
Communications
in
Mathematical
Research
29(1)(2013), 51–60

Dynamics and Long Time Convergence of

the Extended Fisher-Kolmogorov Equation

under Numerical Discretization∗

Wang Jue
(College of Science, Harbin Engineering University, Harbin, 150001)

Communicated by Ma Fu-ming

Abstract: We present a numerical study of the long time behavior of approxima-

tion solution to the Extended Fisher–Kolmogorov equation with periodic boundary

conditions. The unique solvability of numerical solution is shown. It is proved that

there exists a global attractor of the discrete dynamical system. Furthermore, we

obtain the long-time stability and convergence of the difference scheme and the up-

per semicontinuity d(Ah,τ ,A) → 0. Our results show that the difference scheme can

effectively simulate the infinite dimensional dynamical systems.
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1 Introduction

The Extended Fisher-Kolmogorov (EFK) equation is given by
∂u

∂t
+ β

∂4u

∂x4
− ∂2u

∂x2
+ (u3 − u) = 0, x ∈ Ω , t ≥ 0 (1.1)

with the boundary condition

u(0, t) = u(x+ L, t), x ∈ Ω , t ≥ 0 (1.2)

and the initial condition

u(x, 0) = u0(x), x ∈ Ω , (1.3)

where β > 0, 0 < L < +∞ and Ω = (0, L) is a bounded domain in R with boundary ∂Ω ,

and u0 is a given L-periodic function.

When β = 0 in (1.1), the standard Fisher-Kolmogorov equation was obtained (see [1–

2]). Adding a stabilizing fourth order derivative term to the standard Fisher-Kolmogorov
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equation, the equation (1.1) is proposed and called as Extended Fisher-Kolmogorov equation

(see [3–6]).

The equation (1.1) occurs in a variety of applications such as pattern formation in bi-

stable systems, propagation of domain walls in liquid crystals, travelling waves in reaction

diffusion systems and mezoscopic model of a phase transition in a binary system near the

Lipschitz point (see [4, 7–9]). In particular, in the phase transitions near critical points

(Lipschitz points), the higher order gradient terms in the free energy functional can no

longer be neglected and the fourth order derivative becomes important.

There have been a number of papers in the literature dealing with equations similar to the

equation (1.1) (see [10–13]). In recent years, attention has been focused on the connection

between finite-dimensional dynamical system theory and the long-time behavior of solutions

of a priori infinite-dimensional dynamical systems described by partial differential equations.

In particular, the techniques have been developed to establish this connection in a rigorous

and quantitative way by showing how the dimension of the global attractor may be estimated

for some dissipative partial differential equations (see [14–17]). The long-time behavior of

the solutions to (1.1) is studied theoretically in [18].

For the long-time computation of partial differential equations, the error estimate are

important in both space and time directions. Simo and Armero[19] pointed out that the

first order scheme with long time stability and convergence is more effective than the sec-

ond order scheme. Recently, some useful results about equivalence of equi-attraction and

continuous convergence of attractors in different spaces have been given in [20]. To compute

a trajectory numerically, long-time computation generally suffers from error accumulation

at the unavoidable exponential rates. A numerical trajectory eventually leaves the exact

trajectory and no longer shows any information about the original trajectory. On the other

hand, for dissipative system such as the EFK equation, if the discretization schemes are

appropriately selected, the numerical trajectory is expected to approach a discrete attractor

and it eventually enters and stays in a small neighborhood of the attractor.

For this reason, we consider the error estimates for a global attractor. Existence of

attractors for the dissipative systems is proved. The remainder of this paper is organized as

follows. In Section 2, we describe a new finite difference scheme for the EFK equation and

prove that the difference scheme is uniquely solvable. In Section 3, we derive the priori error

estimates for numerical solution to obtain the existence of a global attractor. In Section 4,

we discuss the long time stability and convergence of the difference scheme and the upper

semicontinuity d(Ah,τ ,A) → 0.

2 Finite Difference Scheme and Unique Solvability of
Difference Approximation

Let h = L/J be the uniform step size in the spatial direction for a positive integer J . Let τ

denote the uniform step size in the temporal direction. Denote V n
i = V (xi, tn) for tn = nτ ,
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n = 0, 1, · · · and

RJ
per = {Vi = (Vi)0≤i≤J : Vi ∈ R and Vi+J = Vi, 0 ≤ i ≤ J}.

We define the difference operator for a function Vi ∈ RJ
per, respectively, as

∇+
h Vi =

Vi+1 − Vi

h
, ∇−

h Vi =
Vi − Vi−1

h
, ∆hVi = ∇+

h (∇
−
h Vi), ∆2

hVi = ∆h(∆hVi).

Furthermore, we define operator ∂tV
n as

∂tV
n
i =

V n+1
i − V n

i

τ
.

We now introduce the discrete L2-inner product and the associated norm by

(V,W )h =
J∑

i=1

ViWih, V, W ∈ RJ
per, ∥V ∥h = (V, V )

1
2

h .

The discrete Hk-seminorm | · |k,h, Hk-norm ∥ · ∥k,h and L∞-norm ∥ · ∥∞,h are defined,

respectively, as

|V |k,h = ∥∇+k
h V ∥h, ∥V ∥k,h =

(
k∑

l=0

∥∇+l
h V ∥2h

) 1
2

, ∥V ∥∞,h = max
1≤i≤J

|Vi|.

Let Ωh = {ih; 0 ≤ i ≤ J}. It is convenient to let L 2
per(Ωh) and H k

per(Ωh) (k ≥ 1) denote the

normed vector spaces, respectively, as

{RJ
per, ∥ · ∥h}, {RJ

per, ∥ · ∥k,h}.
Thanks to the periodicity of the discrete function V ∈ H k

per(Ωh), we have

|V |k,h = ∥∇+k
h V ∥h = ∥∇+l

h ∇−(k−l)
h V ∥h, 0 ≤ l ≤ k.

Throughout this paper, we denote ci > 0 as a generic constant independent of step sizes

h. To obtain some important results, we introduce the following lemmas.

Lemma 2.1[21] For V,W ∈ RJ
per, there holds

(V,−∇+
h (∇

−
hW ))h = (∇+

h V,∇
+
hW )h = (−∇+

h (∇
−
h V ),W )h.

Lemma 2.2[21] For V ∈ H n
per(Ωh), we have

∥∇+k
h V ∥h ≤ K1∥∇+n

h V ∥
k
n

h ∥V ∥1−
k
n

h (2.1)

and

∥∇+k
h V ∥∞,h≤ K2∥V ∥1−

k+1
2

n

h

(
∥∇+n

h V ∥h +
∥V ∥h
Ln

) k+1
2

n

(2.2)

for 0 ≤ k ≤ n, where K1 and K2 are constants independent of h and the discrete function

V .

Lemma 2.3[21] For a function V ∈ H1
per(Ωh), the following inequality holds:

c1∥V ∥2h ≤ |V |21,h.

According to Lemma 2.3 and (2.1), we have a lemma as follows.

Lemma 2.4 For a function V ∈ Hk
per(Ωh), we have

ck|V |2k−1,h ≤ |V |2k,h, 2 ≤ k ≤ 4.
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Lemma 2.5 For s ∈ R, there hold
1

2
s4 − c5 ≤ (s3 − s)s ≤ 3

2
s4 + c5, c5 > 0, (2.3)

3

2
s2 − c6 ≤ (s3 − s)

′
≤ 9

2
s2 + c6, c6 > 0. (2.4)

We propose a new difference scheme for the solution of the problem (1.1)–(1.3) as follows:

∂tU
n
i + β∆2

hU
n+1
i −∆hU

n+1
i + [(Un+1

i )3 − Un+1
i ] = 0, 0 ≤ i ≤ J, n ≥ 0, (2.5)

Un
i = Un

i+J , 0 ≤ i ≤ J, n ≥ 0, (2.6)

U0
i = u0(ih), i = 0, 1, · · · , J. (2.7)

Below, we prove the solvability of the discrete system (2.5)–(2.7).

Theorem 2.1 The difference scheme (2.5)–(2.7) is uniquely solvable.

Proof. For ϕ ∈ H1
per(Ωh), we define a discrete function ϕ as follows:

ϕi − λUn
i

τ
+ λβ∆2

hϕi − λ∆hϕi + λ(ϕ3
i − ϕi) = 0, 0 ≤ i ≤ J, n ≥ 0, (2.8)

where 0 ≤ λ ≤ 1. It defines a mapping ϕ = Tλ(ϕ) of H1
per(Ωh) into itself. Obviously, the

mapping Tλ(ϕ) is continuous for any ϕ ∈ H1
per(Ωh). Since a difference solution is a fixed

point of T1, it only needs to prove the existence of the fixed point of T1, i.e., it is sufficient to

prove the uniform boundedness for the mapping Tλ with respect to the parameter 0 ≤ λ ≤ 1

by the Leray-Schauder fixed point theorem. Taking an inner product of (2.8) with ϕ and

using Lemma 2.1, we obtain

∥ϕ∥2h − ∥Un∥2h
2τ

+ λβ|ϕ|22,h + λ|ϕ|21,h + λ(ϕ3 − ϕ, ϕ)h ≤ 0, n ≥ 0. (2.9)

By (2.3) and (2.9), we get

∥ϕ∥2h ≤ ∥Un∥2h + 2c5Lτ, n ≥ 0.

This means that ∥ϕ∥2h is uniformly bounded with respect to the parameter 0 ≤ λ ≤ 1. Thus

the solution of the difference scheme (2.5) with boundary conditions (2.6) exists.

Let Un+1 and V n+1 be the solutions of the discrete system (2.5)-(2.6) with initial con-

ditions U0 and V 0, respectively. Then εn+1 = Un+1 − V n+1 satisfies that

∂tε
n
i + β∆2

hε
n+1
i −∆hε

n+1
i +

{
[(Un+1

i )3 − Un+1
i ]− [(V n+1

i )3 − V n+1
i ]

}
= 0, (2.10)

εni = εni+J , 0 ≤ i ≤ J, n ≥ 0, (2.11)

ε0i = U0
i − V 0

i , 0 ≤ i ≤ J. (2.12)

Computing the inner product of (2.10) with εn+1, and using Lemma 2.1, we obtain

∥εn+1∥2h − ∥εn∥2h
2τ

+ (((Un+1)3 − Un+1)− ((V n+1)3 − V n+1), εn+1)h ≤ 0. (2.13)

It follows from (2.4), (2.13) and the mean value theorem that

∥εn∥2h ≤ 1

1− 2c6τ
∥εn−1∥2h ≤ · · · ≤ e

2c6nτ
1−2c6τ ∥ε0∥2h, n = 0, 1, 2, · · · (2.14)

(2.14) determines Un+1
i uniquely. This completes the proof.
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3 Global Attractor of Discrete Dynamical System

In this section, we consider the existence of a global attractor for the semigroup {(Sh,τ )
n}n≥0

associated with the discrete system (2.5)–(2.7). Then the semigroup {(Sh,τ )
n}n≥0 acting on

H1
per(Ωh), (Sh,τ )

n : H1
per(Ωh) → H1

per(Ωh) for every n ≥ 0 is defined by

Un = (Sh,τ )
nU0.

To obtain the existence of a global attractor, we introduce the following lemmas.

Lemma 3.1 Suppose that u0 is smooth enough. Then the solution of the difference

scheme (2.5), (2.6) and (2.7) is estimated as follows:

∥Un∥2h ≤ (e−
ατ

1+ατ )n∥U0∥2h +
2c5L

α
, n = 0, 1, 2, · · · ,

where α = 2(βc1 + c1 · c2). Furthermore, there exists a constant ρ0 >

√
2c5L

α
such that the

ball

Bh
0 = {U ∈ L2

per(Ωh); ∥U∥h ≤ ρ0}

is a bounded absorbing set in L2
per(Ωh) under the semigroup {(Sh,τ )

n}n≥0.

Proof. Taking an inner product of (2.5) with Un+1, we have

∥Un+1∥2h − ∥Un∥2h
2τ

+ β|Un+1|22,h + |Un+1|21,h + ((Un+1)3 − Un+1, Un+1)h ≤ 0.

An application of Lemma 2.3, Lemma 2.4 and (2.3) yields

∥Un+1∥2h − ∥Un∥2h
2τ

+ (βc1 · c2 + c1)∥Un+1∥2h ≤ c5L, (3.1)

Let α = 2(βc1 · c2 + c1). Then, it follows from (3.1) that

∥Un+1∥2h ≤ 1

1 + ατ
∥Un∥2h +

2c5Lτ

1 + ατ
≤ · · · ≤ (e−

ατ
1+ατ )n+1∥U0∥2h +

2c5L

α
, n ≥ 0.

This completes the proof.

Lemma 3.2 Suppose that u0 is smooth enough. Then the solution of the difference

scheme (2.5), (2.6) and (2.7) is estimated as follows:

|Un|21,h ≤ 1

c2
(e−

γτ
1+γτ )n|U0|22,h +

κ

c2γ
, n = 0, 1, 2, · · · ,

where

γ = βc3c4 + 2c3, κ =
1

β
ρ20(ρ

2
0 + 1)2.

Furthermore, there exists a constant ρ1 > ρ0 +

√
κ

c2γ
such that the ball

Bh
1 = {U ∈ H1

per(Ωh); ∥U∥1,h ≤ ρ1}
is a bounded absorbing set in H1

per(Ωh) under the semigroup {(Sh,τ )
n}n≥0.

Proof. Taking an inner product of (2.5) with ∆2
hU

n+1, by Lemma 2.1, we have

|Un+1|22,h − |Un|22,h
2τ

+ β|Un+1|24,h + |Un+1|23,h + ((Un+1)3 − Un+1,∆2
hU

n+1)h ≤ 0. (3.2)
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Using Young’s inequality, we obtain
|Un+1|22,h − |Un|22,h

2τ
+ β|Un+1|24,h + |Un+1|23,h ≤ 1

2β
∥(Un+1)3 − Un+1∥2h +

β

2
|Un+1|24,h,

It follows from Lemmas 2.4 and 3.1 that
|Un+1|22,h − |Un|22,h

2τ
+
(β
2
c3c4 + c3

)
|Un+1|22,h ≤ 1

2β
ρ20(ρ

2
0 + 1)2, n ≥ 0. (3.3)

Let γ = βc3c4 + 2c3, κ =
1

β
ρ20(ρ

2
0 + 1)2. Thus, (3.3) yields

|Un+1|22,h ≤ 1

1 + γτ
|Un|22,h +

κτ

1 + γτ
≤ · · · ≤ (e−

γτ
1+γτ )n+1|U0|22,h +

κ

γ
, n ≥ 0. (3.4)

Hence, we obtain from Lemma 2.4 that

|Un|21,h ≤ 1

c2
(e−

γτ
1+γτ )n|U0|22,h +

κ

c2γ
, n = 0, 1, 2, · · ·

This completes the proof.

According to the Lemma 3.1, Lemma 3.2 and (2.2), we have

Theorem 3.1 Assume that u0 is sufficiently regular. Let Un be the solution of the dif-

ference scheme (2.5)–(2.7). Then, there exists a positive constant C independent of h and

of τ such that

∥Un∥∞,h ≤ C, n ≥ 0.

Obviously, the family of operators {(Sh.τ )
n}n≥0 satisfy the semigroup properties

(Sh,τ )
m(Sh,τ )

n = (Sh,τ )
m+n, ∀ m,n ≥ 0, (Sh,τ )

0 = I.

By the above estimates, there exists a bounded set Bh
1 which is absorbing in H1

per(Ωh) under

{(Sh.τ )}n≥0. Using Theorem 1.1 in [22], we obtain the following theorem.

Theorem 3.2 Suppose that the conditions of Lemma 3.2 are satisfied. Then the discrete

dynamical system associated with the finite difference scheme (2.5)–(2.7) possesses a global

attractor Ah,τ in H1
per(Ωh), and

Ah,τ =
∩
n≥0

∪
m≥n

(Sh,τ )mBh
1 .

4 Long Time Convergence and Stability

Define the net function un
i = u(xi, t

n). Let En
i = un

i − Un
i and f(u) = u− u3.

To prove long-time convergence, we make discussions for different cases.

(i) f is a smooth function satisfying

f
′
(s) ≤ 0, s ∈ R. (4.1)

Then, we can obtain Proposition 4.1 as follows.

Proposition 4.1 Suppose that f is a smooth function satisfying (4.1) and the solution

u(x, t) of (1.1)–(1.3) is sufficiently regular. Then, the solution of the difference scheme

(2.5), (2.6) and (2.7) converges to the solution of the problem (1.1)–(1.3) in the discrete

L2
per(Ωh)-norm and the rate of convergence is O(τ + h2).
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Proof. Making use of Taylor’s expansion, we find

∂tu
n
i + β∆2

hu
n+1
i −∆hu

n+1
i = f(un+1

i ) +Rn+1
i , 0 ≤ i ≤ J, n ≥ 0, (4.2)

un
i = un

i+J , 0 ≤ i ≤ J, n ≥ 0, (4.3)

u0
i = u(ih, 0), 0 ≤ i ≤ J, (4.4)

where Rn+1
i is the truncation errors of the difference scheme (4.2). It can be easily obtained

that

max
1≤i≤J

|Rn+1
i | ≤ M(τ + h2), n ≥ 0, (4.5)

and the constant M is independent of τ and h.

Subtracting (4.2) from (2.5), we find

∂tE
n
i + β∆2

hE
n+1
i −∆hE

n+1
i = [f(un+1

i )− f(Un+1
i )] +Rn+1

i , 0 ≤ i ≤ J, n ≥ 0, (4.6)

En
i = En

i+J , 0 ≤ i ≤ J, n ≥ 0, (4.7)

E0
i = 0, 0 ≤ i ≤ J. (4.8)

Taking in (4.6) the inner product with En+1 and using Lemma 2.1, we obtain

∥En+1∥2h − ∥En∥2h
2τ

+ β|En+1|22,h + |En+1|21,h
≤(f(un+1)− f(Un+1), En+1)h + |(Rn, En+1)h|. (4.9)

An application of the mean value theorem and (4.1) yield

∥En+1∥2h − ∥En∥2h
2τ

+ β|En+1|22,h + |En+1|21,h ≤ |(Rn, En+1)h| ≤ ∥Rn∥h · ∥En+1∥h.
Using Young’s inequality, Lemmas 2.3 and 2.4, we obtain
∥En+1∥2h − ∥En∥2h

2τ
+ (βc1c2 + c1)∥En+1∥2h ≤ 1

4(βc1c2 + c1)
∥Rn∥2h + (βc1c2 + c1)∥En+1∥2h.

Then, we get

∥En∥2h ≤ ∥E0∥2h +
τ

2(βc1c2 + c1)

n∑
m=1

∥Rm∥2h. (4.10)

Combining (4.5), (4.8) and (4.10), we find

∥un − Un∥h ≤ O(τ + h2), n = 0, 1, 2, · · · , (4.11)

which completes the proof of Proposition 4.1.

(ii) f is a smooth function satisfying

f
′
(s) > 0, s ∈ R. (4.12)

In the following Proposition 4.2, our argument is based on some hypothesis as follows.

First, we consider the corresponding stationary problem

−∆hu = f(u), x ∈ Ω , t ≥ 0, (4.13)

u(x, t) = u(x+ L, t), x ∈ Ω , t ≥ 0. (4.14)

For any positive function ω ∈ C(Ω̄), we consider the eigenvalue problem with weight

−∆hφ = µωφ in Ω ,

φ(x, t) = φ(x+ L, t), x ∈ Ω , t ≥ 0.

Let µ1[ω] denote its smallest eigenvalue. Recall that µ1[ω] can be characterized as

µ1[ω] = inf
φ∈H1

per

|φ|21,h
(ωφ, φ)h

> 0.
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We assume that (4.13)-(4.14) has a classical solution u, which is linearized stable in the

sense that, for some real number δ,
1

µ1[f
′(u)]

≤ δ < 1.

Note that µ1[f
′
(u)] is well defined because of (4.12). We also assume that H1

per(Ω) is such

that (1.1)–(1.3) has a global classical solution u and u(t) → u in L2
per(Ω) as t → ∞. Our

results depend on upper bounds B1 and B2 for the ∥ · ∥∞,h of u and the ∥ · ∥2,h of u0

∥u(·, t)∥∞,h ≤ B1, t ≥ 0, ∥u0∥2,h ≤ B2.

In order to show the convergence of the finite difference approximate solutions, the

following lemma is needed.

Lemma 4.1 Suppose that f is a smooth function satisfying (4.12) and the solution u(x, t)

of (1.1)–(1.3) is sufficiently regular. For each B1, B2 > 0 and 0 < δ < 1, assume that

(1) u is a solution of (4.13)-(4.14) with
1

µ1[f
′(u)]

≤ δ; (4.15)

(2) u0 ∈ H1
per(Ω) is such that u(t) → u in L2

per(Ω) as t → ∞;

(3) u0 and the corresponding solution u of (1.1)–(1.3) satisfy the bounds

∥u(·, t)∥∞,h ≤ B1, t ≥ 0, ∥u0∥2,h ≤ B2. (4.16)

Then, there is a number δ1 such that
1

µ1[ωn
i ]

≤ δ1 < 1, n ≥ N > 0, N ∈ Z+ (4.17)

where

ωn
i =

∫ 1

0

f
′
(ξUn

i − (1− ξ)un
i )dξ, i = 0, 1, · · · , J.

We are now ready for the proof of Proposition 4.2.

Proposition 4.2 Let N ∈ Z+. Under the assumptions of Lemma 4.2, for τ sufficiently

small, the solution of the difference scheme (2.5), (2.6) and (2.7) converges to the solution

of the problem (1.1)–(1.3) in the discrete L2
per(Ωh)-norm and the rate of convergence is

O(τ + h2).

Proof. An application of the mean value theorem and Theorem 3.3, (4.9) yields

∥En+1∥2h − ∥En∥2h
2τ

≤
(
3C2 +

3

2

)
∥En+1∥2h +

1

2
∥Rn+1∥2h. (4.18)

Let κ = 6C2 + 3. Then (4.5), (4.8) and (4.18) yield

∥En∥2h ≤ 1

1− κτ
∥En−1∥2h +

τ

1− κτ
∥Rn∥2h ≤ · · · ≤ 1

κ
(e

κnτ
1−κτ )M2L(τ + h2)2. (4.19)

For 0 < n ≤ N , it follows from (4.19) that

∥En∥h = O(τ + h2). (4.20)

We now turn to the long-time estimate. Using (4.9) and Lemma 4.2, we obtain

∥En+1∥2h − ∥En∥2h
2τ

+ β|En+1|22,h ≤ |(Rn+1, En+1)h|

≤ ∥Rn+1∥h · ∥En+1∥h, n > N. (4.21)
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Using Young’s inequality, from Lemmas 2.3 and 2.4 we obtain
∥En+1∥2h − ∥En∥2h

2τ
+ βc1c2∥En+1∥2h ≤ 1

4βc1c2
∥Rn+1∥2h + βc1c2∥En+1∥2h, n > N.

It implies that

∥En+1∥2h ≤ ∥En∥2h +
τ

2βc1c2
∥Rn+1∥2h ≤ · · ·

≤ ∥E0∥2h +
τ

2βc1c2

n+1∑
m=1

∥Rm∥2h, n > N. (4.22)

Combining (4.8) and (4.22), we find

∥En+1∥2h ≤ τ

2βc1c2

n+1∑
m=1

∥Rm∥2h ≡ O(τ + h2)2, n > N. (4.23)

Thus from (4.23), we get

∥un − Un∥h = O(τ + h2), n > N.

Combining (4.20) and (4.23), we find

∥un − Un∥h = O(τ + h2), n = 1, 2, · · · .
This completes the proof.

Theorem 4.1 Under the conditions of the Proposition 4.1 or Proposition 4.2, the solution

of the difference scheme (2.5), (2.6) and (2.7) converges to the solution of the problem (1.1)–

(1.3) in the discrete L2
per(Ωh)-norm and the rate of convergence is O(τ + h2).

Below, we can similarly prove stability of the difference solution.

Theorem 4.2 Under the conditions of the Theorem 4.1, the solution of the problem (2.5),

(2.6) and (2.7) is long-time stable for initial data in the discrete L2
per(Ωh)-norm.

Now, we discuss the upper semiconsciousness of approximate attractor Ah,τ .

Theorem 4.3 Suppose that the following conditions are satisfied:

(1) {Hη}0≤η≤η0 is a family of closed subspaces of a Banach space H, satisfying that∪
0≤η≤η0

Hη is dense in H;

(2) {Sη(t) : Hη → Hη}t≥0 are linear semi-group of operator, Aη ⊂ Hη and A ⊂ H are

the global attractors of Sη(t) and S(t), respectively;

(3) For every compact interval I ⊂ (0,+∞),

δη(I) = sup
u0∈Hη

sup
t∈I

dist(Sη(t)u0, S(t)u0) → 0 as η → 0.

Then Aη converges to A in the sense of semi-distance:

dist(Aη,A) → 0 as η → 0,

where

dist(Aη,A) = sup
u∈Aη

inf
v∈A

∥u− v∥H .

Let H = H1
per(Ω), Hη = H1

per(Ωh). Obviously, H1
per(Ωh) is dense in H = H1

per(Ω), and

the operator {(Sh,τ )
n}n≥0 : H1

per(Ωh) → H1
per(Ωh) is continuous. By Theorems 3.2, 4.1 and

4.3, we have
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Theorem 4.4 Suppose that the conditions of Theorem 4.1 are satisfied. Then we have

dist(Ah,τ ,A) → 0, as τ → 0, h → 0.
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