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Abstract: In this paper, we study, via variational methods, the problem of scattering

of time harmonic acoustic waves by unbounded inhomogeneous layers above a sound

soft rough surface. We first propose a variational formulation and exploit it as a

theoretical tool to prove the well-posedness of this problem when the media is non-

absorbing for arbitrary wave number and obtain an estimate about the solution, which

exhibit explicitly dependence of bound on the wave number and on the geometry of

the domain. Then, based on the non-absorbing results, we show that the variational

problem remains uniquely solvable when the layer is absorbing by means of a priori

estimate of the solution. Finally, we consider the finite element approximation of the

problem and give an error estimate.
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1 Introduction

This paper is concerned with the study of a boundary value problem for the Helmholtz

equation modeling scattering of time harmonic waves by a layer above an unbounded rough

surface on which the field vanishes. Such problems arise frequently in practical applications,

such as in modeling outdoor noise propagation or sonar measurements in oceanography.

In this paper we focus on a particular, typical problem of the class, which models acoustic

waves scattering by inhomogeneous layer above a sound soft unbounded rough surface. Since

the unboundedness of the scattering object present a major challenge, mathematical methods

to solve such scattering problem are often difficult to develop. Nevertheless, a variety of

different methods and techniques have been introduced during the last years. Most of them

were concerned with Drichlet boundary value problems for the Helmholtz equation with
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constant real wave number (see [1–7]).

The idea of our argument is inspired by [5–6], in which a Rellich identity was used to

prove the estimates for solutions of the Helmholtz equation posed on unbounded domains.

Though the results and methods were closest to those of Chandler[5,7], who studied the

similar problem tackled in those papers, and considered the homogeneous media only for

non-absorbing case in [5], and obtained the well posed results just only for the wave number

which is small enough in [7].

The main results of this paper are as follows: In Section 2, we introduce the boundary

value problem considered in this paper. Then we propose the variational formulation, which

is used as a theoretical tool to analyze the well-posedness of the problem. In Section 3,

we consider the non-absorbing case. We first establish a Rellich-type identity, from which

the inf-sup condition of the sesquilinear form follows. Then the existence and uniqueness of

the solution to variational problem can be deduced by application of the generalized Lax-

Milgram theory of Babuska (see [8]). In Section 4, we turn our interest to the absorbing

scatterers, and establish the uniqueness via a priori estimate which also leads to an existence

result based on the non-absorbing results. In Section 5, the finite element approximation of

the problem is considered. Finally, we analyze the convergence and error estimate.

2 Boundary Value Problem and Variational Formula-
tion

In this section, we first define some notations related to the problem. Then we introduce

the boundary value problem and its equivalent variational formulation to be analyzed later.

For x = (x1, x2, · · · , xn) ∈ Rn (n = 2, 3), let x̃ = (x1, x2, · · · , xn−1) so that x = (x̃, xn). For

H ∈ R, let UH := {x | xn > H} and ΓH := {x | xn = H}. Suppose that D is a connected

open set with some constants f− < f+. Then it holds that

Uf+ ⊂ D ⊂ Uf− , (2.1)

and

x+ sen ∈ D, s > 0, x ∈ D, (2.2)

where en denotes the unit vector in the direction of xn. Let Γ = ∂D and SH := D\UH for

some H ≥ f+. Moreover, we assume that the wave number k satisfies
0 ≤ k ≤ k+, x ∈ D;

k(x) = k0 > 0, x ∈ UH ;

∂k2(x)

∂xn
≥ 0 , x ∈ SH .

(2.3)

Next we introduce the main function spaces in which we set our problem. The Hilbert space

VH is defined by

VH = {ϕ|SH
: ϕ ∈ H1

0 (D)}, H ≥ f+,

on which we impose the wave number dependent scalar product

(u, v)VH :=

∫
SH

(∇u · ∇v̄ + k20uv̄)dx,
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and the induced norm

∥u∥VH
=

(∫
SH

(|∇u|2 + k20|u|2)
) 1

2

.

For s ∈ R, denote by Hs(ΓH) the usual Sobolev space (see [9]) with norm

∥ϕ∥Hs(ΓH) =
(∫

Rn−1

(k20 + ξ2)s|Fϕ(ξ)|2dξ
) 1

2

,

where we identify ΓH with Rn−1 and F is the Fourier transformation.

Then the problem of scattering by an inhomogeneous layer above a sound soft rough

surface is formulated by the following boundary value problem: given a source g ∈ L2(D)

supported in SH for some H ≥ f+, we seek to find a scattered field u : D → C such that

u|Sa ∈ Va for every a > f+, and

∆u+ k2(x)u = g, in D, (2.4)

u = 0, on Γ , (2.5)

in a distributional sense. As part of the boundary value problem, we apply the radiation

condition, which is often used in a formal manner in the rough surface scattering literature,

u(x) =
1

(2π)
(n−1)

2

∫
Rn−1

exp
{
i
[
(xn −H)

√
k20 − ξ2 + x̃ · ξ

]}
F̂H(ξ)dξ, (2.6)

where F̂H(ξ) is the Fourier transformation of FH := u|ΓH
. This radiation condition shows

that the solution can be represented in an integral form as a superposition of upward traveling

and evanescent plane waves above the rough surface and the support of g.

Before giving the variational formulation related to the above problem, we introduce some

operators. Recall from [9] that, for all a > H ≥ f+, there exist continuous embeddings, i.e.,

trace operators

γ+ : H1(UH\Ua) → H
1
2 (ΓH), γ− : VH → H

1
2 (ΓH).

The Dirichlet to Neumann map T on ΓH is defined by

T := F−1MzF ,

where Mz is the multiplying by

z(ξ) =

{
−i

√
k20 − ξ2, |ξ| ≤ k0;√

ξ2 − k20, |ξ| > k0.

From the definition of T and the Sobolev norm, we see that it is a map from H
1
2 (ΓH) to

H− 1
2 (ΓH), and ∥T∥ = max

ξ∈Rn−1

√
k20 − ξ2√
k20 + ξ2

= 1. Next we recall some results needed about

properties of the above operators.

Lemma 2.1 [5] For ϕ ∈ H
1
2 (ΓH), it holds that

Re

∫
ΓH

ϕ̄Tϕds ≥ 0, Im

∫
ΓH

ϕ̄Tϕds ≤ 0.

Lemma 2.2 [9] If (2.6) holds, with FH ∈ H
1
2 (ΓH), then γ+u = FH and∫

Γa

(∣∣∣ ∂u
∂xn

∣∣∣2 − |∇x̃u|2 + k20|u|2
)
ds ≤ 2k0Im

∫
Γa

ū
∂u

∂xn
ds, (2.7)

with a ≥ H.
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Lemma 2.3 [5] For u ∈ VH ,

∥γu∥
H

1
2 (ΓH)

≤ ∥u∥VH
, ∥u∥ ≤ H − f−√

2

∥∥∥ ∂u

∂xn

∥∥∥, (2.8)

where ∥ · ∥ denotes the induced norm of the scalar product ( · , · ) on L2(SH).

Now we are ready to introduce the sesquilinear form b : VH × VH → C defined by

b(u, v) = (∇u, ∇v)− (k2u, v) +

∫
ΓH

γ−v̄ T γ−uds. (2.9)

Problem V We formulate the variational problem: For g ∈ L2(SH), find u ∈ VH such

that

b(u, v) = −(g, v), v ∈ VH . (2.10)

We have already known that the boundary value problem (2.4)–(2.6) is equivalent to the

related variational problem, which is stated in the theorem as follows.

Theorem 2.1 [9] If u is a solution of the boundary value problem (2.4)–(2.6), then u|SH

satisfies the variational problem (2.10). Conversely, set FH := γ−u and the definition of u

is extended to D by (2.6), for x ∈ UH . If u solves the variational problem (2.10), then the

extended function satisfies the boundary value problem (2.4)–(2.6), with g extended by zero

and k extended by taking the value k0 from SH to D.

3 Existence and Uniqueness for Non-absorbing Medium

In this section, we prove the equivalent variational problem. Thus the boundary value

problem is uniquely solvable by establishing the inf-sup condition of the sesquilinear form,

via application of the generalized Lax-Milgram theory of Babuska. Our methods of argument

depend on a priori estimate established by means of a Rellich type identity and the results

on approximation of nonsmooth by smooth domains.

Lemma 3.1[10] If the bounded sesquilinear form b satisfies the inf-sup condition

β := inf
0̸=u∈VH

sup
0̸=v∈VH

|b(u, v)|
∥u∥VH

∥v∥VH

> 0 (3.1)

and the transposed inf-sup condition

sup
0̸=u∈VH

|b(u, v)|
∥u∥VH

> 0, v ∈ VH\{0}, (3.2)

then the variational problem (2.10) has exactly one solution u ∈ VH such that

∥u∥VH
≤ β−1∥g∥. (3.3)

In terms of the lemmas above, we could deduce the following result.

Theorem 3.1 Suppose that D satisfies the assumptions (2.1)–(2.2), and the wave number

k satisfies (2.3). Then the variational problem (2.10) has a unique solution u ∈ VH such

that

∥w∥VH
≤ H − f−√

2
(K+ + 1)(K0 + 3)∥g∥, (3.4)

where K+ = k+(H − f−) and K0 = k0(H − f−).
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Since b is bounded (see [7]) and the transposed inf-sup condition can be deduced by the

inf-sup condition (see [5]), it suffice to establish (3.1). And we know that Lemmas 4.4–4.5,

and Lemmas 4.10–4.11 in [5] reduce the problem of showing (3.1) to that of establishing an a

priori bound for the solutions of the boundary problem when the boundary Γ is sufficiently

smooth. Thus we need first to establish a Rellich identity for the solution of Helmholtz

equation.

Theorem 3.2 Suppose that Γ = {(x̃, xn) | xn = f(x̃), x̃ ∈ Rn−1} with f ∈ C∞(Rn−1).

If u ∈ VH is a solution of the variational problem (2.10), then∫
SH

∂k2(x)

∂xn
(xn − f−)|w|2 +

∫
SH

2
∣∣∣ ∂w
∂xn

∣∣∣2dx−
∫
Γ

(xn − f−)νn

∣∣∣∂w
∂ν

∣∣∣2ds
= (H − f−)

∫
ΓH

(∣∣∣ ∂w
∂xn

∣∣∣2 − |∇x̃w|+ k20|w|2
)
ds

+

∫
SH

{
|∇w|2 − k2(x)|w|2 − 2Re(xn − f−)g

∂w̄

∂xn

}
dx. (3.5)

Proof. Let r = |x̃|. For A ≥ 1, let ϕA ∈ C∞
0 (R) such that 0 ≤ ϕA ≤ 1 with ϕA(r) = 1, if

r ≤ A; ϕA(r) = ϕA, if A < r < A+ 1; and ϕA(r) = 0, if r ≥ A+ 1. Finally ∥ϕ′∥∞ ≤ M for

some fixed M > 0 independent of A.

It follows from Theorem 2.1 that, when extended to D by (2.6) with FH := γ−w, w

satisfies the boundary value problem with g extended by zero and k by k0 from SH to D.

Since the boundary Γ is smooth, by standard local regularity results (see [11]), we have

u ∈ H2
loc(D). In view of this regularity, one has

2Re

∫
SH

ϕA(r)(xn − f−)(∆w + k2(x)w)
∂w̄

∂xn
dx

= 2Re

∫
SH

∇ ·
(
ϕA(r)(xn − f−)

∂w̄

∂xn
∇w

)
dx−

∫
SH

2ϕA(r)
∣∣∣ ∂w
∂xn

∣∣∣2
−

∫
SH

(xn − f−)ϕA(r)
∂|∇w|2

∂xn
− 2ϕ′

A(r)(xn − f−)
x̃

|x̃|
Re

(
∇x̃w

∂w̄

∂xn

)
dx

+

∫
SH

k2(x)(xn − f−)ϕA(r)
∂|w|2

∂xn
dx.

Furthermore, we use divergence theorem and integration by parts to obtain

2Re

∫
SH

ϕA(r)(xn − f−)(∆w + k2(x)w)
∂w̄

∂xn
dx

= (H − f−)

∫
ΓH

ϕA(r)
(∣∣∣ ∂w

∂xn

∣∣∣2 − |∇x̃w|+ k20|w|2
)
ds

−
∫
Γ

(xn − f−)ϕA(r)
{
νn|∇w|2 − 2Re

( ∂w̄

∂xn
· ∂w
∂ν

)}
ds

+

∫
SH

ϕA(r)
(
|∇w|2 − k2(x)|w|2 − 2

∣∣∣ ∂w
∂xn

∣∣∣2)dx
−
∫
SH

{
2ϕ′

A(r)(xn − f−)Re
( ∂w̄

∂xn
· ∂w
∂r

)
− ∂k2(x)

∂xn
(xn − f−)ϕA(r)|w|2

}
dx

= 2Re

∫
SH

ϕA(r)(xn − f−)g
∂w̄

∂xn
dx, (3.6)
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where ν is the unit outward normal derivative to Γ . Since w = 0 on Γ , it holds that

∇w =
∂w

∂ν
ν, and hence

∂w

∂xn
= en · ∇w = en · ν ∂w

∂ν
= νn

∂w

∂ν
(3.7)

with νn = en · ν. Substituting (3.7) into (3.6) and rearranging terms yield∫
SH

∂k2(x)

∂xn
(xn − f−)ϕA(r)|w|2 + 2ϕA(r)

∣∣∣ ∂w
∂xn

∣∣∣2dx−
∫
Γ

ϕA(r)(xn − f−)νn

∣∣∣∂w
∂ν

∣∣∣2ds
= (H − f−)

∫
ΓH

ϕA(r)
(∣∣∣ ∂w

∂xn

∣∣∣2 − |∇x̃w|+ k20|w|2
)
ds

+

∫
SH

{
ϕA(r)[|∇w|2 − k2(x)|w|2]− 2ϕ′

A(r)(xn − f−)Re
( ∂w̄

∂xn
· ∂w
∂r

)}
dx

− 2Re

∫
SH

ϕA(r)(xn − f−)g
∂w̄

∂xn
dx. (3.8)

Next we try to estimate the terms in the above equality. Let Sb
H = {x ∈ SH : |x̃| < b}.

Then∣∣∣ ∫
SH

2ϕ′
A(r)(xn − f−)Re

( ∂w̄

∂xn
· ∂w
∂r

)
dx

∣∣∣ ≤ 2M(H − f−)

∫
SA+1
H \S̄A

H

|∇w|2dx → 0, A → ∞,

with w ∈ H1(SH). On the other hand, since w ∈ H2(UH\Uf+) (see [6]), one has ∇w ∈
H

1
2 (ΓH). Thus taking the limit as A → ∞ in (3.8), we have∫

SH

∂k2(x)

∂xn
(xn − f−)|w|2 +

∫
SH

2
∣∣∣ ∂w
∂xn

∣∣∣2dx−
∫
Γ

(xn − f−)νn

∣∣∣∂w
∂ν

∣∣∣2ds
= (H − f−)

∫
ΓH

{∣∣∣ ∂w
∂xn

∣∣∣2 − |∇x̃w|+ k20|w|2
}
ds

+

∫
SH

{
|∇w|2 − k2(x)|w|2 − 2Re(xn − f−)g

∂w̄

∂xn

}
dx.

The Rellich identity above is our main tool to derive a priori estimate for a solution of

the variational problem, which allows us to show an inf-sup condition for the sesquilinear

form and thereby prove the well-posedness of the scattering problem.

Theorem 3.3 Suppose that Γ = {(x̃, xn) | xn = f(x̃), x̃ ∈ Rn−1} with f ∈ C∞(Rn−1).

The domain D and the wave number k satisfy the assumption of Theorem 3.1. Let g ∈
L2(SH) and w ∈ VH with H > f+ satisfy

b(w, ϕ) = −(g, ϕ), ϕ ∈ VH .

Then

∥w∥VH
≤ H − f−√

2
(K+ + 1)(K0 + 3)∥g∥. (3.9)

Proof. By Theorem 3.2, we directly have (3.5) for w. On the other hand, it follows from

Lemma 2.2 that∫
ΓH

(∣∣∣ ∂w
∂xn

∣∣∣2 − |∇x̃w|2 + k20|w|2
)
ds ≤ 2k0Im

∫
ΓH

w̄
∂w

∂xn
ds

= −2k0Im

∫
ΓH

γ−w̄Tγ−wds. (3.10)
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Moreover, since w satisfies the variational problem, we conclude∫
SH

[|∇w|2 − k2(x)|w|2]dx =

∫
ΓH

γ−w̄Tγ−wds−
∫
SH

gw̄dx.

According to Lemma 2.1, it yields∫
SH

(|∇w|2 − k2(x)|w|2)dx ≤ −Re

∫
SH

gw̄dx (3.11)

and

−2k0Im

∫
ΓH

γ−w̄Tγ−wds = 2k0Im

∫
SH

gw̄dx.

By using (3.5) and the inequalities (3.10)–(3.11), we obtain∫
SH

∂k2(x)

∂xn
(xn − f−)|w|2 +

∫
SH

2
∣∣∣ ∂w
∂xn

∣∣∣2dx−
∫
Γ

(xn − f−)νn

∣∣∣∂w
∂ν

∣∣∣2ds
≤ 2(H − f−)k0Im

∫
SH

gw̄dx− Re

∫
SH

{
gw̄ + 2(xn − f−)g

∂w̄

∂xn

}
dx.

By the assumption
∂k2(x)

∂xn
≥ 0 in SH and νn < 0, it follows by the Cauchy-Schwarz

inequality that

2
∥∥∥ ∂w

∂xn

∥∥∥2 ≤
(
2K0∥w∥+ ∥w∥+ 2(H − f−)

∥∥∥ ∂w

∂xn

∥∥∥)∥g∥.
Thus, from Lemma 2.3, we have∥∥∥ ∂w

∂xn

∥∥∥ ≤ (H − f−)
( 1√

2
K0 +

1

2
√
2
+ 1

)
∥g∥,

and furthermore,

∥w∥ ≤ (H − f−)
2
(1
2
K0 +

1

4
+

1√
2

)
∥g∥.

Then we deduce from (3.11) that

∥w∥2VH
≤ 2k2+∥w∥2 + ∥g∥∥w∥ ≤ (H − f−)

2

2
(K2

+ + 1)(K0 + 3)2∥g∥2.
Hence, it holds that

∥w∥VH ≤ H − f−√
2

(K+ + 1)(K0 + 3)∥g∥.

4 Existence and Uniqueness for Absorbing Media

After our study on non-absorbing layers, we now turn our interests to absorbing scatterers.

We prefer to establish the uniqueness via an a priori bound which also leads to an existence

result. We assume in this section that Re(k2) ≥ 0, Im(k2) ≥ 0 and Re(k2) ≤ k2+, Im(k2) ≤

k2− with k+ > 0 in D, k(x) = k0 > 0 for x ∈ ŪH , and
∂Re(k2)

∂xn
≥ 0 in SH .

Theorem 4.1 Suppose that the wave number k ∈ C satisfies the assumption above. Then

there exists a unique solution u ∈ VH of the variational problem (2.10) such that

∥u∥VH
≤ (H − f−)(K+ + 1)(K0 + 3)

(√
2 + (K+ + 1)(K0 + 3)K−

k−
k0

)
∥g∥. (4.1)
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Proof. We rewrite the variational formulation (2.10) as

(∇u, ∇v)− (Re(k2)u, v) +

∫
ΓH

γ−v̄ Tγ−uds = (i Im(k2)u− g, v), v ∈ VH .

Because Re(k2) satisfies the assumptions of Theorem 3.1, we directly obtain an a priori

estimate for u,

∥u∥VH
≤ H − f−√

2
(K+ + 1)(K0 + 3)∥g∥+ H − f−√

2
(K+ + 1)(K0 + 3)∥Im(k2)u∥.

Taking the imaginary part of the variational formulation with v = u, we get∫
SH

Im(k2)|u|2dx+ Im

∫
ΓH

ūTuds = Im

∫
SH

gūdx.

By Lemma 2.1, we have

∥Im(k2)u∥2 ≤ k2−

∫
SH

Im(k2)|u|2dx

≤ k2−Im

∫
SH

gūdx

≤ k2−∥g∥∥u∥. (4.2)

Since (ab)
1
2 ≤ ca+

b

2c
for a, b, c ≥ 0, letting

a =
k2−
k0

∥g∥, b = k0∥u∥, c =
H − f−√

2
(K+ + 1)(K0 + 3),

we have

∥Im(k2)u∥ ≤ H − f−√
2

(K+ + 1)(K0 + 3)
k2−
k0

∥g∥

+
1√

2(H − f−)(K+ + 1)(K0 + 3)
∥u∥VH

. (4.3)

This allows us to conclude that

∥u∥VH
≤

√
2(H − f−)(K+ + 1)(K0 + 3)∥g∥+ (K+ + 1)2(K0 + 3)2

K2
−

k0
∥g∥, (4.4)

yielding an a priori estimate for u from which the existence and uniqueness of the solution

to the variational problem follow.

5 Finite Element Approximation

In this section, we consider the numerical approach to solve the Problem V. We use the finite

element method (FEM for short) to get the solution of the variational formulation (2.10).

This is a classical approach for numerical treatment of the bounded domain problem. Thus

a necessary first step towards solving the Problem V numerically is to approximate it by

a variational formulation on a domain of finite size, in which standard FEM can then be

applied. This approximation consists simply in replacing SH by a finite region SR
H defined

by: SR
H = {X = (x̃, xn) ∈ SH : |x̃| < R} and D by DR = {X = (x̃, xn) ∈ D : |x̃| < R}.

For R > 0, we approximate the problem (2.10) by a corresponding variational equation

on SR
H . Let V R

H denote the Hilbert space VH . In the case that we replace D by DR, explicitly

V R
H denotes the completion of {u|SR

H
: u ∈ C∞

0 (DR)} with the norm

∥u∥V R
H

=
(∫

SR
H

(|u|2 + k20|∇u|2)dx
) 1

2

.
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Problem AV The approximating variational problem is as follows: Find uR ∈ V R
H such

that

bR(u
R, vR) = −(gR, vR), vR ∈ V R

H (5.1)

with gR = g|SR
H
. Here, bR is the continuous sesquilinear form on V R

H × V R
H , which is defined

by (2.9), with SH replaced by SR
H , i.e.,

bR(u, v) =

∫
SR
H

(∇u · ∇v̄ − k2uv̄)dx+

∫
ΓR

H

γ−v̄ T γ−uds,

where ΓR
H = ΓH

∩
SR
H .

Let Th be a regular triangulation partition of the computational domain SR
H into elements

K, and hK be the diameter of K. Then we can define the step h = max
K

hK . We denote

the finite element space corresponding to Th by Vh constructed by piecewise polynomials of

degree p. If uI is the interpolation of uR in Vh, then there is a well-known approximation

estimation (see [10])

∥uR − uI∥m ≤ chp+1−m|uR|p+1, 0 ≤ m ≤ p. (5.2)

Here and in the sequel, c denotes a generic constant, which may have different values at

different places.

Problem GAV We consider the Galerkin approximation problem: Find uR
h ∈ Vh satisfy-

ing

bR(u
R
h , v) = −(gR, v), v ∈ Vh (5.3)

with gR = g|SR
H
.

Since the inf-sup condition for the Problem V has been established by Theorem 3.1, it

still holds for the Problem AV, which means that the Problem AV is well-posed. Meanwhile,

we can also obtain the existence and the uniqueness of the solution for the Problem GAV

by using the similar way used in Theorem 3.1. Furthermore, if eh = uR − uR
h , we obtain by

the definition of bR that

bR(eh, eh) =

∫
SR
H

(|∇eh|2 − k2|eh|2)dx+

∫
ΓR

H

(Teh)ēhds. (5.4)

Then taking the real part of (5.4) yields

RebR(eh, eh) =

∫
SR
H

(|∇eh|2 − Re(k2)|eh|2)dx+Re

∫
ΓR

H

(Teh)ēhds.

After rearranging terms, we have

|eh|21 +Re

∫
ΓR

H

(Teh)ēhds =

∫
SR
H

Re(k2)|eh|2dx+RebR(eh, eh). (5.5)

It is obvious that for any ϕ ∈ Vh, it holds that

bR(u
R − uR

h , u
R − uR

h ) = bR(u
R − uR

h , u
R − ϕ).

Thus

|bR(eh, eh)| =
∣∣∣ ∫

SR
H

(∇eh · ∇(uR − ϕ)− k2eh(uR − ϕ))dx+

∫
ΓR

H

(uR − ϕ) Tehds
∣∣∣.
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By the continuity of the operator T and the trace theorem, it holds that∣∣∣ ∫
ΓR

H

(uR − ϕ) Tehds
∣∣∣ ≤ c∥eh∥2V R

H
∥uR − ϕ∥V R

H
.

Together with the inequalities above, we get by means of the ε inequality that

|bR(eh, eh)| ≤ 2ε|∇eh|21 + 2ε|eh|2 + c∥uR − uI∥2V R
H
.

Combining with (5.5) and selecting a sufficient small value of ε, we finally obtain

|eh|21 +Re

∫
ΓR

H

(Teh)ēhds ≤ c(∥eh∥2 + ∥uR − uI∥V R
H
).

By the interpolation estimation (5.2) again, we conclude that

|eh|21 ≤ c(k+)(∥eh∥2SR
H
+ ∥uR − uI∥V R

H
). (5.6)

By the Aubin-Nitsche technique and the interpolation approximation property (5.2), one

has

∥eh∥L2(SR
H) ≤ Ch∥eh∥V R

H
.

When h is small enough, it holds that

∥eh∥L2(SR
H) ≤ Ch∥eh∥1.

We further obtain from (5.6) that

∥eh∥1 ≤ c∥uR − uI∥V R
H
.

So we finally get the conclusion as follows.

Theorem 5.1 Assume that uR ∈ Hs(SR
H) (s ≥ 2) is the solution of the Problem AV.

Then there exists an h0 ∈ (0, 1] such that for h ∈ (0, h0) the Problem GAV has a unique

solution uR
h ∈ Vh, and

∥uR − uR
h ∥L2(SR

H) ≤ chp+1∥uR∥Hs , ∥uR − uR
h ∥V R

H
≤ chp∥uR∥Hs . (5.7)
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