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Abstract: The strong consistency of M estimator of regression parameter in linear

model for φ̃-mixing samples is discussed by using the classic Rosenthal type inequality.

We get the strong consistency of M estimator under lower moment condition, which

generalizes and improves the corresponding ones for independent sequences.
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1 Introduction

Consider the following linear model:

yi = x′iβ0 + ei, i = 1, 2, · · · , n, n ∈ N, (1.1)

where xi (i = 1, 2, · · · , n) is a known p-dimensional vector, β0 is an unknown p-dimensional

regression parametric vector, and e1, e2, · · · , en are random errors. Let f be a convex

function on R. The M estimator of β0 is β̂n satisfying the following equation:
n∑

i=1

f(yi − x′iβ̂n) = min
β∈Rp

n∑
i=1

f(yi − x′iβ). (1.2)

The scope of M estimator is very wide containing the least squares estimator, maximum

likelihood estimator etc. Since Huber[1] studied the M estimator of regression parameter in

linear model, many authors have shown great interest in this field and obtained many useful

results; see, for example, [2–5].

Throughout this paper, we use the following notations: Let

α = (a1, a2, · · · , ap)′
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be a p-dimensional vector, and

∥α∥2 .
=

p∑
i=1

a2i = α′α, |α| .= max
1≤i≤p

|ai|.

Denote

Sn =
n∑

i=1

xix
′
i.

Assume that S−1
n exists, and

dn
.
= max

1≤i≤n
x′iS

−1
n xi.

Let f be a convex function, ψ− and ψ+ denote the left derivative and right derivative of

function f , respectively. an = O(bn) denotes that there exists a positive constant C such

that

∣∣∣∣anbn
∣∣∣∣ ≤ C for all sufficiently large n. C and Ci (i ≥ 1) are positive constants which

may be different in various places.

As for the sufficient condition for the strong consistency of M estimator, Chen and

Zhao[2] obtained the following result:

Theorem 1.1 [2] Let e1, e2, · · · , en, · · · be a sequence of independent random variables

with identical distribution, and f be a convex function satisfying the following two conditions:

(1) There exist constants l1 > 0 and l2 > 0 such that

E(f(e1 + u)− f(e1)) ≥ l1u
2, |u| < l2;

(2) There exists a constant ∆ > 0 such that

E|ψ+(e1 ±∆)|m ≤ hm <∞, m = 1, 2, · · ·
If there exists a δ with 0 < δ ≤ 1 such that dn = O(n−δ), then, β̂n is the strong consistency

estimator of β0.

Yang[3] improved the result of Theorem 1.1 and obtained the following Theorem 1.2 and

Theorem 1.3.

Theorem 1.2 [3] Let e1, e2, · · · , en, · · · be a sequnce of independent random variables with

identical distribution, and f be a convex function satisfying the following two conditions:

(1) There exist constants l1 > 0 and l2 > 0 such that

E(f(e1 + u)− f(e1)) ≥ l1u
2, |u| < l2;

(2) There exist constants h0 > 0, ∆ > 0 and 0 < δ ≤ 1 such that

E|ψ+(e1 ±∆)|2/δ ≤ h0 <∞
and

dn = O(n−δ).

Then, β̂n is the strong consistency estimator of β0.

Theorem 1.3 [3] Let e1, e2, · · · , en, · · · be a sequence of independent random variables,

and f be a convex function satisfying the following two conditions:
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(1) There exist constants l1 > 0 and l2 > 0 such that

E(f(ei + u)− f(ei)) ≥ l1u
2, i = 1, 2, · · · , n, |u| < l2;

(2) There exist constants h0 > 0, ∆ > 0, 0 < δ ≤ 1 and t >
2

δ
such that

dn = O(n−δ),

sup
i
E|ψ+(ei ±∆)|t ≤ h0 <∞.

Then, β̂n is the strong consistency estimator of β0.

Unfortunately, e1, e2, · · · , en, · · · are not independent in most cases. So it is valuable

to extend the result for independent samples to the case of dependent samples. Some

authors have shown great interests in this field and obtained some valuable results. Wu[4–6]

studied the strong consistency of M estimator of regression parameter in linear model for

ρ-mixing, ϕ-mixing and ψ-mixing samples (see [4]), the strong consistency ofM estimator of

regression parameter in linear model for ρ̃-mixing samples (see [5]), the strong consistency

of M estimator for NA samples (see Theorem 3.3.1 of [6]), and so forth. In this paper, we

investigate the strong consistency of M estimator of regression parameter in linear model

for a class of φ̃-mixing samples and greatly reduce the moment condition of |ψ+(ei ±∆)|.
Let {Xn, n ≥ 1} be a sequence of random variables defined on a fixed probability space

(Ω , F , P ). Write

FS = σ(Xi, i ∈ S ⊂ N).

Given σ-algebras B, R in F , let

φ(B, R) = sup{|P (B|A)− P (B)|; A ∈ B, P (A) > 0, B ∈ R}.
Define the φ̃-mixing coefficients by

φ̃(k) = sup{φ(FS , FT ) : finite subsets S, T ⊂ N such that dist(S, T ) ≥ k}, k ≥ 0.

Obviously,

0 ≤ φ̃(k + 1) ≤ φ̃(k) ≤ 1, φ̃(0) = 1.

Definition 1.1 A sequence of random variables {Xn, n ≥ 1} is said to be φ̃-mixing if

there exists a k ∈ N such that φ̃(k) < 1.

It is easily seen that independent sequence is the special case of φ̃-mixing sequence.

The concept of φ̃-mixing was introduced by Wu and Lin[7]. Some authors have studied the

concept and got some valuable results, for example, Wu and Lin[7], Wang and Hu[8], Wu[9],

and so forth.

The following lemma plays an important role to prove the main result of this paper. The

proof is similar to which of Lemma 5.1.1 in [6], so we omit the details.

Lemma 1.1 Let {Xn, n ≥ 1} be a sequence of φ̃-mixing random variables with

EXn = 0, E|Xn|q <∞, n = 1, 2, · · · , q ≥ 2.

Then there exists a positive constant C depending only on φ̃(·) and q such that

E

∣∣∣∣ n∑
i=1

Xi

∣∣∣∣q ≤ C

[ n∑
i=1

E|Xi|q +
( n∑

i=1

EX2
i

)q/2]
, n ≥ 1.
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2 Main Result and Its Proof

Theorem 2.1 Let e1, e2, · · · , en, · · · be a sequence of φ̃-mixing random variables, and

f be a convex function satisfying the following two conditions:

(1) There exist constants l1 > 0 and l2 > 0 such that

E(f(ei + u)− f(ei)) ≥ l1u
2, i = 1, 2, · · · , n, |u| < l2;

(2) There exist constants h0 > 0, ∆ > 0, 0 < δ ≤ 1 and t > 1 +
1

δ
such that

dn = O(n−δ), (2.1)

sup
i
E|ψ+(ei ±∆)|t ≤ h0 <∞. (2.2)

Then, β̂n is the strong consistency estimator of β0.

Proof. Without loss of generality, we assume that β0 = 0. Let

xni = S
− 1

2
n xi, βn0 = S

1
2
nβ0, 1 ≤ i ≤ n.

Then the model (1.1) can be replaced by

yi = x′niβn0 + ei, i = 1, 2, · · · , n, n ∈ N, (2.3)

and
n∑

i=1

xnix
′
ni = Ip,

n∑
i=1

∥xni∥2 = p, dn = max
1≤i≤n

∥xni∥2. (2.4)

Let β∗
n be the M estimator of βn0 under the model (2.3) based on the function f . Then

β̂n = S
− 1

2
n β∗

n.

Take

ε =
l1
2
, 0 < η < min{1, ∆, l2}, b̃n =

[ η√
dnp

]
, (2.5)

Dn = {β = (β1, β2, · · · , βp)′ : −b̃n ≤ βi ≤ b̃n, 1 ≤ i ≤ p}. (2.6)

Let m be a positive integer such that m >
4

δ
− 3. Each side of the hypercube Dn can be

divided into 2b̃m+1
n equal parts. Thus, the hypercube Dn can be divided into (2b̃m+1

n )p small

hypercubes denoted as {Bj : 1 ≤ j ≤ Nn}, Nn = (2b̃m+1
n )p. The length of Bj is b̃−m

n , and

the center is denoted as bj . Denote

ϕni(β) = f(ei)− f(ei − x′niβ), Rni(β) = ϕni(β)− Eϕni(β),

En =

{
sup
β∈Dn

∣∣∣∣ n∑
i=1

Rni(β)

∣∣∣∣ ≥ εb̃2n

}
,

En1 =

{
sup

1≤j≤Nn

∣∣∣∣ n∑
i=1

Rni(bj)

∣∣∣∣ ≥ εb̃2n
2

}
,

En2 =

{
sup

1≤j≤Nn

sup
β∈Bj

∣∣∣∣ n∑
i=1

(Rni(β)−Rni(bj))

∣∣∣∣ ≥ εb̃2n
2

}
.

According to the proof of Theorem 3.1 in [2], we can see that

{∥β̂n∥ ≥ ε0} ⊆ En1 ∪En2, ε0 > 0.
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Thus, in order to prove Theorem 2.1, we only need to show
∞∑

n=1

P (En1) <∞, (2.7)

∞∑
n=1

P (En2) <∞. (2.8)

Firstly, we prove (2.8). Denote

g(x) = max{|ψ+(x+∆)|, |ψ+(x−∆)|}.
By (2.2) we have

sup
i
Egt(ei) ≤ 2h0 <∞. (2.9)

Since t > 1 +
1

δ
> 1, it follows that

sup
i
Eg(ei) <∞.

By the convexity of f , we can see that

|f(a)− f(b)| ≤ |b− a|g(x), a, b ∈ (x−∆, x+∆).

If β ∈ Dn, then by (2.5) and (2.6) we have

|x′nibj | ≤
√
dnpb̃n ≤ η ≤ min{1, ∆}, (2.10)

|x′niβ| ≤
√
dnpb̃n ≤ η ≤ min{1, ∆}, (2.11)

which imply that for β ∈ Bj ,

|f(ei − x′nibj)− f(ei − x′niβ)|

≤ g(ei)|x′ni(β − bj)|

≤ g(ei)
√
dnp∥β − bj∥

≤ g(ei)
√
dnpb̃

−m
n , 1 ≤ j ≤ Nn, (2.12)

and

sup
1≤j≤Nn

sup
β∈Bj

∣∣∣∣ n∑
i=1

(Rni(β)−Rni(bj))

∣∣∣∣
≤ sup

1≤j≤Nn

sup
β∈Bj

n∑
i=1

|f(ei − x′nibj)− f(ei − x′niβ)|

+ sup
1≤j≤Nn

sup
β∈Bj

n∑
i=1

E|f(ei − x′nibj)− f(ei − x′niβ)|

≤
√
dnpb̃

−m
n

n∑
i=1

g(ei) +
√
dnpb̃

−m
n

n∑
i=1

Eg(ei)

≤
√
dnpb̃

−m
n

n∑
i=1

g(ei) + n
√
dnpb̃

−m
n sup

i
Eg(ei). (2.13)

It follows from (2.1) and (2.4)–(2.6) that

dn ≪ n−δ, b̃n ≪ n
δ
2 ,

n∑
i=1

|x′nibj |2 ≪ nδ. (2.14)
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By (2.9) and t > 1 +
1

δ
> 1 we can get

sup
i
Eg(ei) <∞.

Note that m >
4

δ
− 3, which implies that

1− δ(m+ 3)

2
< −1

and

nb̃−m−2
n

√
dnp sup

i
Eg(ei) ≪ n1−

δ(m+3)
2 → 0, n→ ∞.

Therefore, for all n large enough,

nb̃−m
n

√
dnp sup

i
Eg(ei) <

εb̃2n
4
. (2.15)

By Markov’s inequality and (2.13)–(2.15), we have for all n large enough

P (En2) = P

(
sup

1≤j≤Nn

sup
β∈Bj

∣∣∣∣ n∑
i=1

(Rni(β)−Rni(bj))

∣∣∣∣ ≥ εb̃2n
2

)

≤ P

(
b̃−m
n

√
dnp

n∑
i=1

g(ei) + b̃−m
n

√
dnp

n∑
i=1

Eg(ei) ≥
εb̃2n
2

)

≤ P

(
b̃−m
n

√
dnp

n∑
i=1

g(ei) ≥
εb̃2n
4

)

≤ C1b̃
−(2+m)
n

√
dn

n∑
i=1

Eg(ei)

≤ C2nb̃
−(2+m)
n

√
dn

≤ C3n
1− (m+3)δ

2 ,

which together with m >
4

δ
− 3 implies that

∞∑
n=1

P (En2) <∞.

This completes the proof of (2.8).

Now we prove (2.7). We discuss it for two cases.

1) If 0 < δ < 1, we denote

rn = εb̃2τn lnn,

where

τ =
1

δ(t− 1)
< 1.

Let

ξ
(1)
ni (bj) = ϕni(bj)I(|ϕni(bj)| ≤ rn),

ξ
(2)
ni (bj) = ϕni(bj)I(|ϕni(bj)| > rn),

η
(k)
ni (bj) = ξ

(k)
ni (bj)− Eξ

(k)
ni (bj), k = 1, 2.
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It is easy to see that
n∑

i=1

Rni(bj) =
n∑

i=1

η
(1)
ni (bj) +

n∑
i=1

η
(2)
ni (bj),

which yields that

En1 ⊆
{

sup
1≤j≤Nn

∣∣∣∣ n∑
i=1

η
(1)
ni (bj)

∣∣∣∣ ≥ εb̃2n
4

}∪{
sup

1≤j≤Nn

∣∣∣∣ n∑
i=1

η
(2)
ni (bj)

∣∣∣∣ ≥ εb̃2n
4

}
.
= En11 + En12.

Take

q > max

{ δp(m+ 1)

2
− 2δτ + δ + 1

δ(1− τ)
, p(m+ 1) +

2

δ
, 2

}
.

By Lemma 1.1 we have

E

∣∣∣∣ n∑
i=1

η
(1)
ni (bj)

∣∣∣∣q ≤ C

[ n∑
i=1

E|η(1)ni (bj)|
q +

( n∑
i=1

E|η(1)ni (bj)|
2

)q/2]

≤ C

[ n∑
i=1

E|ϕni(bj)|qI(|ϕni(bj)| ≤ rn) +

( n∑
i=1

E|η(1)ni (bj)|
2

)q/2]

≤ C

[ n∑
i=1

E|ϕni(bj)|qrq−2
n +

( n∑
i=1

E|ϕni(bj)|2
)q/2]

≤ C

[
rq−2
n

n∑
i=1

|x′nibj |2Eg2(ei) +
( n∑

i=1

|x′nibj |2Eg2(ei)
)q/2]

≤ C
[
nτδ(q−2)+δ(lnn)q−2 + nδq/2

]
.

Therefore,
∞∑

n=1

P (En11) ≤ C
∞∑

n=1

b̃−2q
n

Nn∑
j=1

E

∣∣∣∣ n∑
i=1

η
(1)
ni (bj)

∣∣∣∣q

≤ C
∞∑

n=1

[
n

δ(m+1)p
2 −δq+τδ(q−2)+δ(lnn)τ(q−2) + n

δ(m+1)p
2 − δq

2

]
< ∞.

Finally, we prove that
∞∑

n=1

P (En12) <∞.

It follows from (2.14) that∣∣∣∣ n∑
i=1

Eξ
(2)
ni (bj)

∣∣∣∣ ≤ n∑
i=1

E|ξ(2)ni (bj)|

≤
n∑

i=1

E|ϕni(bj)|I(|ϕni(bj)| > rn)

=
n∑

i=1

E|ϕni(bj)|t|ϕni(bj)|1−tI(|ϕni(bj)| > rn)
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≤ sup
1≤j≤Nn

n∑
i=1

|x′nibj |tEgt(ei)r1−t
n

≤ b̃2nb̃
−2τ(t−1)
n ,

which implies that for all n large enough

sup
1≤j≤Nn

∣∣∣∣ n∑
i=1

Eξ
(2)
ni (bj)

∣∣∣∣ ≤ εb̃2n
8
.

Since

|ϕni(bj)| ≤ g(ei)|x′nibj |, |x′nibj | ≤ 1,

it follows that

sup
1≤j≤Nn

∣∣∣∣ n∑
i=1

ξ
(2)
ni (bj)

∣∣∣∣ ≤ sup
1≤j≤Nn

n∑
i=1

|ξ(2)ni (bj)|

≤ sup
1≤j≤Nn

n∑
i=1

|ϕni(bj)|I(|ϕni(bj)| > rn)

≤ sup
1≤j≤Nn

n∑
i=1

|ϕni(bj)|t|ϕni(bj)|1−tI(|ϕni(bj)| > rn)

≤ sup
1≤j≤Nn

n∑
i=1

|x′nibj |tgt(ei)r1−t
n .

Therefore,
∞∑

n=1

P (En12) ≤
∞∑

n=1

P

(
sup

1≤j≤Nn

n∑
i=1

|x′nibj |2gt(ei)r1−t
n ≥ εb̃2n

8

)

≤ C

∞∑
n=1

b̃−2
n sup

1≤j≤Nn

n∑
i=1

|x′nibj |2Egt(ei)r1−t
n

≤ C

∞∑
n=1

n−1(lnn)1−t

< ∞.

2) If δ = 1, we can also get
∞∑

n=1

P (En12) <∞

by using the similar method of the proof of the Theorem in [5].

The proof is completed.

Remark 2.1 We have pointed out that φ̃-mixing sequence contains independent sequence

as a special case, and thus Theorem 2.1 generalizes the result for independent sequence. On

the other hand, the condition (2.2) reduces the moment condition of |ψ+(ei ± ∆)| (for

0 < δ ≤ 1,
2

δ
≥ 1 +

1

δ
), which greatly improves and extends the results of Chen and Zhao[2]

and Yang[3].
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