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Abstract. Truncated L1 regularization proposed by Fan in [5], is an approximation to
the L0 regularization in high-dimensional sparse models. In this work, we prove the
non-asymptotic error bound for the global optimal solution to the truncated L1 regu-
larized linear regression problem and study the support recovery property. Moreover,
a primal dual active set algorithm (PDAS) for variable estimation and selection is pro-
posed. Coupled with continuation by a warm-start strategy leads to a primal dual ac-
tive set with continuation algorithm (PDASC). Data-driven parameter selection rules
such as cross validation, BIC or voting method can be applied to select a proper reg-
ularization parameter. The application of the proposed method is demonstrated by
applying it to simulation data and a breast cancer gene expression data set (bcTCGA).
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1 Introduction

In this paper, we consider the high-dimensional sparse linear regression model

y=Xβ∗+ǫ, (1.1)

where y∈R
n is the response vector, X=[x1,··· ,xp]∈R

n×p is the covariance matrix, β∗∈R
p

is the underlying regression coefficients vector, ǫ=(ǫ1,··· ,ǫn)T ∈R
n is the random noise.
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Without loss generality, we assume that X is normalized such that each column of X is√
n-length. We focus on the case n ≪ p and ‖β∗‖0 < n for the high dimensional and

sparsity assumptions for (1.1), where ‖β∗‖0 denotes the cardinality of nonzero element
of β∗.

There are various convex and non-convex regularization methods for variable esti-
mation and selection of model (1.1). The popular convex regularization methods include
the least absolute shrinkage and selection operator method (Lasso) [19], the adaptive
Lasso [28] and Elastic net [29]. Thanks to the convexity of these regularizers, people have
designed a lot of efficient numerical algorithms to solve above models, see e.g. [4, 21].
The convex model also has its drawback: it produces biased estimates for large coeffi-
cients [14] and lacks oracle property [6]. Some useful nonconvex regularization methods
are proposed to circumvent this drawback, such as the bridge penalty method [9,10], the
truncated L1 regularization [5], the smoothly clipped absolute deviation (SCAD) penalty
[7], the Dantzig selector [3], the minimax concave penalty (MCP) [23], the capped-L1

penalty [26], etc.

The above mentioned nonconvex regularizers can be viewed as an approximation of
original L0 penalty (‖·‖0). Among these regularization methods, the truncated L1 reg-
ularization has an attractive property: its thresholding operator is exactly same as the
thresholding for L0 regularizer. In this work, we will consider the truncated L1 regular-
ization for variable estimation and selection, i.e., we want to solve

min
β∈Rp

1

2n
‖y−Xβ‖2+

p

∑
i=1

ρλ(βi), (1.2)

where λ>0 is the regularization parameter and ρλ(·) is defined by

ρλ(t)=

{
λ|t|, if |t|<λ,
λ2

2 , if |t|≥λ.
(1.3)

We will prove that if the covariance matrix X satisfies a certain incoherence condition,
then one can obtain the nonasymptotic error bound for the global optimal solution to
(1.2). And the support recovery property is also studied. Due to the non-convex and
non-smooth structure of the truncated L1 regularization, (1.2) is a non-convex and non-
smooth optimization problem. Then it is very difficult to design a stable and efficient
numerical algorithm.

Inspired by [8, 12, 15, 17], we will propose a primal dual active set algorithm (PDAS)
to compute the optimal solution to (1.2). PDAS can be viewed as a generalized Newton
method, which involves two steps for each iteration. The active set is first determined
using the summation of the primal and dual variables. Then the primal variable is up-
dated by solving an optimization problem on the active set with small size, and the dual
variable is updated based on a closed-form expression. Combining PDAS with a contin-
uation strategy on the regularization parameter λ can make the whole algorithm more
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efficient. The regularization parameter λ can be determined by a data-driven method
such as cross validation, Bayesian information criterion or the voting method [12].

The rest of this paper is organized as follows. At the end of this section we give
some notations which will be used throughout this paper. In Section 2, we present the
theoretical analysis for the global optimal solution to (1.2). Under some conditions, we
establish the non-asymptotic error bound for the global optimal solution, and show that
its support set coincides with the target support set with high probability. In Section 3
we introduce the PDAS algorithm and its globalization with continuation strategy. In
Section 4 we conduct extensive numerical experiments to evaluate the performance of
PDAS and illustrate its application by analyzing a gene expression data set. We conclude
and summarize in Section 5. Proofs for all the lemmas and theorems are provided in the
appendix.

Let ‖β‖q =(∑
p
i=1 |βi|q)

1
q for q(q∈ [1,∞]) be Lq norm of a vector β=(β1,··· ,βp)T ∈R

p.
Denote by ρ(β,λ)=(ρλ(β1),··· ,ρλ(βp))T, and let ‖β‖min be the minimum absolute value

of β. Let S={1,··· ,p}, and for any A⊆S with size |A|, we use βA (or XA∈R
n×|A|) to rep-

resent the subvector (or submatrix) whose entries (or columns) are listed in A, and XAB

denotes the submatrix of X whose rows and columns are listed in A and B, respectively.
The true active set and inactive set are given by A∗=supp(β∗) and I∗=(A∗)c.

2 Theoretical properties of global optimal solutions

The truncated L1 penalty ρλ(·) in (1.3) possesses some similar properties with other gen-
eral non-convex penalties including SCAD [7], MCP [23] and the capped-L1 penalty [26].
For example, with fixed λ, ρλ(·) is one symmetric function about the ordinate axis, and
vanishes at zero and satisfies subadditivity, that is, ρλ(u+v)≤ρλ(u)+ρλ(v) for all u,v≥0.
See [25] for details analysing these properties about the non-convex regularization. Fur-
thermore, its estimators also admit the sparsity, unbiasedness and continuity, advocated
and characterized by [1,7]. Therefore, due to these excellent properties, we can derive the
oracle nonasymptotic error bound for the global solution and study its support recovery
property by following [25].

Define β⋄ as the global minimization of problem (1.2). To estimate the error between
β⋄ and the true solution β∗, we need the restricted invertibility factor and η-NC condition
[25] which are defined as follows.

Definition 2.1. For q≥1, ξ>0 and A⊂S, we define the restricted invertibility factor as

RIFq(ξ,A)= inf




|A|1/q

∥∥∥XTXu
∥∥∥

∞

n‖u‖q
: ‖ρ(uAc ,λ)‖1< ξ‖ρ(uA,λ)‖1



. (2.1)

Let η ∈ (0,1]. We say that the truncated L1 regularization method (1.2) satisfies the η
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null consistency condition (η-NC) if the following equality holds:

min
b∈Rp

(
‖ǫ/η−Xb‖2

2/2n+‖ρ(b,λ)‖1

)
=

‖ǫ/η‖2
2

2n
. (2.2)

Theorem 2.1. Assume that the η-NC condition (2.2) holds with η∈(0,1). Let ξ=(η+1)/(1−η)
in (2.1) and ‖XTǫ/n‖≤λ. Then for all q≥1,

‖β∗−β⋄‖q ≤
2λ|A∗|1/q

RIFq(ξ,A∗)
.

The proof can be find in the appendix. Next, we study the probabilistic and nonasymp-
totic error bounds of the minimizer β⋄ under the following two assumptions.

(C1) The error terms ǫ1,··· ,ǫn are independent and identically distributed with mean 0
and subgaussian tails, that is, there exists one constant σ>0 such that E[exp(tǫi)]≤
exp(σ2t2/2) for t∈R, i=1,··· ,n.

(C2) ‖β∗
A∗‖min≥ 2γn

RIF∞(ξ,A∗)
, where γn=σ

√
2log(p/α)

n with α∈(0, 1
2), η and ξ are defined in

Theorem 2.1.

Remark 2.1. Condition (C1) on the subgaussion tails of the error terms is standard in
high-dimensional regression models. Condition (C2) assumes that the signal is not too
small, which is needed for the target signal to be detectable.

Theorem 2.2. Assume that the η-NC condition (2.2) holds with η∈ (0,1), and (C1)-(C2) hold.
Set ξ = (η+1)/(1−η) in (2.1). Then for all q ≥ 1 and any α ∈ (0, 1

2) defined in (C2), with
probability at least 1−2α,

‖β∗−β⋄‖q ≤
2γn|A∗|1/q

RIFq(ξ,A∗)
.

The following theorem establishes the support recovery property of the global solution
β⋄.

Theorem 2.3. Assume that the η-NC condition (2.2) holds with η∈ (0,1), and (C1)-(C2) hold.
Set ξ=(η+1)/(1−η) in (2.1). Then for any α∈ (0, 1

2) defined in (C2), with probability at least
1−2α, A∗⊆ supp(β⋄).

The proof to Theorems 2.2 and 2.3 are in the appendix.
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3 Primal dual active set (PDAS) algorithm with continuation

As above theoretical analysis, the global solution β⋄ of (1.2) is one oracle estimator of the
target regression coefficients β∗. But the minimization problem (1.2) is one non-convex
and non-smooth optimization problem, it is not easy to design numerical algorithm to
obtain this oracle estimator. Inspired by [12, 13, 17], we propose a primal dual active set
algorithm (PDAS) for fixed regularization parameter λ. Then coupled with a warm-start
strategy as its globalization, we have PDAS with continuation (PDASC) method.

3.1 PDAS algorithm

We first give a necessary condition to the global minimization β⋄.

Lemma 3.1. If β⋄ is the global minimizer of (1.2), then it satisfies

{
d⋄=XT(y−Xβ⋄)/n,

β⋄=Γλ(β⋄+d⋄),
(3.1)

where the i-th element of Γλ(·) is defined by

(Γλ(β))i=

{
0, |βi|≤λ,

βi, |βi|>λ.
(3.2)

Conversely, if β⋄ and d⋄ satisfy (3.1)-(3.2), then β⋄ is a local minimizer of (1.2).

The proof can be find in the appendix. Lemma (3.1) is similar to Lemma 1 in [11]
and Lemma 3.4 in [12], with different penalty functions substituting to the truncated L1

penalty.
Denote by A⋄=supp(β⋄) and I⋄=(A⋄)c, then from the definition of β⋄ and d⋄ defined

in (3.1) and Γλ(·) in (3.2), we can conclude that

A⋄={i∈S : |β⋄
i +d⋄i |>λ}, I⋄={i∈S : |β⋄

i +d⋄i |≤λ},

and 



β⋄
I⋄ =0,

d⋄
A⋄ =0,

β⋄
A⋄ =(XT

A⋄XA⋄)−1XT
A⋄y,

d⋄
I⋄ =XT

I⋄(y−XA⋄β⋄
A⋄)/n.

For fixed λ, let {βk,dk} be the value at k-th iteration, and denote the active set and inactive

set as {Ak, Ik} based on {βk,dk}, where {Ak, Ik} is expressed as

Ak={i∈S : |βk
i +dk

i |>λ}, Ik ={i∈S : |βk
i +dk

i |≤λ}. (3.3)
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Therefore we can get a new approximation pair {βk+1
Ik ,dk+1

Ak ,βk+1
Ak ,dk+1

Ik } showed as follow:





βk+1
Ik =0,

dk+1
Ak =0,

βk+1
Ak =(XT

Ak XAk)−1XT
Ak y,

dk+1
Ik =XT

Ik(y−XAk βk+1
Ak )/n.

(3.4)

The proposed PDAS algorithm is described in the following Algorithm 1.

Algorithm 1 PDAS Algorithm

1: Input: β0, d0, λ, K
2: for k=0,1,··· ,K, do
3: Ak =

{
j∈S : |βk

j +dk
j |>λ

}
, Ik =(Ak)c.

4: βk+1
Ik =0.

5: dk+1
Ak =0.

6: βk+1
Ak =(XT

AkXAk)−1XT
Ak y.

7: dk+1
Ik =XT

Ik(y−XAk βk+1
Ak )/n.

8: if Ak=Ak+1 or k≥K, then

9: Stop and denote the last iteration βÂ, β Î , dÂ, d Î .
10: else

11: k= k+1
12: end if
13: end for

14: Output: β̂(λ)=(βT
Â

, βT
Î
)T and d̂(λ)=(dT

Â
, dT

Î
)T as the estimation at λ.

PDAS algorithm (Algorithm 1) terminates computation when the sequential estimated
support coincides with each other or the maximum iteration number exceeds the given
iteration number K large enough. In PDAS algorithm, step 3 selects the active predictors
by combining the primal part with dual part. Then, it obtains the solution limited to the
selected active set Ak as described in step 6, where the solver is the least square estimator
limited to the selected active set Ak.

PDAS algorithm only obtains the solution β̂(λ) for the fixed regularization parameter
λ, and we generally concentrate more on the solution path with different λ belonging to
a finite interval. Thence we propose one sequential version of PDAS with a warm-start
strategy to get the desirable solution path and use one appropriate variable selection
criterion to choose the optimal solution in the next subsection.
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3.2 PDASC algorithm

Combining PDAS algorithm with a continuation strategy to provide good initial guesses,
we have PDASC algorithm to output a solution path. From the Lemma 3.1, 0 will be
one minimizer of the optimization problem (1.2) if λ≥‖XTy/n‖∞. Therefore we can let
λm=λ0αm, for α∈(0,1), be a decreasing sequence of regularization parameters, where we
set λ0=‖XTy/n‖∞ such that

β̂(λ0)=0 and d̂(λ0)=XTy/n.

Then we can run Algorithm 1 on the sequence {λm}m, and get the solution path

{β̂(λm),d̂(λm)}m. In PDASC algorithm, we set the initial values be {β̂(λm),d̂(λm)} in
Algorithm 1 with λ = λm+1. In addition, we can terminate the PDASC algorithm and

obtain a solution path until ‖β̂λm
‖0>⌊ n

log p⌋ for some m. Last, the optimal λ can be deter-

mined by a data-driven method such as cross validation, Bayesian information criterion
or the voting method [12] without any extra computational overhead. The pseudocode
of PDASC algorithm is described in the following Algorithm 2.

Algorithm 2 PDASC Algorithm

1: Input: β̂(λ0)=0, d̂(λ0)=XTy/n, λ0=‖XTy/n‖∞, M, α.
2: for m=1,··· ,M do

3: λ=λm =λ0αm, β0= β̂(λm−1), d0= d̂(λm−1).

4: Run Algorithm 1 to get β̂(λm) and d̂(λm).

5: if ‖β̂(λm)‖0>⌊ n
log p⌋, stop.

6: end for

7: Output:
{

β̂(λ0), β̂(λ1),··· , β̂(λM)
}

.

4 Numerical examples

In this section, we use simulation data set and real data set to illustrate the effectiveness
of the proposed PDASC algorithm to truncated L1 penalty. As comparison the solvers to
Lasso, MCP and SCAD are R package ncvreg [2].

In the computations, the n×p covariates matrix X is generated according to the fol-
lowing three settings:

(I) The rows of X are independently distributed from N(0,Σ), where Σi,j = ρ|i−j| for
1≤ i, j≤ p, and ρ is the correlation parameter.

(II) We first generate a n×p random Gaussian matrix X̃ whose entries are i.i.d.
∼N(0,1). Then the covariates matrix X is generated with x1 = x̃1, xp = x̃p, and
xj = x̃j+ρ(x̃j+1+x̃j−1), j=2,··· ,p−1. Here ρ is a measure of the correlation among
covariates.
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(III) The rows of X are independently distributed from N(0,Σ), where the diagonal and
off-diagonal elements of Σ are 1 and ρ= 1

1+C·T for C>0 and T=‖β∗‖0, respectively.
See [27] for details.

The support A∗ is chosen uniformly from S with |A∗|=T<n. The nonzero elements
of β∗ are generated via β∗

i = θiR
κi , where θi are i.i.d. Bernoulli random variables, κi are

i.i.d. uniform random variables in [0,1] and R>1. Then the response vector is generated
based on y=Xβ∗+ǫ, where ǫ∼N(0,σ2 Ip).

4.1 Accuracy and efficiency

In this section, we compare PDASC with Lasso, MCP and SCAD in terms of the aver-
age ℓ∞ absolute error (AE), the average ℓ2 relative error (RE), the average exact support
recovery probability (RP), the mean size of the estimated supports (MSES), and the aver-
age CPU time (Time) (in seconds). Let J denote the number of independent replications.
Then above criteria can be defined as

AE=
1

J

J

∑
j=1

‖β̂
(j)−β∗‖∞, RE=

1

J

J

∑
j=1

‖β̂
(j)−β∗‖/‖β∗‖,

RP=
1

J

J

∑
j=1

1{Â(j)=A∗}, MSES=
1

J

J

∑
j=1

|Â(j)|,

Time=
1

J

J

∑
j=1

t(j),

where β̂
(j)

is the estimator at j-th simulation, Â(j) is the estimated support, and t(j) is the
j-th running time. We consider following three scenarios:

• X is generated according to (I), and σ=0.5, 1, ρ=0.2:0.2:0.8, R=10, n=400, p=4000,
T=20.

• X is generated according to (II), and σ=0.5, 1, ρ=0.2 : 0.2 : 0.8, n=1000, p=10000,
T=40.

• X is generated according to (III), and σ=0.5, 1, C=2 :2 :8, n=400, p=4000, T=20.

The results reported in Tables 1-3 are based on 100 independent replications. As shown
in Tables 1-3, PDASC is more accurate in terms of estimation error measured by AE and
RE, exact support recovery probability (RP), and mean length of the estimated supports
(MSES) than Lasso, MCP and SCAD in all the settings considered here. As for computa-
tional efficiency, PDASC is about 5-10 times faster than Lasso, MCP and SCAD.
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Table 1: Numerical results with n=400, p=4000, T=20, R=10, σ=0.5 and 1, ρ=0.2 :0.2 :0.8 and X follows
(I).

ρ σ Method AE RE (10−2) Time(s) RP MSES

0.2 0.5 Lasso 0.675 10.95 3.86 0.96 20.04

MCP 0.173 1.28 4.18 1 20

SCAD 0.384 2.98 3.89 1 20

PDASC 0.055 0.57 0.71 1 20

1 Lasso 0.698 10.96 3.43 0.7 20.35

MCP 0.215 1.73 4.18 1 20

SCAD 0.413 3.25 4.14 1 20

PDASC 0.111 1.14 0.70 1 20

0.4 0.5 Lasso 0.714 11.14 3.84 0.85 20.2

MCP 0.170 1.26 4.17 1 20

SCAD 0.395 3.06 3.83 1 20

PDASC 0.057 0.58 0.72 1 20

1 Lasso 0.723 11.20 3.40 0.63 20.53

MCP 0.204 1.69 4.08 1 20

SCAD 0.413 3.30 4.18 1 20

PDASC 0.115 1.16 0.73 1 20

0.6 0.5 Lasso 0.724 11.20 3.91 0.48 20.8

MCP 0.189 1.41 4.14 0.99 19.99

SCAD 0.412 3.15 3.83 0.99 19.99

PDASC 0.055 0.56 0.86 1 20

1 Lasso 0.734 11.17 3.41 0.23 21.46

MCP 0.227 1.87 4.01 0.99 19.99

SCAD 0.432 3.40 4.18 0.99 19.99

PDASC 0.111 1.13 0.69 1 20

0.8 0.5 Lasso 0.876 12.15 3.85 0.01 23.95

MCP 0.208 1.57 4.24 0.98 19.98

SCAD 0.464 3.55 3.95 0.98 19.97

PDASC 0.056 0.57 0.92 1 20

1 Lasso 0.886 12.23 3.28 0.01 25.44

MCP 0.247 2.00 3.85 0.98 19.97

SCAD 0.482 3.82 4.24 0.96 19.98

PDASC 0.111 1.15 0.61 1 20
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Table 2: Numerical results with n=1000, p=10000, T=40, R=10, σ=0.5 and 1, ρ=0.2:0.2:0.8 and X follows
(II).

ρ σ Method AE RE (10−2) Time RP MSES

0.2 0.5 Lasso 0.766 11.62 20.55 0.94 40.06

MCP 0.249 1.51 20.60 1 40

SCAD 0.512 3.74 22.59 1 40

PDASC 0.037 3.31 2.49 1 40

1 Lasso 0.773 11.63 22.00 0.91 40.09

MCP 0.264 1.67 22.01 1 40

SCAD 0.523 3.82 18.66 1 40

PDASC 0.074 0.66 2.26 1 40

0.4 0.5 Lasso 0.820 11.83 20.59 0.41 40.9

MCP 0.287 1.73 20.65 0.98 40.01

SCAD 0.534 3.85 22.60 0.99 40.01

PDASC 0.033 0.30 2.63 1 40

1 Lasso 0.825 11.85 22.61 0.38 41.08

MCP 0.300 1.86 22.64 0.98 40.01

SCAD 0.544 3.92 18.59 0.99 40.01

PDASC 0.067 0.60 2.29 1 40

0.6 0.5 Lasso 0.865 12.02 20.69 0.18 41.86

MCP 0.6123 3.27 20.65 0.82 40.05

SCAD 0.615 4.23 21.96 0.91 40.04

PDASC 0.041 0.32 2.69 0.98 40.04

1 Lasso 0.867 12.04 22.78 0.17 41.96

MCP 0.613 3.32 22.91 0.82 40.04

SCAD 0.622 4.28 18.30 0.92 40.03

PDASC 0.103 0.76 2.43 0.96 40.09

0.8 0.5 Lasso 0.853 11.98 20.69 0.15 41.88

MCP 0.312 1.81 20.70 0.96 39.99

SCAD 0.567 4.00 22.00 0.96 40.02

PDASC 0.025 0.23 2.79 1 40

1 Lasso 0.855 11.99 23.51 0.17 41.95

MCP 0.319 1.89 23.50 0.96 39.99

SCAD 0.573 4.05 18.41 0.96 40.02

PDASC 0.051 0.46 2.49 0.99 40.03
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Table 3: Numerical results with n=400, p=4000, T=20, R=10, σ=0.5 and 1, C=2 :2 :8 and X follows (III).

C σ Method AE RE (10−2) Time RP MSES

2 0.5 Lasso 0.703 11.03 3.95 0.81 20.25

MCP 0.178 1.32 3.86 1 20

SCAD 0.399 3.09 4.16 1 20

PDASC 0.056 0.57 0.81 1 20

1 Lasso 0.707 11.03 3.95 0.54 20.74

MCP 0.212 1.78 4.06 1 20

SCAD 0.415 3.36 4.41 1 20

PDASC 0.112 1.15 0.69 1 20

4 0.5 Lasso 0.691 10.97 3.95 0.89 20.12

MCP 0.173 1.28 3.95 1 20

SCAD 0.399 3.07 4.21 1 20

PDASC 0.057 0.58 0.82 1 20

1 Lasso 0.727 11.18 3.86 0.63 20.52

MCP 0.206 1.73 4.11 1 20

SCAD 0.418 3.33 4.27 1 20

PDASC 0.113 1.16 0.71 1 20

6 0.5 Lasso 0.694 11.08 4.02 0.89 20.11

MCP 0.169 1.29 3.93 1 20

SCAD 0.397 3.10 4.31 1 20

PDASC 0.055 0.57 0.85 1 20

1 Lasso 0.701 11.08 3.93 0.68 20.47

MCP 0.200 1.72 4.09 1 20

SCAD 0.416 3.37 4.38 1 20

PDASC 0.110 1.13 0.64 1 20

8 0.5 Lasso 0.687 10.89 3.96 0.91 20.1

MCP 0.161 1.20 4.20 1 20

SCAD 0.365 2.82 4.18 1 20

PDASC 0.057 0.58 0.81 1 20

1 Lasso 0.711 11.15 4.01 0.68 20.4

MCP 0.194 1.65 4.10 1 20

SCAD 0.385 3.10 4.34 1 20

PDASC 0.114 1.17 0.57 1 20
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4.2 Influence of the model parameters

In this subsection, we consider the influence of model parameters, including sample size
n, ambient dimension p, correlation ρ, and noise level σ, on the performance of PDASC
and another three alternative methods in terms of computational speed and support re-
covery. To this end, we test all the four methods with X generated according to setting
(I). The sample size n, the covariate dimension p, the sparsity level T, the correlation ρ,
and the noise level σ are set as following:

• n=100 :50 :600, p=600, T=10, R=5, σ=1, ρ=0.5.

• n=200, p=300 :300 :3000, T=10, R=5, σ=1, ρ=0.5.

• n=200, p=600, T=10, R=5, σ=1, ρ=0.1 :0.1 :0.8.

• n=200, p=600, T=10, R=5, σ=0.1 :0.1 :2.5, ρ=0.5.

The evaluation measures how RP and time change with respect to n,p,ρ and σ. The
results are shown in Figs. 1-2. For example, the four sub-figures in Fig. 1 show the per-
formance of RP of all the four methods represented with four solid lines with different
colors as n,p,ρ and σ vary, respectively. We can see that PDASC (the black solid line)
is on the top of each sub-figures in Fig. 1, and is at the bottom of each sub-figures in
Fig. 2, which indicates that PDASC achieves higher support recovery probability, and
faster speed than those of Lasso, MCP and SCAD.

4.3 Real data example

We further illustrate the application PDASC by analyzing the Breast cancer gene expres-
sion data set (bcTCGA), which have been studied by [16, 18, 22] and can be downloaded
from http://myweb.uiowa.edu/pbreheny/data/bcTCGA.html.

This data set comes from breast cancer tissue samples deposited to The Cancer
Genome Atlas (TCGA) project. In this data set, expression measurements of 17814 genes,
including BRCA1, from 536 patients are available Among all genes in bcTCGA, BRCA1 is
the first gene identified that increases the risk of early onset breast cancer. BRCA1 is also
likely to interact with many other genes, including tumor suppressors and regulators of
the cell division cycle. Hence we let BRCA1 be the response vector y. There are 491 genes
with missing data, which are excluded from the analysis. Hence, the dimension of the
covariate matrix X is 536×17322. We use PDASC to fit this data set with the linear model.
We also apply Lasso, MCP and SCAD to this data set by using the R package ncvreg [2].
The detailed results are showed in Table 4.

In Table 4, Lasso selects more genes than another three methods, and MCP selects the
fewest genes. The coefficients of the common selected genes using these four methods
have same sign. Some estimated coefficients of Lasso and SCAD are nearly close to zero
such as KIAA0101, LSM12, MFGE8, UHRF1, CENPQ, SPRY2 and CDC6. PDASC yields
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Table 4: The estimation of bcTCGA.

Gene name number Lasso MCP SCAD PDASC

ABHD13 82 - -0.022 - -

C17orf53 1743 0.082 - 0.091 -

CCDC56 2739 0.056 - 0.039 -

CDC25C 2964 0.028 - 0.027 -

CDC6 2987 0.011 - 0.005 0.069

CEACAM6 3076 - - - 0.023

CENPK 3105 0.018 - 0.011 -

CRBN 3676 - -0.057 - -

DTL 4543 0.091 0.355 0.089 -

FABP1 5081 - - - -0.126

FAM77C 5261 - - - 0.017

FGFRL1 5481 - -0.022 - -

HBG1 6616 0.069

HIST2H2BE 6811 - -0.012 - -

KHDRBS1 7709 - 0.112 - -

KIAA0101 7719 0.007 - - -

KLHL13 8002 - -0.013 - -

LSM12 8782 0.006 - - -

MFGE8 9230 -0.005 - - -

MIA 9359 -0.006

NBR2 9941 0.273 0.504 0.235 0.555

NPY1R 10311 0.008

PSME3 12146 0.085 - 0.074 -

RDM1 12615 0.058

SETMAR 13518 - -0.063 - -

SLC25A22 13833 - 0.017 - -

SLC6A4 14021 - - - 0.013

SPAG5 14296 0.024 0.048 0.013 0.180

SPRY2 14397 -0.012 - -0.005 -

TIMELESS 15122 0.033 - 0.036 -

TMPRSS4 15432 - - - 0.031

TOP2A 15535 0.035 - 0.035 0.128

TUBA1B 15882 0.021 - - -

TYR 15953 - - - 0.132

UHRF1 16087 0.003 - - -

VPS25 16315 0.106 0.307 0.108 -
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Figure 1: RP versus n,p,ρ and σ.

similar values of the estimated coefficients to these of MCP for genes NBR2 and SPAG5,
and yields the similar value of the estimated coefficients with Lasso and SCAD for gene
CDC6, NBR2, SPAG5, TOP2A.

5 Conclusion

In this paper, we consider the truncated L1 regularization [5] to spare linear regres-
sion model. We establish the nonasymptotic error bounds and study its support recov-
ery property. Moreover, a primal dual active set algorithm with continuation strategy
(PDASC) is proposed for variable estimation and selection. Both simulation data and
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Figure 2: Time versus n,p,ρ and σ.

real data demonstrates the superior performance of the PDASC in terms of accuracy,
support recovery and computational efficiency in comparison with the lasso, MCP and
SCAD methods. How to extend these results to the nonlinear models can be our further
research.
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Appendix

In this appendix, we will prove Theorems 2.1-2.3 and Lemma 3.1.
To prove Theorems 2.1-2.3, we first introduce three lemmas (Lemmas A.1-A.3). These

three Lemmas are available in the literatures, we scratch the proof for the completeness.

Lemma A.1 (Lemma 1 in [25]). If β⋄ is the global solution of the optimization problem (1.2),
then ∥∥∥XT(y−Xβ⋄)/n

∥∥∥
∞
≤λ.

Proof. As β⋄ is the minimizer of (1.2). Then it yields that for all real t∈R,

‖y−Xβ⋄‖2
2/(2n)+ρλ(β⋄

j )≤
∥∥y−Xβ⋄−xjt

∥∥2

2
/(2n)+ρλ(β⋄

j +t).

Moreover, ρλ(t) satisfies the subadditive property in t, then

txT
j (y−Xβ⋄)/n≤ t2

∥∥xj

∥∥2

2
/(2n)+ρλ(β⋄

j +t)−ρλ(β⋄
j )≤ t2/2+ρλ(t).

Thus we have ∥∥∥XT(y−Xβ⋄)/n
∥∥∥

∞
≤ inf

t>0
[t/2+ρλ(t)/t]=λ.

This completes the proof.

Lemma A.2 (Lemma 2 in [25]). Assume the η-NC condition (2.2) with η∈ (0,1). Suppose β⋄

is the global solution of (1.2). Let ∆=β⋄−β∗ and ξ=(1+η)/(1−η). Then,

‖X∆‖2
2/(2n)+‖ρ(∆I∗ ,λ)‖1≤ ξ‖ρ(∆A∗ ,λ)‖1.

Proof. From the definition of β⋄, we have

0≤‖y−Xβ∗‖2
2/(2n)+‖ρ(β∗,λ)‖1−‖y−Xβ⋄‖2

2/(2n)−‖ρ(β⋄,λ)‖1

=−‖X∆‖2
2/(2n)+ǫTX∆/n+‖ρ(β∗,λ)‖1−‖ρ(β∗+∆,λ)‖1.

By η−NC condition (2.2), we have ‖ǫ/η‖2
2/(2n)≤‖ǫ/η−tX∆‖2

2/(2n)+‖ρ(t∆,λ)‖1 for
all t>0, which can be written as

ǫTX∆/n≤ηt‖X∆‖2
2/(2n)+(η/t)‖ρ(t∆,λ)‖1.

The above two displayed inequalities yield

(1−ηt)‖X∆‖2
2/(2n)≤ (η/t)‖ρ(t∆,λ)‖1+‖ρ(β∗,λ)‖1−‖ρ(β∗+∆,λ)‖1. (A.1)
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Set t=1 in (A.1). Then it follows that β∗
I∗ =0, and the sub-additivity of ρλ(t) that

(1−η)‖X∆‖2
2/(2n)

≤η‖ρ(∆,λ)‖1+‖ρ(β∗
A∗ ,λ)‖1−‖ρ(β∗

A∗+∆A∗ ,λ)‖1−‖ρ(∆ I∗ ,λ)‖1

≤(η+1)‖ρ(∆A∗ ,λ)‖1+(η−1)‖ρ(∆ I∗ ,λ)‖1.

Thus we can get

‖X∆‖2
2/(2n)+‖ρ(∆I∗ ,λ)‖1≤ ξ‖ρ(∆A∗ ,λ)‖1.

This completes the proof.

Lemma A.3. Suppose (C1) holds. Then for any α∈ (0, 1
2), we have

P

(
‖XTǫ/n‖∞ ≤γn

)
≥1−2α, (A.2)

where γn=σ

√
2log(p/α)

n .

Proof. This lemma follows from standard probabilities calculations, see, [20, 24].

A.1 Proof of Theorem 2.1

Proof. Let ∆=β⋄−β∗. By Lemma A.2, we have

‖X∆‖2
2/(2n)+‖ρ(∆I∗ ,λ)‖1≤ ξ‖ρ(∆A∗ ,λ)‖1 .

Thus, by (2.1), we can get

‖∆‖q ≤
∥∥∥X⊤X∆

∥∥∥
∞
|A∗|1/q/

{
nRIFq(ξ,A∗)

}
. (A.3)

It follows from Lemma A.1 that
∥∥X⊤(y−Xβ⋄)/n

∥∥
∞
≤ λ. Besides, we can chose λ such

that
∥∥XTǫ/n

∥∥
∞
≤λ. Thus, we have

∥∥∥X⊤X∆/n
∥∥∥

∞
=
∥∥∥X⊤(y−Xβ⋄−ǫ)/n

∥∥∥
∞
≤2λ. (A.4)

Combing (A.3) with (A.4), it yields that

‖β∗−β⋄‖q ≤
2λ|A∗|1/q

RIFq(ξ,A∗)
. (A.5)

This completes the proof.
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A.2 Proof of Theorems 2.2

Proof. By Lemma A.3, for any α∈ (0, 1
2), we have

P

(
‖XTǫ/n‖∞ ≥γn

)
≤2α,

where γn=σ

√
2log(p/α)

n . By (A.5), with probability at least 1−2α,

‖β∗−β⋄‖q ≤
2γn|A∗|1/q

RIFq(ξ,A∗)
. (A.6)

This completes the proof.

A.3 Proof of Theorem 2.3

Proof. Set q=∞ in (A.6). Then the condition (C2) shows that

‖β∗−β⋄‖∞ <‖β∗
A∗‖min.

It implies that A∗⊆supp(β⋄).

A.4 Proof of Lemma 3.1

Proof. Let Lλ(β)= 1
2n‖Y−Xβ‖2

2+∑
p
i=1ρλ(βi). Assume that the vector β⋄=

(
β⋄

1,··· ,β⋄
p

)
∈R

p

is the global minimizer of Lλ(·). Then, we have

β⋄
i ∈argmin

t∈R

Lλ(β⋄
1,··· ,β⋄

i−1,t,β⋄
i+1,··· ,β⋄

p)

⇔ β⋄
i ∈argmin

t∈R

1

2
‖Xβ⋄−Y+(t−β⋄

i )xi‖2+ρλ(t)

⇔ β⋄
i ∈argmin

t∈R

1

2
(t−β⋄

i )
2+(t−β⋄

i )xT
i (Xβ⋄−Y)+ρλ(t)

⇔ β⋄
i ∈argmin

t∈R

1

2

(
t−β⋄

i −xT
i (Y−Xβ⋄)

)2
+ρλ(t).

Then, by Lemmas 3.3-3.4 of [12], we can conclude that
{

d⋄=XT(Y−Xβ⋄)/n,

β⋄=Γλ(β⋄+d⋄),

where the i-th element of Γλ(·) is defined as

(Γλ(β))i =

{
0, |βi|≤λ,

βi, |βi|>λ.
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Conversely, assume that β⋄ and d⋄ satisfy (3.1) and (3.2). Denote

A⋄={i∈S : |β⋄
i +d⋄i |>λ} , I⋄=(A⋄)c.

By (3.1) and (3.2), we can conclude that |β⋄
i |>λ and d⋄i =0 for i∈A⋄, and |d⋄j |≥λ for j∈ I⋄.

Then we will show that Lλ(β⋄+h)≥Lλ(β⋄) if h is small enough with ‖h‖∞<λ. By some
simple computation, it yields that

Lλ(β⋄+h)−Lλ(β⋄)=
1

2n
‖Xβ⋄−Y+Xh‖2

2−
1

2n
‖Xβ⋄−Y‖2

2+
p

∑
i=1

(ρλ(β⋄
i +hi)−ρλ(β⋄

i ))

≥ ‖Xh‖2
2

2n
−〈h,d⋄〉+ ∑

i∈I⋄
(ρλ(β⋄

i +hi)−ρλ(β⋄
i ))

≥ ‖Xh‖2
2

2n
+ ∑

i∈I⋄
λ|hi |−|〈hI⋄ ,d⋄

I⋄〉|

≥0,

where the first inequality holds due to i∈A⋄, ρλ(β⋄
i +hi)=ρλ(β⋄

i )=
λ2

2 for small enough h,
the last inequality holds by |d⋄i |≤λ for i∈ I⋄. Therefore β⋄ is a local minimizer of (1.2).
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