{3}.

For a general vector b, the constrained condition x ∈R(Ak) of (1.7) can be
removed by setting x=Aky. Solving the problem (1.7) is equivalent to solving the
following unconstrained least squares problem

min
y∈Cn

∥

∥b−Ak+1y
∥

∥

2
(2.7)

with x=Aky. The general least squares solution of Ak+1y=b is

y=
(

Ak+1
)(1,3)

b+
(

I−
(

Ak+1
)(1,3)

Ak+1
)

q (2.8)

with (Ak+1)(1,3) ∈ Ak+1{1,3} and arbitrary q [5, Ch. 3, Sec. 1]. Thus, in view of
Theorem 2.2, the general least squares solution of (1.7) is

x=Aky=Ak
(

(

Ak+1
)(1,3)

b+
(

I−
(

Ak+1
)(1,3)

Ak+1
)

q
)

=Ak
(

Ak+1
)(1,3)

b+Ak
(

I−
(

Ak+1
)(1,3)

Ak+1
)

q

=A †©b+p,

where
p=Ak

(

I−
(

Ak+1
)(1,3)

Ak+1
)

q.
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Observe that p∈R(Ak) and that

Ap=AAk
(

I−
(

Ak+1
)(1,3)

Ak+1
)

q

=
(

Ak+1−Ak+1
(

Ak+1
)(1,3)

Ak+1
)

q=0

implying that p∈N (A)⊆N (Ak). Thus,

p∈R
(

Ak
)

∩N (A)⊆R
(

Ak
)

∩N
(

Ak
)

={0}.

Therefore, we have p = 0 and thus, the problem (1.7) has the unique solution
x=A †©b. In summary, we have proved the following result.

Theorem 2.3. Let A∈Cn×n of an arbitrary index and any b∈Cn. The problem (1.7) has

a unique solution A †©b.

Theorem 2.3 reduces to [46, Theorem 3.1] when A is of index one. In view of
Theorem 2.3, the core-EP inverse A †© of A stands out among many generalizations
of the core inverse of A as we can express the least squares solution of (1.7) as
A †©b. Due to the importance of the Cramer’s rule, we will develop two such
rules for the least squares solution of (1.7) through two explicit expressions of the
core-EP inverse in terms of nonsingular matrices in the next two sections. Several
other explicit expressions for A †© will also be presented.

3 Explicit expressions, QR-based and the Gaussian

elimination methods for core-EP inverse

Let us re-examine (1.7). Define z=b−Ax and in view of (2.8), we can write

z=b−Ax=b−Ak+1y

=b−Ak+1
(

Ak+1
)(1,3)

b−Ak+1
(

I−
(

Ak+1
)(1,3)

Ak+1
)

q

=b−Ak+1
(

Ak+1
)(1,3)

b−
(

I−Ak+1
(

Ak+1
)(1,3)

)

Ak+1q

=
(

I−Ak+1
(

Ak+1
)(1,3)

)(

b−Ak+1q
)

=
(

I−PR(Ak+1)

)(

b−Ak+1q
)

=
(

P
R(Ak)

⊥

)(

b−Ak+1q
)

.
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Thus, x solves (1.7) if and only if there exist x in R(Ak) and z∈R(Ak)⊥ such that
Ax+z=b. Hence, (1.7) is equivalent to the Bott-Duffin system [5, 45]

Ax+z=b, x∈L, z∈L⊥ , (3.1)

where L=R(Ak) and k= Ind(A). For this special Bott-Duffin system, we have

PL=Ak
(

Ak
)†

, PL⊥ = I−Ak
(

Ak
)†

,

APL+PL⊥ =Ak+1
(

Ak
)†
+ I−Ak

(

Ak
)†

.
(3.2)

We can easily verify that APL+PL⊥ is always nonsingular. To this end, we assume
that

(

Ak+1
(

Ak
)†
+ I−Ak

(

Ak
)†
)

w=0

for some w, in view of (3.2). Thus, we have

w=(I−A)Ak
(

Ak
)†

w=Ak(I−A)
(

Ak
)†

w∈R
(

Ak
)

. (3.3)

For simplicity, let w=Aky for some y. Using (3.3) again, we have

w=(I−A)Ak
(

Ak
)†

w=(I−A)Ak
(

Ak
)†

Aky=(I−A)Aky=(I−A)w

implying Aw=0. Thus, w∈R(Ak)∩N (Ak)={0}, i.e., w=0. Hence, APL+PL⊥ is
nonsingular. According to the theory of the Butt-Duffin inverses [5, 45], (3.1) has
a unique solution

x=PL (APL+PL⊥)
-1b=Ak

(

Ak
)†[

I+(A− I)Ak
(

Ak
)†]-1

b, z=b−Ax

for any b∈C
n and Ak(Ak)†[I+(A−I)Ak(Ak)†]-1 is the Bott-Duffin inverse A

(−1)

(R(Ak))

of A with respect to R(Ak). In view of Theorem 2.3 and the equivalency of (1.7)
and (3.1), we conclude that the core-EP inverse of A is indeed the Bott-Duffin
inverse of A with respect to R(Ak) (refer to [5, Ch. 2, Sec. 10]).

In summary, we have proved the following result.

Theorem 3.1. Let A∈Cn×n and k= Ind(A). Then I+(A− I)Ak(Ak)† is nonsingular

and

A †©=A
(−1)

(R(Ak))
=Ak

(

Ak
)†[

I+(A− I)Ak
(

Ak
)†]-1

.
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In view of Theorems 2.1 and 2.3, we have an alternative expression for the
core-EP inverse of A

A †©=(A∗A)
(−1)

(R(Ak))
A∗=Ak

(

Ak
)†[

I+(A∗A− I)Ak
(

Ak
)†]-1

A∗. (3.4)

This expression involves two more matrix multiplications than does the one in
Theorem 3.1. More importantly, the formula in Theorem 3.1 does reduce to the
one in (1.10).

Applying existing results for the Bott-Duffin inverse of A with respect to L=
R(Ak), many new results can be obtained for the core-EP inverse. In particular,
we would like to mention the one using the basis of the subspace R(Ak) (see [5,
Sec. 10] or [45]).

Lemma 3.1 ([6]). Let U be a matrix whose columns form a basis for L. Then the Bott-

Duffin inverse A
(−1)
(L)

of A exists if and only if U∗AU is nonsingular, in which case,

A
(−1)
(L)

=U(U∗AU)-1U∗.

Theorem 3.2. Let A∈C
n×n and k= Ind(A). Let Ul be a matrix whose columns form

a basis for R(Al). Then, k is the smallest nonnegative integer l such that U∗
l AUl being

nonsingular and

A †©=Uk

(

U∗
k AUk

)-1
U∗

k .

Proof. Let rl =dim(R(Al)). Then R(Ul)=R(Al) and Ul ∈C
n×rl
rl

. We also have

R
(

Al+1
)

=AR
(

Al
)

=AR(Ul)=R(AUl).

Obviously, R(Al+1)=R(Al) is equivalent to R(AUl)=R(Ul), i.e., AUl ∈C
n×rl
rl

.

If R(Al+1)=R(Al), then l≥k and R(AUl)=R(Ul). Assume that U∗
l AUlx=0

for any x∈Crl . We have

AUlx∈N (U∗
l )=R(Ul)

⊥.

On the other hand, AUlx∈R(AUl)=R(Ul). Thus, we have

AUlx∈R(Ul)∩R(Ul)
⊥={0}

implying that AUl x=0. Since Ulx∈N (A)⊆N (Al ), we have

Ulx∈N
(

Al
)

∩R
(

Al
)

={0},
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which further implies x = 0 due to the fact that the columns of Ul are linearly

independent. Therefore, U∗
l AUl is nonsingular.

Assume that U∗
l AUl is nonsingular. Then

rl = rank(U∗
l AUl)≤ rank(AUl)≤ rl

implying that rank(AUl)= rank(Ul)= rl . Thus, we have R(AUl)=R(Ul) which

is equivalent to R(Al+1)=R(Al).
We have just proved that R(Al+1)=R(Al) is equivalent to the fact that U∗

l AUl

is nonsingular. It follows from the definition of index that k is the smallest non-

negative integer l such that U∗
l AUl being nonsingular. Finally, the expression of

the core-EP inverse directly follows from Lemma 3.1 and Theorem 3.1.

The expressions for various common generalized inverses of matrices based
on the QR decomposition can be found in [38]. For the core-EP inverse, we have
the following results.

Corollary 3.1. Let A∈Cn×n and k= Ind(A).

1. If Ak =PQ is a full rank decomposition of Ak, then

A †©=P(P∗AP)-1P∗. (3.5)

2. Let s=rank(Ak) and let Ak=QR be the QR decomposition of Ak. If Q1 is the first

s columns of Q, then

A †©=Q1

(

Q∗
1 AQ1

)-1
Q∗

1 . (3.6)

Proof. The first part of the corollary immediately follows from Theorem 3.2 and

the fact that the columns of P form a basis for R(Ak). For the second part, we

assume that R1 is the first s rows of R. Then, we have Ak =QR=Q1R1 which is

also a full rank decomposition of Ak. Thus, the columns of Q1 form a basis for

R(Ak) and the result directly follows from Theorem 3.2.

We remark that an expression for the core-EP inverse of A from a full rank
decomposition is given in [27, Theorem 2.4]

A †©=P(QAP)-1QP(P∗P)-1P∗.

Obviously, the expression (3.5) for the core-EP inverse of A is much simpler and
it involves much less work for computing the core-EP inverse.
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When A is of index one, we have A=PQ and in this case, the expression (3.5)
can be written as

A †©=A ♯©=P
(

P∗(PQ)P
)-1

P∗=P(QP)-1(P∗P)-1P∗ (3.7)

since both P∗P and QP are nonsingular. Thus, (3.5) reduces to the formula for
A ♯© [43, Theorem 2.4] when A∈C

CM
n . In this case, we have A=Q1R1, Q∗

1Q1 = Ir

where r the rank of A and thus, the formula based on QR decomposition can also
be simplified as

A †©=A ♯©=Q1(Q
∗
1 AQ1)

-1Q∗
1 =Q1(Q

∗
1Q1R1Q1)

-1Q∗
1 =Q1(R1Q1)

-1Q∗
1 . (3.8)

The novel expression (3.6) can be used to compute the core-EP inverse of ma-
trices of an arbitrary index effectively if a subroutine for QR decomposition of
a matrix is available on your computer. Many popular commercial software such
MATLAB and MAPLE include such a package. For a large scale problem, that
is the method of choice for a reliable solution as we know QR-based methods
are always stable. But if the subroutine for QR decomposition is not available
on your computer, then you may want to find an alternative method. The Gaus-
sian elimination method that we are going to propose next is a good alternative
if the problem you intend to solve is not too big since you can perform elemen-
tary operations by hands, not to mention the fact that many commercial scientific
packages include a subroutine for computing the reduced row echelon form so
you may utilize the subroutine to perform elementary row operations for you if
needed.

The Gauss-Jordan method for the inverse of an invertible matrix A is a method
for computing the inverse of A by performing elementary row operations on
[A|I] to reach the form of [I|X]. Then the inverse of A can be read off from the
second block of [I|X]. For a small scale problem, this method is very handy since
it can be carried out easily by hands. This method has been recently adapted to
compute various generalized inverses in the articles [1, 16–18, 24, 35–37, 39] and
the references within these papers. The most recent one is for computing the core
inverse of matrices of index one [37]. Due to the complexity of the generalized
inverses, we are no longer able to start with the matrix [A|I]. The starting matrix
depends on the explicit expression for that generalized inverse but the idea is the
same - using elementary row or column operations on certain form of matrices
to get all the building blocks of the explicit expression involved. For example,
consider the explicit expression for A †© in Theorem 3.2

A †©=Uk

(

U∗
k AUk

)-1
U∗

k ,
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where k=Ind(A),Uk∈Cn×s
s with R(Uk)=R(Ak) and s=rank(Ak). Our building

blocks of this expression are the index k and the matrix Uk whose columns form
a basis for R(Ak). Assume that k is given (which can also be found through el-
ementary operations). Then our task is to find such a matrix Uk. Since R(Ak)=
R(AkP) for any nonsingular matrix P, we can perform elementary column op-
erations on Ak without changing its column space. If we get [Uk|O] with the
property that the columns of Uk ∈Cn×s are linearly independent, then a basis for
R(Ak) is found. The next step is to compute U∗

k AUk, form

(

U∗
k AUk U∗

k
Uk O

)

, (3.9)

and perform elementary row operations on the first s rows of the matrix in (3.9)
so that the block matrix (3.9) becomes

(

Is (U∗
k AUk)

-1U∗
k

Uk O

)

, (3.10)

where Is is the identity matrix of order s. Finally, performing elementary row
operations on the block matrix (3.10) to get rid of the (2,1)-block of the block
matrix (3.10), one will end up with

(

Is (U∗
k AUk)

-1U∗
k

O −Uk(U
∗
k AUk)

-1U∗
k

)

. (3.11)

In this example, −A †© is the (2,2)-block of the block matrix (3.11). Therefore, we
have successfully revealed the core-EP inverse A †© of A using elementary row
and column operations.

In summary, we have developed the Gaussian elimination method for com-
puting the core-EP inverse of matrices of an arbitrary index.

We remark that Algorithm 1 reduces to Algorithm 3.1 in [37] when A is of
index one.

We end up this section with three examples of computing the core-EP inverse
of a matrix in [30] using three different expressions in Theorems 3.1, 3.2, and
Corollary 3.1. To save the space, we choose to discuss the matrix of order 3 but
we have worked on a few randomly generated matrices of larger dimensions. All
these three expressions performed very well on our limited randomly generated
problems. Since this paper is focused more on the theoretical development, we
omit to include the analysis of their numerical performance.
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Algorithm 1 Core-EP inverse of A.

1: Input: A∈Cn×n and determine k= Ind(A).
2: Perform elementary column operations on Ak to get [Uk|O] where Uk ∈Cn×s

s .

3: Compute U∗
k AUk, form the block matrix (3.9), perform elementary row oper-

ations on the first s rows of the matrix in (3.9), and convert (3.9) to a matrix in

the form of (3.10)

(

U∗
k AUk U∗

k
Uk O

)

−→

(

Is (U∗
k AUk)

-1U∗
k

Uk O

)

.

4: Performing elementary row operations on the block matrix in (3.10) to get

rid of all the entries below the identity matrix Is

(

Is (U∗
k AUk)

-1U∗
k

Uk O

)

−→

(

Is (U∗
k AUk)

-1U∗
k

O X

)

.

5: Output: A †©=−X, the core-EP inverse of A.

Example 3.1 ([30]). Using the Gaussian elimination method to compute the core-

EP inverse A †© of the matrix A where

A=





1 1 −1

1 0 2

2 1 1



.

For this matrix, k= Ind(A)=2 and perform elementary column operations on A2

A2=





0 0 0

5 3 1

5 3 1



−→





0 0 0

1 0 0

1 0 0





leading to s=1, and UT
2 =(0,1,1). Compute UT

2 AU2=4 and form the matrix (3.9)

(

U∗
2 AUk U∗

2

U2 O

)

=









4 0 1 1

0 0 0 0

1 0 0 0

1 0 0 0









.

Then, convert the (1,1)-element to 1 by dividing 4 on the first row and afterwards,
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eliminate the (3,1)- and (4,1)-elements, resulting in










1 0 1
4

1
4

0 0 0 0

0 0 − 1
4 − 1

4

0 0 − 1
4 − 1

4











.

We read off A †© from the previous matrix:

A †©=







0 0 0

0 1
4

1
4

0 1
4

1
4






.

Example 3.2. Using the QR-based explicit expression (3.6) to compute the core-EP

inverse A †© of the matrix A given in Example 3.1.

For this matrix, k= Ind(A)= 2,s= rank(A2)= 1. We perform the QR decom-

position of A using MATLAB R2017b installed on Dell’s laptop XPS 13 with 8 GB

memory. If only 4 decimal places are displayed, then the MATLAB command

[Q,R]=qr(A2) results in

Q=





0 1.0000 0.0000

−0.7071 0.0000 −0.7071

−0.7071 0.0000 0.7071



, R=





−7.0711 −4.2426 −1.4142

0 0.0000 0.0000

0 0 0.0000



.

Taking the first column of Q, we have Q1 =(0,−0.7071,−0.7071)T and thus, the

expression (3.6) gives

A †©=Q1(Q
∗
1 AQ1)

-1Q∗
1 =





0 0 0

0 0.2500 0.2500

0 0.2500 0.2500



.

Example 3.3. Using the explicit expression in Theorem 3.1 to compute the core-EP

inverse A †© of the matrix A given in Example 3.1.

Again, we carry out all the calculations using MATLAB R2017b installed on

Dell’s laptop XPS 13 with 8 GB memory and the Moore-Penrose inverse is ob-

tained by using the MATLAB command pinv. For this matrix, k= Ind(A)=2, we

have A2 already given in Example 3.1 and compute

(A2)†=





0 0.0714 0.0714

0 0.0429 0.0429

0 0.0143 0.0143



, A2(A2)†=





0 0 0

0 0.5000 0.5000

0 0.5000 0.5000
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leading to

A †©=A2
(

A2
)†
[

I+(A− I)
(

A2
)(

A2
)†
]-1

=





0 0 0

0 0.2500 0.2500

0 0.2500 0.2500



.

4 The Cramer’s rules

The core-EP inverse A †© of A in Theorem 3.2 is expressed in terms of a basis for the
column space of Ak. Next, we will express it in terms of a basis for the orthogonal
complement of the column space, i.e., the nullspace of (Ak)∗.

Theorem 4.1. Let A∈C
n×n and k= Ind(A). Let G be a matrix whose columns form

a basis for N ((Ak)∗). Then, we have

A †©=
(

Ak
(

Ak
)∗

A+GG∗
)-1

Ak
(

Ak
)∗

. (4.1)

Proof. Let s= rank(Ak). First, we show that Ak(Ak)∗A+GG∗ is nonsingular. As-

sume that (Ak(Ak)∗A+GG∗)x=0. Then, we have

Ak
(

Ak
)∗

Ax=−GG∗x∈R
(

Ak
)

∩R(G)

=R
(

Ak
)

∩R(G)=R
(

Ak
)

∩N
((

Ak
)∗)

=R
(

Ak
)

∩R
(

Ak
)⊥

={0}

implying that Ak(Ak)∗Ax=−GG∗x=0 which further leads to G∗x=0 since G is

of full column rank. Now, we have

x∈N (G∗)=R(G)⊥=N
((

Ak
)∗)⊥

=R
(

Ak
)

,

leading to

Ax∈AR
(

Ak
)

=R(Ak+1)=R
(

Ak
)

.

On the other hand, it follows from Ak(Ak)∗Ax=0 that

Ax∈N
(

Ak
(

Ak
)∗)

=N
((

Ak
)∗)

=R
(

Ak
)⊥

.

Therefore, we have

Ax∈R
(

Ak
)

∩R
(

Ak
)⊥

={0}
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implying Ax=0. That is, we have x∈N (Ak). Together with x∈R(Ak), we finally

get

x∈N
(

Ak
)

∩R
(

Ak
)

={0}

and thus, Ak(Ak)∗A+GG∗ is nonsingular.

In view of (1.14), together with the fact that G∗Ak =0, we can write

(

Ak
(

Ak
)∗

A+GG∗
)

A †©=
(

Ak
(

Ak
)∗

A+GG∗
)

AD Ak
(

Ak
)†

=Ak
(

Ak
)∗

AAD Ak
(

Ak
)†
+GG∗AD Ak

(

Ak
)†

=Ak
(

Ak
)∗
(

Ak
(

Ak
)†
)∗

+GG∗Ak AD
(

Ak
)†

=Ak
(

Ak
)∗

,

leading to the expression in the theorem since Ak(Ak)∗A+GG∗ is nonsingu-

lar.

Finally, let us turn our attention to an expression for the core-EP inverse using
a bordered matrix.

Theorem 4.2. Let A∈Cn×n, k= Ind(A), and s= rank(Ak). Let G be a matrix whose

columns form a basis for N ((Ak)∗). Then, the bordered matrix

(

A G

G∗ O

)

(4.2)

is nonsingular and

(

A G

G∗ O

)-1

=

(

A †© (I−A †©A)G(G∗G)-1

(G∗G)-1G∗ −(G∗G)-1G∗AG(G∗G)-1

)

. (4.3)

Proof. The result follows directly from [27, Theorem 2.3] by taking B = G and

C=G∗ since we have

R(B)=R(G)=N
(

(Ak)∗
)

, N (C)=N (G∗)=R(G)⊥=R(Ak),

and the fact that G∗Ak =O.

The core-EP inverse of the bordered matrix in Theorem 4.2 is also considered
in [31]. We notice that the (1,2)- and (2,1)-blocks of the regular inverse (4.3) of
the bordered matrix in (4.2) are not explicitly specified in [31]. Of course, they
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are insignificant for the computation of the core-EP inverse using the bordered
matrix since only the (1,1)-block of (4.3) is relevant to A †©.

The expressions in Theorems 4.1 and 4.2 can be used to obtain Cramer-like
rules for computing the least squares solution to the constrained system of linear
equations (1.7) and the core-EP inverse of A. For a survey of Cramer’s rules for
various generalized inverses, please refer to [45].

We first consider the Cramer’s rules for the least squares solution to the con-
strained system of linear equations (1.7) and two determinantal expressions for
the components of the core-EP inverse of A. To this end, let us first introduce
a notation. Given a matrix X∈Cn×n and a vector c∈Cn, when the j-th column of
X is replaced by b, the resulted matrix is denoted by X(j→ c).

Theorem 4.3. Let A∈Cn×n and k= Ind(A). Let G be a matrix whose columns form

a basis for N ((Ak)∗). If b /∈R(Ak), then the components of the least squares solution x

of (1.7) are

xj=
det
((

Ak(Ak)∗A+GG∗
)(

j→Ak(Ak)∗b
))

det
(

Ak(Ak)∗A+GG∗
) , j=1,.. .,n.

Proof. In view of Theorems 2.3 and 4.1, the least squares solution x= A †©b of the

constrained system of linear equations (1.7) can be expressed as

x=A †©b=
(

Ak
(

Ak
)∗

A+GG∗
)-1

Ak
(

Ak
)∗

b

and it is the unique solution to the system of linear equations
(

Ak
(

Ak
)∗

A+GG∗
)

x=Ak
(

Ak
)∗

b. (4.4)

The result of the theorem follows immediately from the classic Cramer’s rule

applied to the system of linear equations (4.4).

Working with the bordered matrix in Theorem 4.2, we have the second Cra-
mer’s rule for the least squares solution to (1.7).

Theorem 4.4. Let A∈C
n×n and k= Ind(A). Let G be a matrix whose columns form

a basis for N ((Ak)∗). If b /∈R(Ak), then the components of the least squares solution x

of (1.7) are

xj=

det

(

A(j→b) G

G∗(j→0) O

)

det

(

A G

G∗ O

) , j=1,.. .,n.
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Proof. In view of Theorem 4.2, we have

(

A G

G∗ O

)-1(
b

0

)

=

(

A †©b

(G∗G)-1G∗b

)

.

Therefore, the least squares solution x= A †©b to the constrained system of linear

equations (1.7) is the vector consisting of the first n components of the solution of

the following system of linear equations:

(

A G

G∗ O

)(

x

y

)

=

(

b

0

)

. (4.5)

The result of the theorem follows immediately from the classic Cramer’s rule

applied to the system of linear equations (4.5).

Following the steps of [14, 15], we can easily establish two determinantal ex-
pressions for the core-EP inverse A †© since

A †©

i,j= eT
i (A †©ej).

That is, A †©

i,j is the ith component of A †©ej. The following theorem follows directly

from Theorems 4.3 and 4.4.

Theorem 4.5. Let A∈C
n×n and k= Ind(A). Let G be a matrix whose columns form

a basis for N ((Ak)∗). Then, the components of the core-EP inverse A †© of A are either

from

A †©

i,j=
det
((

Ak(Ak)∗A+GG∗
)(

i→Ak(Ak)∗ej

))

det
(

Ak(Ak)∗A+GG∗
) , i, j=1,.. .,n (4.6)

or

A †©

i,j=

det

(

A(i→ ej) G

G∗(i→0) O

)

det

(

A G

G∗ O

) , i, j=1,.. .,n. (4.7)

Theorems 4.1, 4.3, 4.4, and (4.6) of Theorem 4.5 reduce to similar results in [46]
for the core inverse of A∈CCM

n . Our results are for matrices of an arbitrary index.
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5 The weighted core-EP inverse and a more general

constrained system

The core-EP inverse of a square matrix was recently extended to a rectangular ma-
trix A∈Cm×n by Ferreyra et al. [11]. Let W∈Cn×m and k=max{Ind(AW),Ind(WA)}.
The W-weighted core-EP inverse of A, denoted by A †©,W, is the unique solution
to the system

WAWX=(WA)k [(WA)k ]†, R(X)⊆R(AW)k . (5.1)

It is also the unique solution to the system [13, Theorems 2.2 & 2.3]

XW(AW)k+1 =(AW)k, AWXWX=X, (WAWX)∗=WAWX. (5.2)

The W-weighted core-EP inverse of A can be computed through Moore-Penrose,
core-EP, and W-weighted Drazin inverses of A as indicated by the following ex-
plicit expressions

A †©,W =
(

W(AW)l+1[(AW)l ]†
)†

, ([11])

A †©,W =A[(WA) †©]2 , ([13])

A †©,W =(AW)l
[

W(AW)l+1
]†

, ([13])

A †©,W =AD,W PR((WA)k), ([13])

where l≥k and AD,W is the W-weighted Drazin inverse of A defined in [10]. More
explicit expressions and interesting properties for the weighted core-EP inverse
can be found in [11, 13, 22].

In this section, we show that the W-weighted core-EP inverse of A is closely
related to the solution of the following constrained system of linear equations

min
x∈R((AW)k)

‖WAWx−b‖2, (5.3)

where A∈C
m×n,W∈C

n×m,b∈Cn and k=max{Ind(AW),Ind(WA)}. This problem
is an extension of (1.7) since (5.3) reduces to (1.7) for the case when m=n and W=
I. Obviously, the least squares problem (5.3) contains the consistent constrained
system WAWx=b, x∈R((AW)k) in which the minimum value of the least squares
problem (5.3) is zero.

Lemma 5.1. Let A∈Cm×n,W ∈Cn×m,b∈Cn, and l ≥ k= Ind(WA). Then we have

R(W(AW)l+1)=R((WA)k).
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Proof. We can write

R
(

W(AW)l+1
)

=R
(

(WA)l+1W
)

⊆R
(

(WA)l+1
)

=R
(

(WA)l+2
)

=R
(

W(AW)l+1A
)

⊆R
(

W(AW)l+1
)

implying that

R
(

W(AW)l+1
)

=R
(

(WA)l+1
)

=R
(

(WA)k
)

.

Theorem 5.1. Let A∈Cm×n,W∈Cn×m,b∈Cn, and l≥k=max{Ind(AW),Ind(WA)}.

Then, (AW)lY is the W-weighted core-EP inverse of A if and only if Y is a {1,3}-inverse

of W(AW)l+1.

Proof. IF: Let

X=(AW)l
(

W(AW)l+1
)(1,3)

.

Obviously, we have

R(X)⊆R
(

(AW)l
)

=R
(

(AW)k
)

and

WAWX=WAW(AW)l
(

W(AW)l+1
)(1,3)

=W(AW)l+1
(

W(AW)l+1
)(1,3)

=PR(W(AW)l+1)=PR((WA)k)

=(WA)k [(WA)k ]†. (5.4)

Thus, in view of (5.1), X is the W-weighted core-EP inverse of A, i.e.,

A †©,W =(AW)l
(

W(AW)l+1
)(1,3)

. (5.5)

ONLY IF: Assume that (AW)lY=A †©,W. It follows from (5.1) that

W(AW)l+1Y=W(AW)(AW)lY=W(AW)A †©,W

=(WA)k
[

(WA)k
]†

(5.6)

leading to
(

W(AW)l+1Y
)∗

=W(AW)l+1Y.
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Moreover, in view of (5.6) and Lemma 5.1, we can write W(AW)l+1=(WA)kZ for

some Z and

W(AW)l+1YW(AW)l+1=(WA)k
[

(WA)k
]†
(WA)kZ

=(WA)kZ=W(AW)l+1.

Therefore, Y is a {1,3}-inverse of W(AW)l+1.

Now, let us return to (5.3). To remove the constraint, we set x=(AW)ky and
thus, we have

min
x∈R((AW)k)

‖WAWx−b‖2 = min
y∈Cm

∥

∥W(AW)k+1y−b
∥

∥

2
,

whose general solution is

y=
(

W(AW)k+1
)(1,3)

b+

(

I−
(

W(AW)k+1
)(1,3)

W(AW)k+1

)

q

for an arbitrary q. Thus, in view of (5.5), the general solution to (5.3) is

x=(AW)ky=(AW)k
(

W(AW)k+1
)(1,3)

b

+(AW)k

(

I−
(

W(AW)k+1
)(1,3)

W(AW)k+1

)

q

=A †©,Wb+p, (5.7)

where

p=(AW)k

(

I−
(

W(AW)k+1
)(1,3)

W(AW)k+1

)

q.

In view of Lemma 5.1 and (5.4), we have

WAWp=W(AW)k+1

(

I−
(

W(AW)k+1
)(1,3)

W(AW)k+1

)

q

=

(

I−W(AW)k+1
(

W(AW)k+1
)(1,3)

)

W(AW)k+1q

=
(

I−(WA)k [(WA)k ]†
)

W(AW)k+1q=0 (5.8)

implying that

AWp∈N (W)⊆N (AW)⊆N
(

(AW)k
)

.
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In addition, AWp∈R((AW)k) so AWp=0. Thus, p∈N (AW)⊆N ((AW)k ) which,
together with the fact that p∈R((AW)k), further implies that p=0. Therefore, in
view of (5.7), we have a unique solution x=A †©,Wb to (5.3).

In summary, we have proved the following result.

Theorem 5.2. Let A∈Cm×n,W∈Cn×m,b∈Cn, and l≥k=max{Ind(AW),Ind(WA)}.

Then, the constrained system (5.3) has a unique solution A †©,Wb.

Define z=b−WAWx. In view of (5.4), (5.5), (5.7), and (5.8), we have

z=
(

I−WAWA †©,W
)

b=
(

I−PR((WA)k)

)

b=PR((WA)k)⊥b.

Thus, for any b, there exist unique x= A †©,Wb∈R((AW)k) and z=PR((WA)k)⊥b∈

R((WA)k)⊥ such that b=WAWx+z. But in general, R((WA)k) 6=R((AW)k) for
a general W and thus, A †©,W may not be the Bott-Duffin inverse of WAW with re-
spect to R((AW)k) for a general W. Since the beautiful expression in Theorem 3.2
for the core-EP inverse is based on the fact that the core-EP inverse of a square
matrix A is the Bott-Duffin inverse of A with respect to R(Ak), we do not have
similar simple expressions for the W-weighted core-EP inverse of a rectangular
matrix. At this junction, it is worthy of mentioning two expressions in that na-
ture for A †©,W, using the full-rank decomposition of A(WA)k [(WA)k ]† [13, Corol-
lary 2.7] and (WA)k [22, Theorem 2.3], respectively.
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