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Abstract: In this paper, we introduce and study a class of generalized vector quasi-

variational-like inequality problems, which includes generalized nonlinear vector vari-

ational inequality problems, generalized vector variational inequality problems and

generalized vector variational-like inequality problems as special cases. We use the

maximal element theorem with an escaping sequence to prove the existence results of

a solution for generalized vector quasi-variational-like inequalities without any mono-

tonicity conditions in the setting of locally convex topological vector space.
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1 Introduction

Vector variational inequality was first introduced and studied by Giannessi[1] in the setting of

finite-dimensional Euclidean spaces. This is a generalization of a scalar variational inequality

to the vector case by virtue of multi-criteria consideration. Throughout the development

over the last twenty years, existence theorems of solutions of vector variational inequalities

in various situations have been studied by many authors (see, for example, [2–5] and the

references therein). Recently, Peng and Rong[6], Ahmad and Irfan[7] and Xiao et al.[8]
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proved some existence theorems of solutions to a class of generalized nonlinear variational

inequalities.

In this paper, we introduce a new class of generalized vector quasi-variational-like in-

equality problems and utilize the maximal element theorem with an escaping sequence to

prove the existence of its solutions in the setting of locally convex topological vector spaces

(locally convex spaces, in short). Some results of [6–8] are improved and extended.

2 Preliminaries

Let Z be a locally convex space and X be a nonempty convex subset of a Hausdorff topo-

logical vector space E (t.v.s., in short). We denote by L(E,Z) the space of all continuous

linear operators from E into Z and by ⟨l, x⟩ the evaluation of l ∈ L(E,Z) at x ∈ E. Let

L(E,Z) be a space equipped with σ-topology. By the corollary of Schaefer (see page 80

in [9]), L(E,Z) becomes a locally convex space. By Ding and Tarafdar[10], the bilinear

mapping ⟨ · , · ⟩ : L(E,Z)× E → Z is continuous.

Let intS and coS denote the interior and convex hull of a set S, respectively, C : X → 2Z

be a set-valued mapping such that intC(x) ̸= ∅ for each x ∈ X, and η : X ×X → E be a

vector-valued mapping. Let T : X → 2L(E,Z), D : X → 2X , A : L(E,Z) → 2L(E,Z) and

H : X ×X → 2Z be four set-valued mappings. We consider the following generalized vector

quasi-variational-like inequality problem (GVQVLIP, in short):

Find x̄ ∈ X such that x̄ ∈ D(x̄) and for all y ∈ D(x̄), there exists s̄ ∈ T (x̄) satisfying

⟨As̄, η(y, x̄)⟩+H(x̄, y) ̸⊆ −intC(x̄). (2.1)

The following problems are special cases of GVQVLIP.

(i) For all x ∈ X, if D(x) = X, then (2.1) reduces to

⟨As̄, η(y, x̄)⟩+H(x̄, y) ̸⊆ −intC(x̄), y ∈ X, (2.2)

which has been studied by Xiao et al.[8]

Find x̄ ∈ X, such that there exists s̄ ∈ T (x̄) satisfying (2.2).

(ii) Let A = I be a single-valued mapping and H ≡ 0. Then (2.1) reduces to

⟨v̄, η(y, x̄)⟩ ̸∈ −intC(x̄), (2.3)

which has been studied by Peng and Rong[6].

Find x̄ ∈ X, such that x̄ ∈ D(x̄) and for all y ∈ D(x̄), there exists v̄ ∈ T (x̄) satisfying

(2.3).

For suitable and appropriate choice of the mappings D, T, A, H, η, one can obtain var-

ious new and previously known variational inequality problems as special cases (see [6], [8]

and the references therein).

In order to prove the main results, we need the following definitions and lemmas.

Let X be a topological space. A subset S of X is said to be compactly open (respectively,

compactly closed) in X if for any nonempty compact subset K of X, S
∩
K is open (respec-

tively, closed) in S. Let Y be a topological space and T : X → 2Y be a set-valued mapping.

Then, T is said to be open valued if the set T (x) is open in X for each x ∈ X. T is said to
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have open lower sections if T−1 is open valued, i.e., the set T−1(y) = {x ∈ X : y ∈ T (x)}
is open in X for each y ∈ Y . T is said to be compactly open valued if the set T (x) is com-

pactly open in X for each x ∈ X, and T is said to have compactly open lower sections if T−1

is compactly open valued. Clearly, each open-valued (respectively, closed-valued) mapping

T : X → 2Y is compactly open-valued (respectively, compactly closed-valued). T is said to

be upper semicontinuous, if for any x0 ∈ X and for each open set U in Y containing T (x0),

there is a neighborhood V of x0 in X such that T (x) ⊆ U , for all x ∈ V ; T is said to be

closed if the set {(x, y) ∈ X × Y : y ∈ T (x)} is closed in X × Y .

Definition 2.1 [8,11–12] Let K be a convex subset of a t.v.s. E and Z be t.v.s. Let C : K →
2Z be a set-valued mapping. Assume given any finite subset Λ = {x1, x2, · · · , xn} of X, any

x =
n∑

i=1

αixi with αi ≥ 0 for i = 1, 2, · · · , n, and
n∑

i=1

αi = 1. Then,

(i) a single-valued mapping f : K ×K → Z is said to be vector 0-diagonally convex in

the second argument if
n∑

i=1

αif(x, xi) ̸∈ −intC(x);

(ii) a set-valued mapping f : K ×K → 2Z is said to be generalized vector 0-diagonally

convex in the second argument if
n∑

i=1

αif(x, xi) ̸⊆ −intC(x).

Lemma 2.1 [13] Let X and Y be two topological spaces. If T : X → 2Y is an upper

semicontinuous set-valued mapping with closed values, then T is closed.

Lemma 2.2 [14] Let X and Y be two topological spaces, and T : X → 2Y be an upper

semicontinuous set-valued mapping with compact values. Suppose that {xα} is a net in X

such that xα → x0. If yα ∈ T (xα) for each α, then there is a y0 ∈ T (x0) and a subset yβ of

yα such that yβ → y0.

Lemma 2.3 [15] Let X and Y be two topological spaces. Suppose that T : X → 2Y is a

set-valued mapping having open lower sections. Then the set-valued mapping F : X → 2Y

defined by that for each x ∈ X, F (x) = coT (x) has open lower sections.

Definition 2.2 [16] Let E be a topological space and X be a subset of E such that X =
∞∪

n=1
Xn, where {Xn}∞n=1 is an increasing (in the sense that Xn ⊆ Xn+1) sequence of nonempty

compact sets. A sequence {xn}∞n=1 in X is said to be an escaping sequence from X (relative

to {Xn}∞n=1) if for each n = 1, 2, · · · , there exists m > 0 such that xk ̸∈ Xk, for all k ≥ m.

Lemma 2.4 [6,16] Let E be a topological vector space and X be a subset of E such that

X =
∞∪

n=1
Xn, where {Xn}∞n=1 is an increasing sequence of nonempty compact sets of X.

Assume that the set-valued mapping S : X → 2X satisfies the following conditions:

(i) For each x ∈ X, S−1(x)
∩
Xn is open in Xn for all n = 1, 2, · · · ;
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(ii) For each x ∈ X, x ̸∈ coS(x);

(iii) For each sequence {xn}∞n=1 in X with xn ∈ Xn for all n = 1, 2, · · · , which is escaping

from X relative to {Xn}∞n=1, there exist n ∈ N and yn ∈ Xn such that yn ∈ S(xn)
∩

Xn.

Then there exists an x̄ ∈ X such that S(x̄) = ∅.

3 Existence Results

In this section, we prove some existence results of solutions for generalized vector quasi-

variational-like inequalities without any monotonicity conditions in the setting of locally

convex topological vector space.

Theorem 3.1 Let E be a Hausdorff topological vector space, X be a subset of E such that

X =
∞∪

n=1
Xn, where {Xn}∞n=1 is an increasing sequence of nonempty, compact and convex

subset of X, and Z be a locally convex space. Let L(E,Z) be equipped with σ-topology. Let

D : X → 2X be a set-valued mapping with nonempty convex values and compactly open

lower sections, the set W = {x ∈ X : x ∈ D(x)} be closed, C : X → 2Z be a set-valued

mapping such that C(x) is a closed pointed and convex cone with intC(x) ̸= ∅ for each

x ∈ X, and the set-valued mapping M = Z \{−intC(x)} be upper semicontinuous on X. Let

T : X → 2L(E,Z) be upper semicontinuous on X with compact values and H : X ×X → 2Z

be generalized vector 0-diagonally convex in the second argument. Let η : X × X → E be

affine in the first argument with η(x, x) = 0 for all x ∈ X. For each y ∈ X, assume that

⟨A( · ), η(y, · )⟩+H( · , y) : L(E,Z)×X ×X → 2Z is an upper semicontinuous set-valued

mapping with compact values. Suppose that

(A1) for each sequence {xn}∞n=1 in X with xn ∈ Xn for all n = 1, 2, · · · , which is

escaping from X relative to {Xn}∞n=1, there exist m ∈ N and zm ∈ D(xm)
∩
Xm such that

for all sm ∈ T (xm),

⟨Asm, η(zm, xm)⟩+H(xm, zm) ⊆ −intC(xm).

Then GVQVLIP has a solution.

Proof. Define a set-valued mapping P : X → 2X by setting

P (x) = {y ∈ X : ⟨As, η(y, x)⟩+H(x, y) ⊆ −intC(x), s ∈ T (x)}, x ∈ X.

We first prove that x ̸∈ coP (x) for all x ∈ X. To see this, by way of contradiction,

assume that there existed some point x̄ ∈ X such that x̄ ∈ coP (x̄). Then there would exist

a finite subset {y1, y2, · · · , yn} of X such that for x̄ ⊆ co{y1, y2, · · · , yn} we have

⟨As, η(yi, x̄)⟩+H(x̄, yi) ⊆ −intC(x̄), i = 1, 2, · · · , n.
Since intC(x̄) is a convex set and η is affine in the first argument, for i = 1, 2, · · · , n, αi ≥

0 with
n∑

i=1

αi = 1, x̄ =
n∑

i=1

αiyi, we have⟨
As, η

( n∑
i=1

αiyi, x̄
)⟩

+
n∑

i=1

αiH(x̄, yi) ⊆ −intC(x̄).
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Since η(x̄, x̄) = 0, we have
n∑

i=1

αiH(x̄, yi) ⊆ −intC(x̄), which contradicts the fact that H

satisfies the generalized vector 0-diagonal convexity in the second argument. Therefore,

x ̸∈ coP (x) for all x ∈ X.

We also define a set-valued mapping G : X → 2X by

G(x) =

{
D(x)

∩
coP (x), x ∈ W ;

D(x), x ∈ X \W.

Then, for each x ∈ X, G(x) is convex. Suppose that there exists x̄ ∈ X such that x̄ ∈ G(x̄).

If x̄ ∈ W , then x̄ ∈ D(x) ∩ coP (x), which contradicts x ̸∈ coP (x) for all x ∈ X. If x̄ ̸∈ W ,

then G(x̄) = D(x̄) which implies x̄ ∈ D(x̄), a contradiction. Hence,

x ̸∈ G(x) = coG(x), x ∈ X,

and the condition (ii) of Lemma 2.4 is satisfied.

Next, we prove that the set

P−1(y) = {x ∈ X : ⟨As, η(y, x)⟩+H(x, y) ⊆ −intC(x), s ∈ T (x)}
is open for each y ∈ X. That is, P has open lower sections in X. Consider the set

(P−1(y))C = {x ∈ X : {⟨As, η(y, x)⟩+H(x, y)}
∩
Z\{−intC(x)} ̸= ∅, ∃s ∈ T (x)},

which is the complement of P−1(y). We only need to prove that (P−1(y))C is closed for all

y ∈ X. Let {xα} be a net in (P−1(y))C such that xα → x∗. Then there exists an sα ∈ T (xα)

such that

{⟨Asα, η(y, xα)⟩+H(xα, y)}
∩

Z\{−intC(xα)} ≠ ∅.
Since T : X → 2L(E,Z) is an upper semicontinuous set-valued mapping with compact values,

by Lemma 2.2, {sα} has a convergent subset with limit, say s∗, and s∗ ∈ T (x∗). Without

loss of generality, we may assume that sα → s∗. Suppose that

zα ∈ {⟨Asα, η(y, xα)⟩+H(xα, y)}
∩

Z\{−intC(xα)}.
Since ⟨A( · ), η(y, · )⟩+H( · , y) is upper semicontinuous with compact values, by Lemma

2.2, there exist a z∗ ∈ ⟨As∗, η(y, x∗)⟩ + H(x∗, y) and a subset {zβ} of {zα} such that

zβ → z∗.

On the other hand, since Z \ {−intC(x)} is upper semicontinuous with closed values, by

Lemma 2.1, z∗ ∈ Z \ {−intC(x∗)}. Hence,
{⟨As∗, η(y, x∗)⟩+H(x∗, y)}

∩
Z\{−intC(x∗)} ̸= ∅.

Thus, (P−1(y))C is closed in X. Therefore, P has open lower sections in X. By Lemma 2.3,

coP−1(y) is also open for each y ∈ X. Since D−1(y) is compactly open for each y ∈ X,

G−1(y)

= {x ∈ X : y ∈ G(x)}

= {x ∈ W : y ∈ [D(x)
∩
coP (x)]}

∩
{x ∈ X\W : y ∈ D(x)}

= (W
∩
D−1(y)

∩
coP−1(y))

∪
[(X\W )

∩
D−1(y)]

= [(W
∩
D−1(y)

∩
coP−1(y))

∪
(X\W )]

∩
[(W

∩
D−1(y)

∩
coP−1(y))

∪
D−1(y)]

= {X
∩
[(D−1(y)

∩
coP−1(y))

∪
(X\W )]}

∩
[(W

∪
D−1(y))

∩
(D−1(y))]
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= [(D−1(y)
∩

coP−1(y))
∪
(X\W )]

∩
D−1(y)

= (D−1(y)
∩
(coP−1(y)))

∪
((X\W )

∩
(D−1(y))).

Therefore, G−1(y) also has compactly open values in X for all y ∈ X, the condition (i)

of Lemma 2.4 is satisfied. The condition (A1), and implies the condition (iii) of Lemma 2.4.

Therefore, by Lemma 2.4, there exists an x̄ ∈ X such that G(x̄) ̸= ∅.
Since for each x ∈ X, D(x) is nonempty, we have x̄ ∈ D(x̄) such that D(x̄)

∩
coP (x̄) = ∅,

which implies that x̄ ∈ D(x̄) such that D(x̄)
∩
P (x̄) = ∅, that is, x̄ ∈ D(x̄), and for all

y ∈ D(x̄), there exists an s̄ ∈ T (x̄) satisfying ⟨As̄, η(y, x̄)⟩+H(x̄, y) ⊆ −intC(x̄).

Remark 3.1 If D(x) = X for all x ∈ X, then by Theorem 3.1, we recover Theorem 3.1

in [8].

Theorem 3.2 Let E be a Hausdorff topological vector space, X be a subset of E such

that X =
∞∪

n=1
Xn, where {Xn}∞n=1 is an increasing sequence of nonempty, compact and

convex subset of X, Z be a locally convex space, and L(E,Z) be equipped with σ-topology,

D : X → 2X be a set-valued mapping with nonempty convex values and compactly open lower

sections, the set W = {x ∈ X : x ∈ D(x)} be closed, C : X → 2Z be a set-valued mapping

such that C(x) is a closed pointed and convex cone with intC(x) ̸= ∅ for each x ∈ X, the

set-valued mapping M = Z \ {−intC(x)} be upper semicontinuous on X, T : X → 2L(E,Z)

be upper semicontinuous on X with compact values, and η : X × X → E be affine in the

first argument with η(x, x) = 0 for all x ∈ X. For each y ∈ X, assume that

⟨A( · ), η(y, · )⟩+H( · , y) : L(E,Z)×X ×X → 2Z

is an upper semicontinuous set-valued mapping with compact values. Suppose that there

exists a mapping R : X ×X → 2Z such that

(i) for all x, y ∈ X, there exists an s ∈ T (x) such that

R(x, y)− [⟨As, η(y, x)⟩+H(x, y)] ⊆ −intC(x);

(ii) For any finite set {y1, y2, · · · , yn} ⊆ X and x̄ =
n∑

j=1

αjyj with αj ≥ 0 and
n∑

j=1

αj = 1,

there is a j ∈ {1, 2, · · · , n} such that R(x̄, yj) ̸⊆ −intC(x̄);

(iii) For each sequence {xn}∞n=1 in X with xn ∈ Xn for all n = 1, 2, · · · , which is

escaping from X relative to {Xn}∞n=1, there exist an m ∈ N and a zm ∈ D(xm) ∩Xm such

that

⟨Asm, η(zm, xm)⟩+H(xm, zm) ⊆ −intC(xm), sm ∈ T (xm).

Then GVQVLIP has a solution.

Proof. Define two set-valued mappings P : X → 2X , P1 : X → 2X by

P (x) = {y ∈ X : ⟨As, η(y, x)⟩+H(x, y) ⊆ −intC(x), ∀s ∈ T (x)}, x ∈ X,

P1(x) = {y ∈ X : R(x, y) ⊆ −intC(x)}, x ∈ X.

We first prove that x ̸∈ co(P1(x)) for all x ∈ X. To see this, by way of contradiction,

assume that there existed some point x̄ ∈ X such that x̄ ∈ co(P1(x̄)). Then there exist
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finite points y1, y2, · · · , yn in X and αj ≥ 0 with
n∑

j=1

αj = 1 such that x̄ =
n∑

j=1

αjyj and

yj ∈ P1(x̄) for all j = 1, 2, · · · , n. That is, R(x̄, yj) ⊆ −intC(x̄), j = 1, 2, · · · , n. This

contradicts the condition (ii). Therefore, x ̸∈ co(P1(x)) for all x ∈ X.

The condition (i) implies that P1(x) ⊇ P (x) for all x ∈ X. Hence, x ̸∈ co(P (x)) for all

x ∈ X.

The remainder of the proof is the same as of Theorem 3.1.
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