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1 Introduction

In this paper, we consider the two-player zero-sum linear quadratic stochastic differential

games on a finite horizon. The fundamental theory of differential games was given in 1965 by

[1]. Pontryagin’s Maximum Principle (see [2]) and Bellman’s Dynamic Programming (see

[3]) are applied to games. Bensoussan[4], Bensoussan and Friedman[5] studied stochastic

differential games. It is well known that the existence of open loop saddle points guarantees

the existence of the value of the differential games; the existence and equivalence of the

lower and upper values guarantee the existence of the value of the differential games. These

statements can be found, for instance, in [6–8].

Zhang[9] considered the two-person linear quadratic differential games and showed that

the value of the game exists if and only if both the upper and lower values exist. The same

outcomes were proved by Delfour[10] by using another way. Specially, Mou and Yong[11] dis-

cussed two-person zero-sum linear quadratic stochastic differential games in Hilbert spaces.

The stochastic form of this problem is studied in this paper and we can achieve the same

outcomes: No need of equivalence of the lower and upper values, we can prove the existence

of the saddle point if and only if the lower and upper values exist. Due to stochastic op-
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timal control (see [4], [12]) is concerned, in the present paper we use the Peng’s stochastic

maximum principle (see [12]) to gain the adjoint equation of this stochastic state system.

This paper is organized as follows: Section 2 provides the basic framework. Some results

of payoff function are discussed in Section 3. The main outcomes are characterized in Section

4, where we prove the existence of the saddle point by the existence of lower and upper values

in this differential game.

2 Statement of the Problem

Let Ω be a bounded smooth domain in Rn, (Ω , F , P ) be a probability space with filtration

F t, and W ( · ) be an Rn-valued standard Wiener process. We assume that

F t = σ{W (s); 0 ≤ s ≤ t}.
Let x be a solution of the following stochastic differential equation:

dx(t) = (A(t)x(t) +B1(t)u(t) +B2(t)v(t))dt

+(D(t)x(t) +C1(t)u(t) +C2(t)v(t))dwt,

x(0) = x0,

(2.1)

where x0 is the initial state at time t = 0. We call that u(t) ∈ L2(0, T ; Rm), m ≥ 1, is the

strategy of the first player if, u( · ) is an F t-adapted process with values in U (a nonempty

subset of Rm (control domain)) such that

E

(∫ T

0

|u(t)|2dt
)

< ∞,

and v(t) ∈ L2(0, T ; Rk), k ≥ 1, is the strategy of the second player.

For any choice of controls u, v, we have the following payoff function:

Cx0(u, v) =
1

2
E
(
Fx(T ) · x(T ) +

∫ T

0

Q(t)x(t) · x(t) + |u(t)|2 − |v(t)|2dt
)
. (2.2)

We assume that F is an n×n matrix, and A(t), B1(t), B2(t), C1(t), C2(t), D(t) and Q(t)

are matrix functions of appropriate order that are measurable and bounded a.e. in [0, T ].

Moreover, F and Q(t) are symmetrical. We write A, B1, B2, C1, C2, D and Q instead of

A(t), B1(t), B2(t), C1(t), C2(t), D(t) and Q(t) throughout this paper and use the above

assumptions. T > 0 is a given final time. |x| and x ·y are the usual norm and inner product,

respectively.

The more general quadratic structure involving cross terms and different quadratic

weights N1u · u and N2v · v on u and v can be simplified to our model (see [10]).

Definition 2.1 The game is said to achieve its open loop lower value if

v−(x0) = sup
v(t)∈L2(0,T ;Rk)

inf
u(t)∈L2(0,T ;Rm)

Cx0(u,v)

is finite and is said to achieve its open loop upper value if

v+(x0) = inf
u(t)∈L2(0,T ;Rm)

sup
v(t)∈L2(0,T ;Rk)

Cx0(u,v)

is finite.



NO. 1 WANG J. LINEAR QUADRATIC STOCHASTIC DIFFERENTIAL GAMES 13

Obviously, we always have

v−(x0) ≤ v+(x0).

Definition 2.2 If both v−(x0) and v+(x0) exist and v−(x0) = v+(x0), then we say that

the open loop value of the game exists and is denoted by v(x0).

Definition 2.3 A pair of controls (ū, v̄) ∈ L2(0, T ; Rm) × L2(0, T ; Rk) is called an

open loop saddle point of the stochastic differential game (2.1) with payoff (2.2), if for all

(t, x) ∈ (0, T )× Ω , u ∈ L2(0, T ; Rm) and v ∈ L2(0, T ; Rk),

Cx0(ū, v) ≤ Cx0(ū, v̄) ≤ Cx0(u, v̄). (2.3)

By Definition 2.3, (2.3) is equivalent to

sup
v∈L2(0,T ;Rk)

Cx0(ū, v) = Cx0(ū, v̄) = inf
u∈L2(0,T ;Rm)

Cx0(u, v̄).

Definition 2.4 For x0 ∈ Rn, we define

V (x0) = {v ∈ L2(0, T ; Rk); inf
u∈L2(0,T ;Rm)

Cx0(u,v) > −∞},

U(x0) = {u ∈ L2(0, T ; Rm); sup
v∈L2(0,T ;Rk)

Cx0(u,v) < +∞},

J−
x0
(v) = inf

u∈L2(0,T ;Rm)
Cx0(u,v),

J+
x0
(u) = sup

v∈L2(0,T ;Rk)

Cx0(u,v).

3 Some Results of Payoff Function

Since the payoff function (2.2) is quadratic, it is infinitely differentiable. We can prove

dCx0(u,v; ū, v̄) = E(Fx(T ) · ȳ(T ) + (Qx, ȳ) + (u, ū)− (v, v̄)), (3.1)

where x is the solution of (2.1) and ȳ is the solution of{
dȳ = (Aȳ +B1ū+B2v̄)dt+ (Dȳ +C1ū+C2v̄)dwt,

ȳ(0) = 0.

Definition 3.1 Given a real function f defined on a Banach space B, the first directional

semiderivative at x in the direction v (when it exists) is defined as

df(x;v) = lim
t→0

f(x+ tv)− f(x)

t
.

The second order bidirectional derivative at x in the directions (v,w) (when it exists) is

defined as

d2f(x; v,w) = lim
t→0

df(x+ tw; v)− df(x; v)

t
.

According to the definition of directional derivative, we have

dCx0(u,v; ū, v̄) = lim
l→0

1

l
[Cx0(u+ lū, v + lv̄)− Cx0(u,v)].

According to adjoint equation of (2.1) and (2.2), we can rewrite expression (3.1) in

another form. Therefore, we quote some remarks on the stochastic differential control.
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We define the Hamiltonian by

H(x,u,v,p,K) = (p, Ax+B1u+B2v) +

d∑
j=1

(Kj , σj(t,x,u,v))

+
1

2
(Qx · x+ |u|2 − |v|2).

The adjoint equation of (2.1) and (2.2) is{
dp+ (A∗p+Qx+ ⟨σ′∗

x , K⟩)dt−Kdwt = 0,

p(T ) = Fx(T ),
(3.2)

where

σ = (σ1, σ2, · · · , σd)

= Dx+C1u+C2v ∈ [0, T ]×Rn ×Rm ×Rk.

Moreover, (p( · ), K( · )) ∈ L2(0, T ; Rn)× (L2(0, T ; Rn))d and K = (K1,K2, · · · ,Kd),

K(t) = σ′∗
x (t,x,u,v)p(t)− Ψ∗(t)G(t),

where Ψ(t) is defined by{
dΨ = −⟨Ψσ′

x, dwt⟩+ ⟨Ψσ′
x, σ′

x⟩dt− ΨAdt,

Ψ(0) = I,

and ∫ t

0

G(s)dw(s) = EFtX − EX

with

X = Φ∗(T )Fx(T ) +

∫ T

0

Φ∗(s)Qx(s)ds,

where Φ(t) is defined by {
dΦ = AΦdt+ ⟨σ′

xΦ, dwt⟩,
Φ(0) = I,

and the following property holds

Ψ(t)Φ(t) = I = Φ(t)Ψ (t).

For the above assumptions and discussions about Hamiltonian and the adjoint equation,

see [12] and [4].

Proposition 3.1 According to adjoint equation (3.2), we can rewrite expression (3.1) in

the following form:

dCx0(u,v; ū, v̄) = E((B∗
1p+C∗

1K + u, ū) + (B∗
2p+C∗

2K − v, v̄)).

Proof. By Itô formula,

d(pȳ) = ȳdp+ pdȳ + (C1ū+C2v̄) ·Kdt.

Thus

dCx0(u,v; ū, v̄) = E

(
Fx(T ) · ȳ(T ) +

∫ T

0

Q(t)x(t) · ȳ(t)dt+ (u, ū)− (v, v̄)

)
= E

(
p(T ) · ȳ(T ) +

∫ T

0

ȳ ·Kdw −
∫ T

0

ȳ ·A∗pdt
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−
∫ T

0

ȳdp−
∫ T

0

D∗K · ȳdt+ (u, ū)− (v, v̄)

)
= E

(∫ T

0

pdȳ +

∫ T

0

(Dȳ +C1ū+C2v̄) ·Kdt

−
∫ T

0

ȳ ·A∗pdt−
∫ T

0

D∗K · ȳdt+ (u, ū)− (v, v̄)

)
= E

(∫ T

0

(B1ū+B2v̄) · pdt+
∫ T

0

(Dȳ +C1ū+C2v̄) ·Kdt

−
∫ T

0

D∗K · ȳdt+ (u, ū)− (v, v̄)

)
= E((B∗

1p, ū) + (B∗
2p, v̄) + (C∗

2K, ū) + (C∗
2K, v̄) + (u, ū)− (v, v̄))

= E((B∗
1p+C∗

1K + u, ū) + (B∗
2p+C∗

2K − v, v̄)).

Similarly, the second order bidirectional derivative of payoff function is of the following

form:

d2Cx0(u,v; ū, v̄; ũ, ṽ) = E(F ȳ(T ) · ỹ(T ) + (Qȳ, ỹ) + (ū, ũ)− (v̄, ṽ)),

where {
dỹ = (Aỹ +B1ũ+B2ṽ)dt+ (Dỹ +C1ũ+C2ũ)dwt,

ỹ(0) = 0.

In particular, for all x0, u, v, ū and v̄,

d2Cx0(u,v; ū, v̄; ū, v̄) = C0(ū, v̄). (3.3)

Namely, the second order bidirectional derivative of payoff function is independent of x0

and (u, v). So we have the following lemma.

Lemma 3.1 The following statements are equivalent:

(1) The map u → C0(u,0) : L2(0, T ; Rm) → R is convex;

(2) For all u ∈ L2(0, T ; Rm), C0(u,0) ≥ 0;

(3) inf
u∈L2(0,T ;Rm)

C0(u,0) = C0(0,0);

(4) For all v and x0, the map u → Cx0(u,v) : L2(0, T ; Rm) → R is convex.

Corollary 3.1 The following statements are equivalent:

(1) The map v → C0(0,v) : L2(0, T ; Rk) → R is concave;

(2) For all v ∈ L2(0, T ; Rk), C0(0,v) ≤ 0;

(3) sup
v∈L2(0,T ;Rk)

C0(0,v) = C0(0,0);

(4) For all u and x0, the map v → Cx0(u,v) : L2(0, T ; Rk) → R is concave.

Corollary 3.2 The following statements are equivalent:

(1) The map (u,v) → C0(u,v) : L2(0, T ; Rm)×L2(0, T ; Rk) → R is (u,v)-convex-

concave. That is, for any v ∈ L2(0, T ; Rk),

u → C0(u,v)
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is convex, and for any u ∈ L2(0, T ; Rm),

v → C0(u,v)

is concave;

(2) The pair (0,0) is a saddle point of C0(u,v):

inf
u∈L2(0,T ;Rm)

C0(u,0) = C0(0,0) = sup
v∈L2(0,T ;Rk)

C0(0,v);

(3) For all x0, the map (u,v) → Cx0(u,v) : L2(0, T ; Rm) × L2(0, T ; Rk) → R is

(u,v)-convex-concave. That is, for any v ∈ L2(0, T ; Rm),

u → Cx0(u,v)

is convex, and for any u ∈ L2(0, T ; Rm),

v → Cx0(u,v)

is concave.

Theorem 3.1 If V (x0) ̸= ∅ and U(x0) ̸= ∅, then the saddle point of payoff C0(u,v)

exists and it is (0,0).

Proof. By the assumption, there exists a v ∈ V (x0) such that inf
u∈L2(0,T ;Rm)

Cx0(u,v) exists,

i.e., there exists an ū ∈ L2(0, T ; Rm) such that

inf
u∈L2(0,T ;Rm)

Cx0(u, v) = Cx0(ū, v).

Thus

dCx0(ū,v; 0,w) = E((B∗
2p+C∗

2K − v, w)), w ∈ L2(0, T ; Rk).

From the definition of directional derivative one has

d2Cx0(ū,v; 0,w; 0,w)

= lim
l→0

1

l
E((B∗

2p+C∗
2K − (v + lw), w)− (B∗

2p+C∗
2K − v, w))

= − E((w, w))

≤ 0.

By (3.3), it follows that

0 ≥ d2Cx0(ū,v; 0,w; 0,w) = C0(0,w), w ∈ L2(0, T ; Rk).

By Corollary 3.1 we have

sup
v∈L2(0,T ;Rk)

C0(0,v) = C0(0,0).

So

inf
u∈L2(0,T ;Rm)

sup
v∈L2(0,T ;Rk)

C0(u,v) ≤ sup
v∈L2(0,T ;Rk)

C0(0,v) = C0(0,0).

Similarly, since U(x0) ̸= ∅, by Lemma 3.1, we have

sup
v∈L2(0,T ;Rk)

inf
u∈L2(0,T ;Rm)

C0(u,v) ≥ inf
u∈L2(0,T ;Rm)

C0(u,0) = C0(0,0).

Hence

v−(0) = sup
v∈L2(0,T ;Rk)

inf
u∈L2(0,T ;Rm)

C0(u,v)
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≥ inf
u∈L2(0,T ;Rm)

C0(u,0)

= C0(0,0)

= sup
v∈L2(0,T ;Rk)

C0(0,v)

≥ inf
u∈L2(0,T ;Rm)

sup
v∈L2(0,T ;Rk)

C0(u,v)

= v+(0),

which shows that the saddle point of the payoff C0(u,v) exists and it is (0, 0). The proof

is completed.

Now we show the payoff Cx0 of the game when

u = −B∗
1p−C∗

1K, v = B∗
2p+C∗

2K

in (2.1).

Theorem 3.2 There exists a solution (x,p,K) of the adjoint system

dx = [Ax+ (−B1B
∗
1 +B2B

∗
2)p+ (−B1C

∗
1 +B2C

∗
2 )K]dt

+[Dx+ (−C1B
∗
1 +C2B

∗
2)p+ (−C1C

∗
1 +C2C

∗
2 )K]dwt,

dp+ (A∗p+Qx+D∗K)dt−Kdwt = 0,

x(0) = x0,

p(T ) = Fx(T ).

(3.4)

If

u∗ = −B∗
1p−C∗

1K, v∗ = B∗
2p+C∗

2K, (3.5)

then

Cx0(u
∗, v∗) =

1

2
E(p(0) · x0). (3.6)

Proof. By Itô formula one has

d(px) = xdp+ pdx+ (Dx+C1u
∗ +C2v

∗) ·Kdt,

and∫ T

0

|u∗|2 − |v∗|2dt = (u∗,u∗)− (v∗,v∗)

= (−B∗
1p−C∗

1K, −B∗
1p−C∗

1K)− (B∗
2p+C∗

2K, B∗
2p+C∗

2K)

= (B1B
∗
1p+B1C

∗
1K, p)− (B2B

∗
2p+B2C

∗
2K, p)

+ (C1B
∗
1p+C1C

∗
1K, K)− (C2B

∗
2p+C2C

∗
2K, K)

= (−B1u
∗ −B2v

∗, p) + (−C1u
∗ −C2v

∗, K).

Then

Cx0(u
∗,v∗) =

1

2
E

(
Fx(T ) · x(T ) +

∫ T

0

Q(t)x(t) · x(t) + |u∗(t)|2 − |v∗(t)|2dt
)

=
1

2
E

(
p(T ) · x(T )−

∫ T

0

x ·A∗pdt−
∫ T

0

xdp
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−
∫ T

0

x ·D∗Kdt+

∫ T

0

|u∗|2 − |v∗|2dt
)

=
1

2
E

(
p(0) · x0 +

∫ T

0

pdx+

∫ T

0

(Dx+C1u
∗ +C2v

∗) ·Kdt

−
∫ T

0

x ·D∗Kdt−
∫ T

0

x ·A∗pdt+ (−B1u
∗ −B2v

∗, p)

+ (−C1u
∗ −C2v

∗, K)

)
=

1

2
E

(
p(0) · x0 +

∫ T

0

(Dx+C1u
∗ +C2v

∗) ·Kdt−
∫ T

0

x ·D∗Kdt

+

∫ T

0

p ·B1(−B∗
1p−C∗

1K)dt+

∫ T

0

p ·B2(B
∗
2p+C∗

2K)dt

+ (−B1u
∗ −B2v

∗,p) + (−C1u
∗ −C2v

∗,K)

)
=

1

2
E(p(0) · x0).

4 Main Results

In this section, we prove the existence of the saddle point of the system (2.1)-(2.3) if and

only if the lower and upper values exist.

Definition 4.1 We define

A(v, x0) = {(p, K); (x, p, K) is the solution of (4.1)},
and 

dx = [Ax+B1(−B∗
1p−C∗

1K) +B2v]dt

+[Dx+C1(−B∗
1p−C∗

1K) +C2v]dwt,

dp+ (A∗p+Qx+D∗K)dt−Kdw = 0,

x(0) = x0,

p(T ) = Fx(T ).

(4.1)

The main result in this paper is the following theorem.

Theorem 4.1 Consider the stochastic differential game (2.1) and (2.3). The following

statements are equivalent:

(1) There exists an open loop saddle point of Cx0(u, v);

(2) The value of the game exists;

(3) Both the lower value and the upper value of the game exist.

The proof of Theorem 4.1 is discussed later. To prove it, some other theorems and

discussions are needed. Firstly, we consider a part of Theorem 4.1: the open loop lower

value of the game.
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Theorem 4.2 The following statements are equivalent:

(1) There exist u∗ ∈ L2(0, T ; Rm) and v∗ ∈ L2(0, T ; Rk) such that

Cx0(u
∗, v∗) = inf

u∈L2(0,T ;Rm)
Cx0(u, v∗) = sup

v∈L2(0,T ;Rk)

inf
u∈L2(0,T ;Rm)

Cx0(u, v); (4.2)

(2) The open loop lower value v−(x0) of the game exists;

(3) There exists a solution (x,p,K) of the adjoint system (3.4) such that B∗
2p+C∗

2K ∈
V (x0), the solution pairs (u∗, v∗) is (3.5), and the open loop lower value are given by (3.6).

Proof. To prove this theorem, we need four steps.

(a) We show that if lower value exists, then for any v ∈ V (x0), one has

J−
x0

= Cx0(−B∗
1p−C∗

1K, v)

=
1

2
E

(
p(0) · x0 +

∫ T

0

(v ·B∗
2p− |v|2)dt+ (C2v, K)

)
, (4.3)

where (p,K) ∈ A(v, x0).

By the standard stochastic extremal principle (see [4]), (2.1) and (3.2), u∗ is an optimizer

if

u∗ = −B∗
1p−C∗

1K.

Similarly to Theorem 3.2, we can get (4.3).

(b) We show that if lower value exists, then the following statements hold:

(i)

A(v, x0) = (p, K) +A(0, 0), (p, K) ∈ A(v, x0), (4.4)

where

A(0, 0) = {(p̄, K̄); (x̄, p̄, K̄) is the solution of (4.5)},

and 
dx̄ = [Ax̄+B1(−B∗

1 p̄−C∗
1K̄)]dt+ [Dx̄+C1(−B∗

1 p̄−C∗
1K̄)]dwt,

dp̄+ (A∗p̄+Qx̄+D∗K̄)dt− K̄dwt = 0,

x̄(0) = 0,

p̄(T ) = F x̄(T );

(4.5)

(ii) For all v ∈ V (0),

E((v, B∗
2 p̄+C∗

2K̄)) = 0,

and we denote V (0) = B⊥ in the sense of expectation;

(iii)

V (x0) = v + V (0), v ∈ V (x0).

The differential game (2.1) can be written as

x(t) = Sx0 + L[B1u+B2v − (C1u+C2v)D] + Y (C1u+C2v),

x(T ) = Ŝx0 + L̂[B1u+B2v − (C1u+C2v)D] + Ŷ (C1u+C2v),

where

L : L2(0, T ; Rn) → L2(0, T ; Rn), (Lx)(t) =

∫ t

0

Λ(s; t)x(s)ds,
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L̂ : L2(0, T ; Rn) → Rn, (L̂x)(t) =

∫ T

0

Λ(s; T )x(s)ds,

S : Rn → L2(0, T ; Rn), (Sy)(t) = Λ(0; t)y,

Ŝ : Rn → Rn, (Ŝy)(t) = Λ(0; T )y,

Y : L2(0, T ; Rn) → L2(0, T ; Rn), (Y x)(t) =

∫ t

0

Λ(s; t)x(s)dws,

Ŷ : L2(0, T ; Rn) → Rn, (Ŷ x)(t) =

∫ T

0

Λ(s; T )x(s)dws,

G : L2(0, T ; Rn) → L2(0, T ; Rn), (Gx)(t) =

∫ T

t

eA
∗(s−t)x(s)ds,

H : L2(0, T ; Rn) → L2(0, T ; Rn), (Hx)(t) =

∫ T

t

eA
∗(s−t)x(s)dws,

M : Rn → L2(0, T ; Rn), (Mx)(t) = eA
∗(T−t)x,

and

Λ(s; t) = eA(t−s).

We denote by R∗ the adjoint operator of the operator R. Let

W = GQL+MFL̂, Ŵ = GQS +MFŜ, J = MFŶ +GQY.

Then (4.1) can be written as

[I + (WB1 −WC1D + JC1)B
∗
1 ]p

= Ŵx0 + (WB2 −WC2D + JC2)v + [GD∗ −H − (WB1 −WC1D + JC1)C
∗
1 ]K, (4.6)

and (4.5) can be written as

[I + (WB1 −WC1D + JC1)B
∗
1 ]p̄ = [GD∗ −H − (WB1 −WC1D + JC1)C

∗
1 ]K̄.

Obviously, (p+ p̄, K + K̄) is also the solution of (4.6). Then

A(v, x0) = (p, K) +A(0, 0), (p, K) ∈ A(v, x0).

Given v ∈ V (x0), for all (p, K) ∈ A(v, x0) and (p̄, K̄) ∈ A(0, 0), we have

J−
x0

=
1

2
E

(
(p(0) + p̄(0)) · x0 +

∫ T

0

(v ·B∗
2(p+ p̄)− |v|2)dt+ (C2v, (K + K̄))

)
=

1

2
E

(
p(0) · x0 +

∫ T

0

(v ·B∗
2p− |v|2)dt

+ (C2v, K) + p̄(0) · x0 + (v, B∗
2 p̄) + (C2v, K̄)

)
= J−

x0
+

1

2
E(p̄(0) · x0 + (v, B∗

2 p̄) + (C2v, K̄)).

So

E(p̄(0) · x0 + (v, B∗
2 p̄) + (C2v, K̄)) = 0. (4.7)

For all v ∈ V (0), we have

E((v, B∗
2 p̄+C∗

2K̄)) = 0.

Let

B = {B∗
2 p̄+C∗

2K̄; (p̄, K̄) ∈ A(0, 0)}.
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We say that V (0) = B⊥ in the sense of expectation. It is easy to prove that

V (x0) = v + V (0), v ∈ V (x0).

(c) We show that if the lower value exists, then there exist v ∈ V (x0) and (p∗, K∗) ∈
A(v, x0) such that

v = B∗
2p

∗ +C∗
2K

∗,

where (x∗, p∗, K∗) is the solution of (4.1).

Since the lower value of the game exists, there exists a v0 ∈ V (x0) such that for any

w ∈ V (0),

dJ−
x0
(v0; w) = dCx0(−B∗

1p−C∗
1K, v0; 0, w)

= E((B∗
2p+C∗

2K − v0, w))

= 0. (4.8)

We have B∗
2p +C∗

2K − v0 ∈ V (0)⊥ in the sense of expectation. Since V (0) = B⊥, there

exists (p̄, K̄) ∈ A(0, 0) such that

B∗
2p+C∗

2K − v0 = B∗
2 p̄+C∗

2K̄.

By (4.4), there exists (p∗, K∗) ∈ A(v0, x0) such that v0 = B∗
2p

∗+C∗
2K

∗, and (x∗, p∗, K∗)

is the solution of (4.1). Therefore, (x∗, p∗, K∗) is the solution of (3.4). By Theorem 3.2,

the open loop lower value is given by (3.6).

(d) We show that if v∗ = B∗
2p+C∗

2K ∈ V (x0), then

J−
x0

= inf
u∈L2(0,T ;R)

Cx0(u, v) = Cx0(u
∗, v)

can achieve maximization at v∗.

By assumption v∗ = B∗
2p + C∗

2K ∈ V (x0), there exists a solution of (4.1) with u∗ =

−B∗
1p−C∗

1K as a minimizer by (1). For any v ∈ V (x0), we have

Cx0(u
∗, v) = Cx0(u

∗, v∗) + dCx0(u
∗, v∗; 0, v − v∗)

+
1

2
d2Cx0(u

∗, v∗; 0, v − v∗; 0, v − v∗).

By (4.8) and v − v∗ ∈ V (0) we have

dCx0(u
∗, v∗; 0, v − v∗) = 0.

According to the definition of directional derivative, we have

d2Cx0
(u∗, v∗; 0, v − v∗; 0, v − v∗)

= lim
l→0

1

l
E[(B∗

2p+C∗
2K − (v∗ + l(v − v∗)), v − v∗)− (B∗

2p+C∗
2K − v∗, v − v∗)]

= (v − v∗, v − v∗)

≤ 0.

Thus

Cx0(u
∗,v) ≤ Cx0(u

∗,v∗).

Now we go back to the proof of Theorem 4.2.

It is obvious that (1)⇒(2).

According to the above (a)–(c), we have (2)⇒(3).
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(3)⇒(1). By (d),

Cx0(u
∗, v) ≤ Cx0(u

∗, v∗).

So

Cx0(u
∗, v∗) = inf

u∈L2(0,T ;Rm)
Cx0(u, v∗) = sup

v∈L2(0,T ;Rk)

inf
u∈L2(0,T ;Rm)

Cx0(u, v).

The proof is completed.

Corresponding to the Theorem 4.2, we have

Theorem 4.3 The following statements are equivalent:

(1) There exist u∗ ∈ L2(0, T ; Rm) and v∗ ∈ L2(0, T ; Rk) such that

Cx0(u
∗,v∗) = sup

v∈L2(0,T ;Rk)

Cx0(u
∗, v) = inf

u∈L2(0,T ;Rm)
sup

v∈L2(0,T ;Rk)

Cx0(u, v);

(2) The open loop upper value v+(x0) of the game exists;

(3) There exists a solution (x, p, K) of the adjoint system (3.4) such that −B∗
1p −

C∗
1K ∈ U(x0), the solution pairs (u∗, v∗) is (3.5), and the open loop lower value is given

by (3.6).

Now we give the proof of Theorem 4.1.

Proof of Theorem 4.1 (1)⇒(2)⇒(3) are obvious.

(3)⇒(1). By Theorems 4.2 and 4.3, there exists a solution (x, p, K) of the system

(3.10). Therefore, the game has a saddle point.
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