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Abstract. The movement of dislocations and the corresponding crystal plastic defor-
mation are highly influenced by the interaction between dislocations and nearby free
surfaces. The boundary condition for inclination angle θinc which indicates the relation
between a dislocation line and the surface is one of the key ingredients in the disloca-
tion dynamic simulations. In this paper, we first present a systematical study on θinc

by molecular static simulations in BCC-irons samples. We also study the inclination
angle by using molecular dynamic simulations. A continuum description of inclina-
tion angle in both static and dynamic cases is derived based on Onsager’s variational
principle. We show that the results obtained from continuum description are in good
agreement with the molecular simulations. These results can serve as boundary con-
ditions for dislocation dynamics simulations.
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1 Introduction

It is widely agreed that dislocations are the main carrier of plastic deformation in crys-
talline materials. The movement of dislocations is the key mechanism of strain energy
relaxation which is highly influenced by the interaction with other defects, external loads
and crystal structures [1–6]. Therefore it is important to note that the development of
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an accurate plasticity theory should based on the detailed dislocation mechanics that
the movement of each dislocation could be traced, rather than on empirical assump-
tions [1, 7]. However, as it is well-known that current models of dislocation need to
consider phenomenon in multiple scales, i.e., the elastic interactions of dislocations are
usually long range, but meanwhile, many other dislocation interactions such as self-force,
annihilation, reaction, and multiplication are short range since these effects are highly
depending on the local properties dislocation structure. Current simulation techniques
which could track the movement of each dislocation in material are usually too com-
plicated due to the multi-scale nature in the description of dislocations, therefore, more
comprehensive models are needed to provide more accurate and efficient descriptions of
the collective movement of dislocations.

During the last several decades, dislocation dynamics (DD) simulation, which can
simulate the movements and interactions of large ensemble of dislocations by direct
tracking the dynamics of individual discrete dislocation, were developed to deal with
the complicated interactions as well as the pattern evolution of dislocations occurring in
the plastic deformation [8–12]. DD simulation now is the most promising tool for the
study of dislocations in crystalline materials in mesoscopic scale [13–41].

DD simulation have been successfully adopted to study various phenomenon in crys-
tal plasticity at small scale, for instance, strain hardening effects in cubic or hexagonal
crystals [22, 23, 30, 38], microstructure in cyclic deformation [36], plasticity in polycrys-
talline materials [37]. However, in current conventional DD simulations, the periodic
boundary condition is most useful boundary condition for simulation cell in order to cal-
culate the stress due to dislocations based on stress expression in infinite medium [15],
it is still a non-trivial task for DD simulations to account the effects of various boundary
conditions [42]. How to account the effects induced by various boundaries such as free
surfaces in simulations accurately and efficiently is still a crucial problem in the develop-
ing of sophisticated DD simulations.

The effect of boundaries such as free surfaces is introduced by the image stress. The
image stress is an additional stress in order to guarantee the traction-free boundary condi-
tion, which can be calculated based on instantaneous dislocation configuration [1]. In DD
simulations, the movements of dislocation segments are determined by the total stress
including the image stress, the self stress, the stress due to dislocations and other de-
fects, and the external applied stress. One general approach [13] adopted in calculating
the total stress is that the stress is decomposed into two parts, one is the stress due to
dislocation ensemble in infinite medium which could be obtained based on classical dis-
location theory, and the other one comes from the effects of boundary conditions, i.e.,
the image stress, which could be solved by using some continuum theories such as finite
element method (FEM) or boundary element method (BEM) [13, 17–19, 25, 29, 34]. Many
models derived from this approach have been widely used in the study of crystal plastic-
ity [31, 39–41]. These models work well when dislocation segments are relatively away
from the free surfaces. However, the image stress due to the boundary are singular when
these dislocations approach to and/or intersect with the free surfaces [14,21,25,31,40,42],
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which leads to the failure of continuum assumption in these theories. Therefore the re-
sultant behavior of dislocations based on these theories are questionable in these cases.

Several attempts have been made to overcome this problem by eliminating the effects
of singularity in calculation of image stress near the surface. For instance, a numeri-
cal method based on adaptive mesh with multiple resolutions was used to approximate
the divergent behavior of stress field near the intersection point [21], and the authors also
suggested an approximation method to calculate the image stress at the intersection point
by replacing the actual singular stress with an average value on the numerical grids in a
vicinity region of boundary. In [25], the singularity was removed by a decomposition and
superposition procedure, in which the actual intersecting dislocation is considered as a
superposition of two dislocations: one is a straight dislocation in the elastic half-space,
this straight dislocation intersects with the surface in an angle equivalent the intersection
angle of actual dislocation, and the image stress due to these straight dislocation could
been obtained by Yoffe [43] analytically; another dislocation can be viewed as the resid-
ual of actual dislocation minus the previous straight dislocation in elastic half-space, and
there are no singularity in the calculation of the stress due to this residual dislocation.
Another work done in [31] adopted a similar decomposition approach to eliminate the
singularity, in their method, image force was calculated in Fourier space with the help of
virtual dislocation segments. Once the image stress was obtained, the relation between
dislocation and surface, i.e., the inclination angle could be determined by the force bal-
ance at the intersection node.

A more simple and direct approach trying to overcome the problem due to singularity
is that the inclination angle between dislocation and free surface is specifying explicitly as
a boundary condition and this boundary condition could be directly used in DD simula-
tions. An explicit analytical expression of the boundary condition for straight dislocation
in isotropic medium was firstly given by Lothe [42], in which the straight dislocation
intersects with the surface at a certain inclination angle. Schwarz [14] proposed a simpli-
fied boundary condition for symmetric case that dislocation normally enters the surface.
This normal assumption is not a correct one in general cases since the inclination angle
between dislocation and boundary is barely equal to 90◦, however it was also widely
adopted in the simulations of dislocation dynamics due to the fact that this boundary
condition can still provide some correct insights in some DD simulations as shown in
Refs. [18, 27, 28]. In Ref. [14], Schwarz also suggested that the boundary condition pro-
posed by Lothe should be used in asymmetric cases. The same boundary condition is
rediscovered in [31] based upon line tension model in thin film with the assumption of
straight line approximation. The authors verified this analytical boundary condition by
comparing the results with those obtained in DD simulations and molecular static simu-
lations in thin film (about 10∼20 nm). It can be found that this boundary condition can
be used in static simulations within isotropic medium and the slip plane of dislocation
is normal to the free surface. However, since the detailed interactions between the dis-
location core and the surface can only be fully considered on atomic level [42], it is very
important to note that the validity of those derived analytical relations should be verified
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systematically by both molecular static and dynamic simulations considering the effects
of various surface normal, temperature and dislocation configurations.

In the present work, we first study the inclination angle θinc between dislocation and
surface by using both static and dynamic molecular simulations systematically. A general
expression for θinc is derived based upon Onsager’s variational principle. The results ob-
tained based on this generalized boundary condition agree well with the results obtained
in both static and dynamic simulations for various atomistic simulation samples. From
the results of atomistic simulations, a simplified evolution model is further derived based
upon straight line approximation.

2 Molecular simulations on the dislocation boundary condition

In present work, we first perform molecular simulations on body-centered crystal α−iron
to study the inclination angle θinc systematically.

The molecular simulations in this work are performed by using EAM-type potential
for α-iron, which is developed by Mendelev and co-workers [44]. This potential was con-
structed by fitting a proposed functional form to perfect crystal and crystal defects data
as well as experimental liquid structure factor data. The EAM-type potential had been
widely used to study various properties in α-iron such as the glide of screw dislocation
motion [45] and the interactions of carbon atoms with dislocation [46]. The molecular
simulations in our work are performed in NVT ensemble.

The notations used in this work are shown in Fig. 1. Here ~n is the normal of the free
surface, ~n1 is the unit projection vector of surface normal ~n onto the slip plane, ~n1 =~n
when the slip plane is perpendicular to the free surface. θ0 and θb are the angles be-

tween surface normal ~n and Burgers vector ~b with respect to the projected direction of

surface normal ~n1, respectively. α and β are the angles between~n1 and~b with respect to

the dislocation line direction ~ξ, i.e., cosα = |~n1 ·~ξ|/
(

|~n1|·|~ξ|
)

and cosβ= |~b ·~ξ|/
(

|~b|·|~ξ|
)

,
respectively. The value of α and β varies during the glide of the dislocation, but their
summation should be θb.

Figure 1: The initial cell configuration. ~n is the surface normal of the thin film, ~n1 is the projection of the

surface normal onto the slip plane, ~b is the Burgers vector. The blue line is the dislocation, and the shaded
region represents the slip plane.
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2.1 Simulation cell setup in molecular simulations

In order to study the inclination angle between the dislocation and the free surface sys-
tematically, a series of large initial cubic boxes are generated with different types of dis-
locations, including edge, screw and mixed dislocations. Each large initial cubic box
contains a dislocation dipole with opposite Burgers vectors in order to satisfy periodic
boundary condition of this cubic box. The Burgers vectors of these two dislocations are
~b=1/2[111] and~b=−1/2[111], respectively. Since the edge and the mixed dislocations
in body-centered crystals such as α-iron are either in {110} slip system or in {112} slip
system when the temperature is not very high, the slip plane of the generated initial
dislocation could be either (11̄0) plane or (112̄) plane. Therefore five cubic boxes are
constructed and the types of dislocation configurations contained in these cubic boxes
are summarized in Table 1. These cubic boxes can be categorized into two cases based
on types of the initial dislocations: 1. Initial edge or mixed dislocation on particular slip
plane ((11̄0) or (112̄)); 2. Initial screw dislocation. It is worthy to note that the number
of atoms containing in these large initial cubic boxes are about several tens millions, it is
large enough in our work to study the boundary condition of dislocations.

All initial cubic boxes are pre-relaxed in MD simulations at temperature T=100K for
10ns and then quenched to T=0K in order to find the equilibrium atomic structure of the
dislocation dipole in all five cubic boxes. Following these steps, the metastable states are
less likely to be trapped in MD simulations.

After the equilibrium dislocation structures are obtained, the initial simulation cells
are generated by cutting these cubic boxes. The resultant cell contains only one threading
dislocation intersecting with two parallel free surfaces. Several initial simulation cells are
cut from one cubic box with different surface normal. The free boundary condition is
used in our molecular simulations for all six surfaces of the initial simulation cell.

In molecular static simulations, all simulation cells are relaxed at constant temper-
ature 300K for 52ns simulations using a time step of 0.0013ps. The temperature are
enforced in static simulations to guarantee that dislocations are not trapped in some
metastable states. After discarding the first 40ns to allow for the dislocation reaching
the equilibrium position, the inclination angle for each simulation cell is calculated based
upon the quenched atomic structure at the simulation time 40ns, 46ns and 52ns, respec-
tively. It is worthy to note that in the determination of inclination angles, we first get
the core atoms of dislocation based on the rescaled centrosymmetry parameter between
0.05 and 0.4, then the continuum dislocation line can be obtained as the central line of
all these core atoms. The inclination angle can be calculated as the intersection angle be-
tween continuum dislocation line and surface. The final resultant inclination angle is the
average value of the inclination angle at those three times.

In molecular dynamics simulations, all initial simulation cells are deformed by exter-
nal constant strain ε0=0.25% and ε0=0.5% applied on the upper and lower free surfaces.
The time step of MD simulations is 0.0013ps. The atomic configurations are relaxed at
different temperatures T1=300K and T2=500K to investigate the temperature effect.
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Figure 2: Cutting the initial simulation cell from the pre-relaxed large enough cubic box. The blue lines represent
the dislocations and the red box represent the generated initial simulation cell. The shaded area is the slip plane.

Table 1: Information of five initial dislocation configurations. The Burgers vector of all dislocations is~b= 1
2 [111].

For a screw dislocation, the slip plane cannot be specified.

Case Type ~ξinit Slip plane θb

1 Edge [112̄] (11̄0) 90◦

2 Mixed [110] (11̄0) 35.3◦

3 Edge [11̄0] (112̄) 90◦

4 Mixed [201] (112̄) 39.2◦

5 Screw [111] 0◦

2.2 Static simulations for initial edge/mixed dislocations

We first study the static atomistic structure and calculate the projected inclination angle α
of equilibrium dislocations for initial simulation cells containing an edge/mixed disloca-
tion on slip plane (11̄0). The surface normal of the simulation cells are [111], [221], [110],
[221̄], [111̄], [223̄] and [112̄], respectively. In order to eliminate the size effects due to the
finite width and surface area of the simulation cell, it is important to generate multiple
simulation cells with the same surface normal but in different widths and surface areas.
In this work, four different initial simulation cells are generated, and the dimensions of
these four cells for each surface normal are listed in Table 2. After verifying the conver-
gence of the projected inclination angle in these four cells, the resultant value could be
obtained by calculating the average of the angles measured in these four samples.

Fig. 3(a1)-(a7) show the equilibrium atomic configurations for the initial edge/mixed
dislocation within slip plane (11̄0) in the cases that the slip plane is perpendicular to
the surface. The atomistic results show that the dislocation lines are almost perfectly
straight in all simulations and the equilibrium orientations are independent of the initial
dislocation type. The detailed values of the equilibrium projected inclination angle α are
shown in Table 3 and also shown in Fig. 4 by the blue dots.

We also performed static simulations for initial edge/mixed dislocation within slip
system {112̄}. In these cases, the surface normal of the simulation cells are [11̄0], [53̄1],
[201], [312] and [423], respectively. The conclusions are the same as previous simulations
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Table 2: The dimensions of initial simulation cell. H is the width of the simulation cell, and Lmin is the smaller
value in Lx and Ly. In our simulations, there are only small different in Lx and Ly due to the cutting procedure.
H, Lx and Ly can be found in Fig. 1 in the main text. (Unit: nm)

~n Sample 1 Sample 2 Sample 3 Sample 4

[111]
H 11 11 21 21

Lmin 16 28 16 28

[221]
H 11 11 21 21

Lmin 17 30 17 30

[110]
H 11 11 21 21

Lmin 12 24 12 24

[221̄]
H 11 11 21 21

Lmin 13 27 13 27

[111̄]
H 11 11 21 21

Lmin 16 28 16 28

[223̄]
H 11 11 21 21

Lmin 16 28 16 28

[112̄]
H 11 11 21 21

Lmin 16 28 16 28

Figure 3: Comparisons of the results of molecular simulations and the analytical model. (a1)-(a7) are the
equilibrium states obtained by molecular simulations. Only surface atoms and the atoms in dislocation core are
shown. (b1)-(b7) are the results obtained from our analytical expression. (c1)-(c4) are the results for initial
screw dislocation. Only lower surface atoms and the dislocation core atoms are shown.

that equilibrium dislocations are almost straight and their directions are independent
on initial dislocation types. The detailed values of the equilibrium projected inclination
angle α are shown in Table 4 and also shown by the red dots in Fig. 4.
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Figure 4: The results of (a) the projected inclination angle α and (b) the angle between dislocation and its
Burgers vector β. The solid lines are the results from anisotropic elasticity and dashed lines are results from
isotropic elasticity. The dots are the results from atomistic calculations.

Table 3: The projected inclination angle α for initial edge and mixed dislocation on slip plane (11̄0). (Unit:
rad)

~n ~ξinit
α

Sample 1 Sample 2 Sample 3 Sample 4

[111]
edge 0.00 0.00 0.00 0.00

mix 0.00 0.00 0.00 0.00

[221]
edge 0.21 0.19 0.20 0.20

mix 0.21 0.20 0.20 0.20

[110]
edge 0.42 0.43 0.42 0.41

mix: 0.43 0.42 0.43 0.42

[221̄]
edge 0.63 0.60 0.57 0.57

mix 0.58 0.60 0.56 0.58

[111̄]
edge 0.54 0.50 0.53 0.50

mix 0.53 0.51 0.52 0.51

[223̄]
edge 0.17 0.18 0.17 0.16

mix 0.18 0.19 0.19 0.22

[112̄]
edge 0.06 0.05 0.04 0.02

mix 0.04 0.05 0.06 0.02
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Table 4: The projected inclination angle α for initial edge and mixed dislocation on slip plane (112̄). (Unit:
rad)

~n ~ξinit
α

Sample 1 Sample 2 Sample 3 Sample 4

[11̄0]
edge 0.00 0.00 0.00 0.01

mix 0.02 0.02 0.03 0.01

[53̄1]
edge 0.21 0.19 0.20 0.19

mix 0.21 0.20 0.20 0.19

[201]
edge 0.46 0.44 0.42 0.43

mix 0.57 0.56 0.54 0.56

[312]
edge 0.27 0.26 0.26 0.27

mix 0.25 0.26 0.24 0.24

[423]
edge 0.19 0.19 0.19 0.20

mix 0.17 0.18 0.19 0.18

2.3 Static simulations for initial screw dislocations

For the simulation cells containing an initial screw dislocation, since we have found that
the finite size effects can be eliminated in the largest sample in previous simulations,
the simulations in this subsection will be performed in the largest sample. In this work,
we generated various initial simulation cells with different surface normals including
[75̄1], [53̄1], [201], [021], [111̄], [1̄11], [11̄1] and [221̄], respectively. The relaxation results
show that in some cells, the final equilibrium dislocations are still one single straight
lines (as shown in Fig. 3(c4)), but in other simulation cells, the equilibrium dislocations
are no longer single straight lines but will break into two straight segments (as shown
in Fig. 3(c1)-(c3)). Based upon these observations, we categorize the simulation cells into
two groups base on their surface normals as follows.

The first group includes simulation cells with the former four surface normals (i.e.,
[75̄1], [53̄1], [201] and [021]). The planes formed by these surface normals and the Burg-
ers vectors belong to (110), and their equilibrium dislocations are single lines. The second
group includes simulation cells with the latter four surface normals (i.e., [111̄], [1̄11], [11̄1]
and [221̄]). The planes formed by these surface normal and the Burgers vectors belong to
(112), and the dislocations in these simulation cells will break into two segments. These
two dislocation segments stay in different slip planes but the slip plane of both disloca-
tions belongs to {112} slip system. We can also find that the inclination angles for these
two segments are the same. The results of the equilibrium α for each segment in all sim-
ulations are shown in Fig. 4 by green dots. The detailed value of the measured projected
inclination angle α are shown in Table 5 and Table 6, respectively.

Since the perfect screw dislocation has an infinite number of possible slip planes and
the preferred slip planes for an equilibrium dislocation with edge component are either
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Table 5: The projected inclination angle α for initial screw dislocation with surface normal slip [75̄1], [53̄1],
[201] and [021]. (Unit: rad)

~n [75̄1] [53̄1] [201] [021]

α 0.439 0.479 0.460 0.440

Table 6: The projected inclination angle α for initial screw dislocation with surface normal slip [111̄], [1̄11],
[11̄1] and [221̄]. (Unit: rad)

~n Segment No. [111̄] [1̄11] [11̄1] [221̄]

α
1 0.520 0.493 0.473 0.535

2 0.537 0.470 0.547 0.525

{110} or {112}, the resultant slip plane depends on the local stress generated by ini-
tial configurations and applied to the initial perfect screw dislocation. We find that the
resultant slip planes of the equilibrium dislocation in all simulations performed in this
subsection are not perpendicular to the surface, therefore the results here can also be
used to show the relationship of the projected inclination angle when the slip plane is not
perpendicular to the free surface.

2.4 Dynamics simulations in deformed cells

In dynamic simulations, a strain ε0 is applied to simulation samples in order to initi-
ate the glide motion of dislocations. The effects of different surface normal and applied
strains are studied and the results are shown in Fig. 5(a)-(b) (for different surface normal)
and Fig. 6(a)-(b) (for different applied strains). In Fig. 5(a)-(b), the dynamic simulations
are performed under temperature T = 300K. It can be found that dislocations in differ-
ent samples with various directions of surface normal and applied strains have almost
the same behavior: The inclination angle in dynamics will approach to the static equi-
librium orientation obtained in previous static simulations in the beginning, and then
the entire dislocation will glide as a straight line under the external shear strain. The
values of the inclination angle θinc during dynamics are almost equal to the correspond-
ing static inclination angles. The time of the initial rotation stage is short. (≈ 10ps as
shown in Fig. 5(a2)-(a4), (b2)-(b4) and also Fig. 6(a2)-(a5), (b2)-(b5)). Since the velocities
of dislocations in metals are in the range from several tens to thousands meters per sec-
ond [47, 48], the displacement of the dislocation during this short time is small (usually
less than several nano-meters). After this initial short rotation stage, the value of θinc in
the dynamic process is almost the same as the corresponding value in the static case. This
can be clearly seen from Fig. 5(c), in which the instantaneous inclination angles measured
during dynamic processes for dislocations in different slip planes (i.e., [110] or [112]) in a
relatively long time only have slight deviations from a constant value, which is the value
of inclination angle θinc obtained in static simulations.
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Figure 5: Results of dynamic simulations. (a) and (b) show the snapshots in the dynamic simulation of an
initial edge dislocation at different simulation time with various surface normal of samples. (a) ~n= [221̄] and
(b) ~n=[201]. The four figures from (a1) to (a4) (and also for (b1) to (b4)) are the snapshots at time t=0ps,
t=15.6ps, t=31.2ps and t=46.8ps, respectively. The red dots represent the atoms in dislocation core and the
free surfaces. (c) Results of the dynamic inclination angle measured in samples with different surface normals
[201] and [221̄]. The dashed lines represent the values obtained by analytical boundary condition. (d) The
effect of temperature on the projected inclination angle.

We also examine the temperature effect on the dynamic inclination angle by varying
T from 300K to 500K. The comparisons of the measured inclination angle are shown in
Fig. 5(d), which imply that the temperature has little effect on the averaged value of the
inclination angle θinc. These observations show that the static inclination angle can be
directly used in dynamic process as a boundary condition in different temperatures.

3 Analytical boundary condition for θinc

In this section, an analytical model for both the static and dynamic inclination angle will
be derived and compared with previous molecular simulations. We begin the derivation

by reviewing the dislocation velocity that depends on the Peach-Koehler force ~fPeach-Koehler

acting on the dislocation [1, 2]:

~v=Md
~fPeach-Koehler =Md

((

σd+σi+σext
)

·~b
)

×~ξ, (3.1)

where σd, σi and σext are the dislocation self stress, the image stress and the external
applied stress on dislocation, respectively.

The force on the dislocation line at a point very close to the intersection point on the

free surface was derived analytically in Ref. [42] as dF= 1
λ

(

− E0(β)
tanθinc

+ dE0(β)
dθinc

)

, where λ is the

distance from the surface intersection point, E0(β) is the prelogarithmic energy factor of
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Figure 6: (a) and (b) show the snapshots of the dynamics of an initial edge dislocation gliding in the slip plane
(112̄) under different values of the applied strain: (a) ε0=0.5% and (b) ε0=0.25%, respectively. The five figures
from (a1) to (a5) (and also for (b1) to (b5)) are the snapshots at time t=0ps, t=33.8ps, t=67.6ps, t=101.4ps
and t=135.2ps, respectively. The red dots represent the atoms in the dislocation core and the free surfaces, and
the dashed blue lines are the analytical results of the simplified model based upon straight line approximation.
(c) The displacements of the upper intersection point, the center point and the lower intersection point of the
dislocation during the dynamic simulations. The positions of these points are label by black dots in (a) and (b).

the dislocation which depends on the angle between the dislocation line and its Burgers

vector, i.e., β as shown in Fig. 1. If the term
(

− E0(β)
tanθinc

+ dE0(β)
dθinc

)

6= 0, the image stress will
diverge as λ approaches to zero, i.e., gets closer to the intersection point. This implies
that [42]:

−
E0(β)

tanθinc
+

dE0(β)

dθinc
=0. (3.2)

This equation specifies the boundary condition for a dislocation when it intersects with
the free surface. However, it was derived when the dislocation slip plane is normal to the
surface and only applies to this special case.

In a general case, the slip plane of the dislocation may not necessarily be perpendic-
ular to the free surface. We modify Eq. (3.2) by using the relation sinθinc = cosα·cosθ0

that

−cosθinc

cosθ0sinα

(

E0(β)tanα+
dE0(β)

dα

)

=0. (3.3)

That is, this condition is derived in terms of the projected inclination angle α instead of
θinc.
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The explicit form of α depends on the expression of prelogarithmic energy factor
E0(β). In both isotropic and anisotropic media, the perlogarithmic energy factor is E0(β)=
Ke
4π

(

b2
e+kb2

s

)

, where be = |~b|sinβ and bs = |~b|cosβ are the edge and screw components of
the Burgers vector of the dislocation, Ke is the energy factor for pure edge dislocation
and k is the ratio of the energy factor between a pure screw dislocation and a pure edge
dislocation. In an isotropic medium, Ke =

µ
1−ν and k=1−ν, where µ and ν are the shear

modulus and Poisson’s ratio. In an anisotropic medium, the expressions of Ke and k in a
BCC crystal can be derived by using the method of Eshelby [49], which gives that

k=
2(c11c44−c2

15)

c2
11−c2

12

,

Ke=
(c11+c12)(c66c44−c2

15)
√

(c11c44−c2
15)(c11−c12)

(c11c44−c2
15)

√

(c66c44−c2
15)(c11−c12)+2(c11+c12)(c66c44−c2

15)
,

(3.4)

where cij are the elastic constants of BCC crystal in the coordinate system that the direc-
tion of x-, y- and z-axis are [1̄21̄], [1̄01] and [111], respectively.

It can be seen that the energy factor of screw dislocation is smaller than that of edge
dislocation in both isotropic and anisotropic cases. Therefore, the dislocation in thin film
can minimize the total energy either by shortening the dislocation length (i.e., decrease

α) or by aligning its direction approaching to ~b since the screw component has smaller
energy factor (i.e., decrease β). The competition between these two mechanisms implies
that the final equilibrium dislocation line direction should be located in between the acute

angle formed by~b and~n1.

The equilibrium condition Eq. (3.3) for the projected inclination angle α in both static
and dynamic simulations in an anisotropic medium becomes a nonlinear equation

1+k

1−k
sinα−sin(2β+α)−sin(2β)cosα=0. (3.5)

The results of α and β obtained from the continuum description in Eq. (3.5) are shown
in Fig. 4(a) and (b), respectively. Excellent agreement can be seen between our analytical
predictions in anisotropic cases and the results from full molecular simulations as shown
in the figure.

Note that in the results of MD simulations shown in the previous section, the ob-
tained instantaneous inclination angle only deviates slightly from its static equilibrium
value. Here we can also obtain the same conclusion from theoretical point of view that
Eq. (3.5) should be satisfied in both static and dynamic simulations. In fact, once this
nonlinear equation does not hold during the dynamic process, according to the force ex-
pression in Ref. [42], the force acting on a point approaching to the intersection point
will be divergent, and this very large image effect will force the instantaneous inclination
angle in dynamic process approach to the value in the static equilibrium case.
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4 Dynamics of the dislocation

In this section, in order to further investigate the boundary condition in DD simulations,
we consider the dynamic of a dislocation line in thin film and derive a simplified model
based upon the Onsager’s principle [50–56]. In Onsager’s variational principle, a sys-
tem in which the inertia forces can be neglected is described by some state variables
x={x1,x2,··· ,xn}, and evolution of the system is described by the time derivative of state
variables, i.e., ẋ={ẋ1, ẋ2,··· , ẋn}. The Rayleighian is then defined by R(x, ẋ)=Φ(ẋ)+Ḟ(x),
where F(x) is the free energy of the system, and Φ(ẋ) = 1

2 ∑i,j ρij ẋi ẋj is the dissipation
function in which ρij are the linear response coefficients. The rates of the state vari-
ables are given by minimizing the Rayleighian with respect to ẋ, i.e., δ[Φ(ẋ)+ Ḟ(x)] =

∑
n
i=1

(

∂Φ
∂ẋi

+ ∂F
∂xi

)

δẋi=0.
The first step in developing the simplified model is to choose some appropriate state

variables. The results of MD simulations obtained in the previous section show that the
dislocation in the dynamics process can be approximated by a straight line except in the
vicinity of free surface. Therefore a straight line approximation can be used to model the
movement of the dislocation in the system shown in Fig. 1. In fact, the movement of the
straight line can be considered as a combination of translation of the center of this straight
line and rigid rotation around this center. Thus the movement of the straight dislocation
line can be described by two variables: α, i.e., the inclination angle of the dislocation lines,
and xc which is the displacement of the center of the dislocation line.

The total free energy of the system as shown in Fig. 1 can be divided into two parts:
the total stored elastic energy Etot and the work done by the external stress W.

We first give the expression of the total stored elastic energy Etot. Since the dislocation
is approximated by a straight line, its elastic energy can be written as [1]

Etot=E0Llog

(

L

eρ

)

, (4.1)

where E0 is the prelogarithmic energy factor, L=H/sinθinc is the total length of the dis-
location line with H being the width of simulation cell, and ρ is the cut-off parameter
associated with dislocation core. The derivative of the total stored elastic energy with
respect to the projected inclination angle α is

dEtot

dα
= Llog

(

L

eρ

)





dE0

dα
+

E0tanαlog
(

L
eρ

)

1+log
(

L
eρ

)



. (4.2)

Since the length of the dislocation is much larger than the dislocation core cut-off param-
eter ρ (i.e., L≫ ρ), we have log(L/eρ)≫ 1, and the derivative of the total elastic energy
with respect to the projected inclination angle α could be approximated by:

dEtot

dα
≈ Llog

(

L

eρ

)(

dE0

dα
+E0tanα

)

. (4.3)
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The variation of the rate of the elastic contribution in the total free energy can be obtained
based upon the Onsager’s principle:

δĖtot= Llog

(

L

eρ

)(

dE0

dα
+E0tanα

)

δα̇. (4.4)

The variation of the rate of the work done by the external applied stress σext on the
dislocation in thin film system can be written as

δẆ=−
∫

Γ

[(

σext ·~b
)

×~ξ
]

·δ~vdl, (4.5)

where δ~v= δẋc x̂c+lδα̇α̂ is the velocity of infinitesimal dislocation segment dl, in which
x̂c is the translation direction of the center of dislocation line and α̂ is the unit direction
perpendicular to the dislocation line in the slip plane. Therefore~ξ×x̂c=cosα~ns and~ξ×α̂=
0 with~ns being the normal direction of the slip plane. Thus we have

δẆ=−
∫ L/2

−L/2
(σext ·~b)·~ns cosαδẋcdl=− fslip Lcosαδẋc, (4.6)

where fslip =(σext ·~b)·~ns is the projection of the Peach-Koehler force due to the external
stress on the slip plane. The variation of the rate of the total free energy with respect to
the rates of two state variables can be obtained from Eq. (4.4) and Eq. (4.6):

δḞ

δα̇
= Llog

(

L

eρ

)(

dE0

dα
+E0tanα

)

, (4.7)

δḞ

δẋc
=− fslipLcosα. (4.8)

The dissipation function Φ(α̇, ẋc) of the dislocation is

Φ=
∫ L/2

−L/2

1

2

v2

Md
dl=

∫ L/2

−L/2

(ẋc+lα̇)2

2Md
dl=

Lẋ2
c

2Md
+

L3α̇2

24Md
, (4.9)

where L = H/sinθinc is the length of dislocation line. v is the velocity of dislocation
segment, which could be given by v= Md · f in overdamped manner due to the friction,
Md is the corresponding dislocation mobility. Therefore the dissipation of infinitesimal
dislocation segment is v2/2Md. This dissipative function leads to ∂Φ/∂α̇ = L3α̇/12Md

and ∂Φ/∂ẋc=Lẋc/Md, and the following evolution equations for α and xc can be derived
based upon the Onsager variational principle (i.e., δΦ+δḞ=0) that

α̇

Md
=

12sin2θinc

H2

(

dE0

dα
+E0tanα

)

log

(

eρsinθinc

H

)

, (4.10)

ẋc

Md
= fslip cosα, (4.11)
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where fslip =(σext ·~b)·~ns is the projection of the Peach-Koehler force due to the external
stress on the slip plane, and H is the width of simulation cell. Since the prefactor for
the evolution of the inclination angle is usually much greater than the prefactor for the
evolution of the center, the initially in-equilibrium dislocation should undergo a very
quick rotation stage governed by the first equation, and then when the inclination angle
approaches to the value in the corresponding static case, the evolution of dislocation is
governed by the second equation. The above equations also show that the evolution of
center position and the inclination angle can be decoupled.

We compare the results obtained by using this simplified model and the MD simu-
lations for simulation samples with surface normal ~n = [201] under different values of
the applied strain ε0 = 0.25% and ε0 = 0.5%. We use the same parameters in both cases
(where the mobility coefficient Md and the core radius ρ are obtained by fitting from the
MD simulations for ε0 = 0.25%). Comparisons of results using these two methods are
shown in Fig. 6(a) and (b). It can be seen that the predicted positions of the dislocation
using the simplified model agree perfectly with the positions of the dislocation obtained
in MD simulations indicated by the region formed by dislocation core atoms. We fur-
ther calculate the positions of the upper intersection point, the center point and the lower
intersection point using our simplified model and compare them with the positions of
corresponding points in MD simulations, and the comparisons are shown in Fig. 6(c1)
and (c2). The excellent agreement between our simplified model’s predictions and the
MD simulation results shown in Fig. 6(a)-(c) from the very beginning of the simulations
validates our simplified model.

Here we have demonstrated that this simplified model is valid in the simple case that
there are only one single threading dislocation and no other defects and intersections.
However, this simplified model can be used to describe more complicated dynamic cases
in the manner as the boundary condition of a dislocation in the vicinity of free surface
and is coupled with DD simulations in the bulk. More precisely, each dislocation can be
decomposed into two parts: one part is the portion away from the free surface and its
motion is described by standard DD simulation; another part is the dislocation segment
in the vicinity of free surface, and its motion is approximated by the simplified model
with two parameters, i.e., the inclination angle and the center of the straight segment
(or one ending point of the straight segment). Generally speaking, this simplified model
can be used as the boundary condition in the vicinity of the intersection point between a
dislocation and the free surface in DD simulations with presence of free surfaces.

5 Conclusions and discussion

In summary, we have systematically studied the inclination angle θinc between the dislo-
cation and free surface by using both molecular static and dynamic simulations in BCC
metal α-iron. We have found that the equilibrium dislocations are straight in simulation
cells with initial edge/mixed dislocations. However, in the some simulation cells with
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initial screw dislocations, the final dislocation will break into two straight segments. The
inclination angle obtained in dynamic simulations quickly converges to the correspond-
ing value in static simulations.

Furthermore, we derived an analytical expression for projected inclination angle as
shown in Eq. (3.5) in which the inclination angle can be uniquely determined by the an-
gle between the projected normal and the Burgers vector. The analytical expression is
validated by excellent agreement in results compared with the molecular static and dy-
namic simulations. This more general expression can be applied in anisotropic medium
as well as when the slip plane is inclined with the surface, thus it can be used as a bound-
ary condition in dislocation dynamic simulations to describe the interception angle of
a dislocation line with respect to the free surface. We have further developed an accu-
rate simplified model to describe the movement of dislocation in thin film based upon
Onsager’s variational principle and straight line approximation observed from MD sim-
ulations, which can be used as the boundary condition in the vicinity of the intersection
point between a dislocation and the free surface in DD simulations with presence of free
surfaces.
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