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Abstract: In this paper, a new generalized Jacobi elliptic function expansion method

based upon four new Jacobi elliptic functions is described and abundant solutions of

new Jacobi elliptic functions for the generalized Nizhnik-Novikov-Veselov equations

are obtained. It is shown that the new method is much more powerful in finding new

exact solutions to various kinds of nonlinear evolution equations in mathematical

physics.
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1 Introduction

In recent years, due to the wide applications of soliton theory in natural science, searching

for exact soliton solutions of nonlinear evolution equations plays an important and signifi-

cant role in the study on the dynamics of those phenomena (see [1]). Particularly, various

powerful methods have been presented, such as inverse scattering transformation, Cole-Hopf

transformation, Hirota bilinear method, homogeneous balance method, Backlund transfor-

mation, Darboux transformation, projective Riccati equations method and so on. In this

paper, we discuss a generalized Nizhnik-Novikov-Veselov (GNNV) equation by our general-

ized Jacobi elliptic function expansion method (see [2]) proposed recently. As a result, more

new exact solutions are obtained. The character feature of our method is that, without

much extra effort, we can get series of exact solutions by using a uniform way. Another ad-

vantage of our method is that it also applies to general higher-dimensional nonlinear partial

differential equations.
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We consider the following GNNV equations (see [3–6]):














ut + auxxx + buyyy + cux + duy − 3a(uv)x − 3b(uw)y = 0,

ux − vy = 0,

uy − wx = 0,

(1.1)

where a, b, c and d are arbitrary constants. For

c = d = 0,

the GNNV equations (1.1) are degenerated to the usual two-dimensional NNV equations

(see [7–8]), which is an isotropic Lax extension of the classical (1+1)-dimensional shallow

water-wave KdV model. When

a = 1, b = c = d = 0,

we get the asymmetric NNV equation, which may be considered as a model for an incom-

pressible fluid. Some types of exact solutions of the GNNV equations have been studied in

recent years (see [9–13]).

2 Summary of the New Generalized Jacobi Elliptic Func-

tions Expansion Method

Given a partial differential equation with three variables x, y and t

P (u, ut, ux, uy, utt, uxx, uyy, uxt, uyt, uxy, · · · ) = 0, (2.1)

we seek the following formal solutions of the given system by a new intermediate transfor-

mation:

u(ξ) =

n
∑

i=0

AiF
i(ξ) +

n
∑

i,j=1

i≤j≤n

[BiF
j−i(ξ)Ei(ξ) + CiF

j−i(ξ)Gi(ξ) + DiF
j−i(ξ)Hi(ξ)], (2.2)

where A0, Ai, Bi, Ci, Di (i = 1, 2, · · · , n) are constants to be determined later, ξ = ξ(x, y, t)

is an arbitrary function with the variables x, y and t, the parameter n can be determined

by balancing the highest order derivative terms with the nonlinear terms in (2.1), and E(ξ),

F (ξ), G(ξ), H(ξ) are the arbitrary arrays of the four functions

e = e(ξ), f = f(ξ), g = g(ξ), h = h(ξ)

respectively. The selection obeys the principle which makes the calculation more simple.

We ansatz














































e =
1

p + qsnξ + rcnξ + ldnξ
,

f =
snξ

p + qsnξ + rcnξ + ldnξ
,

g =
cnξ

p + qsnξ + rcnξ + ldnξ
,

h =
dnξ

p + qsnξ + rcnξ + ldnξ
,

(2.3)
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where p, q, r, l are arbitrary constants which ensure denominator unequal to zero, so do the

following situations. The four functions e, f , g, h satisfy the following restricted relations:


















e′ = −qgh + rfh + lm2fg,

f ′ = pgh + reh + leg,

g′ = −pfh − qeh + l(m2 − 1)ef,

h′ = −m2pfg − r(m2 − 1)ef − qeg,

(2.4)

where “ ′ ” denotes
d

dξ
, m (0 ≤ m ≤ 1) is the modulus of the Jacobi elliptic function, and e,

f , g, h satisfy one of the following relations at the same time.

Family 1: When p = 0, we can select F (ξ) = f(ξ) or F (ξ) = g(ξ), by using the relations










lh = 1 − qf − rg,

e2 = f2 + g2,

(l2 − r2)g2 = 1 − 2(qf + rg − qrfg) + (l2m2 − l2 + q2)f2.

(2.5a)

Family 2: When q = 0, we can select F (ξ) = g(ξ) or F (ξ) = h(ξ), by using the relations










pe = 1 − rg − lh,

(m2 − 1)f2 = g2 − h2,

(l2(m2 − 1) + p2)h2 = (1 − m2)(1 − 2(lh + rg − rlgh) + r2g2) + m2p2g2.

(2.5b)

Family 3: When r = 0, we can select F (ξ) = h(ξ) or F (ξ) = e(ξ), by using the relations










qf = 1 − pe − lh,

m2g2 = h2 + (m2 − 1)e2,

(q2 − m2p2)e2 = m2 − 2m2(lh + pe − pleh) + (l2m2 + q2)h2.

(2.5c)

Family 4: When l = 0, we can select F (ξ) = e(ξ) or F (ξ) = f(ξ), by using the relations










rg = 1 − pe − qf,

h2 = e2 − m2f2,

(q2 + r2)f2 = −1 + 2(pe + qf − pqef) + (r2 − p2)e2.

(2.5d)

Substituting (2.4) along with (2.5a)–(2.5d) into (2.1), respectively, yields four families of

polynomial equations for E(ξ), F (ξ), G(ξ), H(ξ).

Setting the coefficients of F i(ξ)Ej1(ξ)j2G(ξ)j3H(ξ)j4 (i = 0, 1, 2, · · · ; j1, j2, j3, j4=0, 1;

j1j2j3j4 = 0) to be zero yields a set of over-determined differential equations in A0, Ai, Bi,

Ci, Di (i = 1, 2, · · · , n) and ξ(x, y, t). Solving the over-determined differential equations

by Mathematica and Wu elimination, we obtain many exact solutions of (2.1) accroding to

(2.2) and (2.3).

Obviously, if we choose the special values of p, q, r, l, m in (2.3), then we can get the

results in [13–16], which has been discussed in [2].

3 Exact Solutions to the Generalized Nizhnik-Novikov-

Veselov Equation

To seek the traveling wave solutions of (1.1), we make the gauge transformation

ξ = kx + τy − ωt + ξ0, (3.1)

where k, τ , ω are constants to be determined later, and ξ0 is an arbitrary constant.
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Substituting (3.1) into (1.1) yields the ordinary differential equations (ODEs) of u(ξ),

v(ξ), w(ξ) and integrating these ODEs makes the equations (1.1) to become






























u′′ − ω − ck − dτ + 3akC2 + 3bτC1

ak3 + bτ3
u − 3

kτ
u2 = 0, (3.2a)

v =
k

τ
u + C2, (3.2b)

w =
τ

k
u + C1, (3.2c)

where C1 and C2 are integral constants. By balancing the highest-order of the linear term

u′′ and the nonlinear term u2 in (3.2a), we obtain n = 2. Thus we assume that (3.2a) has

the following solutions:

u = c0 + c1e + c2f + c3g + c4h + d1e
2 + d2f

2 + d3g
2

+ d4h
2 + d5fg + d6fh + d7gh + d8ef + d9eg + d10eh, (3.3)

where

u = u(x, y, t) = u(ξ),

and

e = e(ξ), f = f(ξ), g = g(ξ), h = h(ξ)

satisfy (2.4) and (2.5a)–(2.5d). Substituting (2.4) and (2.5a)–(2.5d) along with (3.3) into

(3.2a), respectively, and setting the coefficients of F i(ξ)Ej1 (ξ)j2G(ξ)j3H(ξ)j4 (i = 0, 1, 2, · · · ;
j1, j2, j3, j4 = 0, 1; j1j2j3j4 = 0) to be zero yield an ODEs with respect to the unknowns ci

(i = 0, · · · , 4), dj (j = 1, · · · , 10), ω, k, τ , p, q, r, l. After solving the ODEs by Mathematica

and Wu elimination, we determine the following solutions:

Family 1: For p = 0, we have

Case 1.






























































r = l = 1,

q = ±1,

c2 = ∓kτ(m2 − 2),

c4 = −2kτ(m2 − 1),

d2 = −kτ(m2 − 2)2

2
,

d4 = 2kτ,

ω = ∆ − (ak3 + bτ3)(7 − 8m2)

with

∆ = ck − 3aC2k − 3bC1τ + dτ − 6c0(ak3 + bτ3)

kτ
,

where k, τ , ξ0, c0, C1 are arbitrary constants. ci (i = 1, · · · , 4) and dj (j = 1, · · · , 10) not

mentioned here are zero, so do the following situations.

Therefore, from (2.3), (3.1), (3.3) and Case 1, we obtain the following solutions to the
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GNNV equations (1.1):














































u1(ξ1) = c0 +
∓kτ(m2 − 2)snξ1 − 2kτ(m2 − 1)dnξ1

±snξ1 + cnξ1 + dnξ1
−

kτ(m2
−2)2

2 sn2ξ1 − 2kτdn2ξ1

(±snξ1 + cnξ1 + dnξ1)2
,

v1(ξ1) =
k

τ
u1(ξ1) + C2,

w1(ξ1) =
τ

k
u1(ξ1) + C1,

ξ1 = kx + τy − (∆ − (ak3 + bτ3)(7 − 8m2))t + ξ0.

With the same process we derive the other three families of new exact solutions of (1.1),

where

ui = ui(ξi), vi(ξi) =
k

τ
ui(ξi) + C2, wi(ξi) =

τ

k
ui(ξi) + C1, i = 2, 3, 4, · · · .

Family 2: For q = 0, we have

Case 2.


































p = 0,

l = 1,

r = ∓
√

m,

d7 = ∓2kτ
√

m(1 − m)2,

ω = ∆ − (ak3 + bτ3)(1 − 18m + m2).

Case 3.


















































r = ±(
√

1 − m2 − ε),

ε = ±1,

c3 = ∓kτ((m2 − 1)ε +
√

1 − m2),

p =
√

1 − m2,

l = 1,

ω = ∆ − (ak3 + bτ3)(m2 − 2 + 3ε
√

1 − m2).

Case 4.






























































p =
√

1 − m2,

l = 1,

r = ∓m,

ε = ±1,

c1 = −2kτm2
√

1 − m2,

d1 = −2kτm2(1 − m2),

ω = ∆ − (ak3 + bτ3)(m2 − 2 + 3ε
√

1 − m2).

We obtain the following solutions of (1.1):










u2 = c0 ∓
2kτ

√
m(1 − m)2cnξ2dnξ2

(∓√
mcnξ2 + dnξ2)2

,

ξ2 = kx + τy − (∆ − (ak3 + bτ3)(1 − 18m + m2))t + ξ0;
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u3 = c0 ∓
kτ((m2 − 1)ε +

√
1 − m2)cnξ3√

1 − m2 ± (
√

1 − m2 − ε)cnξ3 + dnξ3

,

ξ3 = kx + τy − (∆ − (ak3 + bτ3)(m2 − 2 + 3ε
√

1 − m2))t + ξ0;











u4 = c0 −
2kτm2

√
1 − m2

√
1 − m2 ∓ mcnξ4 + dnξ4

− 2kτm2(1 − m2)

(
√

1 − m2 ∓ mcnξ4 + dnξ4)2
,

ξ4 = kx + τy − (∆ − (ak3 + bτ3)(m2 − 2 + 3ε
√

1 − m2))t + ξ0.

Family 3: For r = 0, we have

Case 5.






































q = ±ε(1 + ε
√

1 − m2),

ε = ±1,

c2 = ∓kτ(ε(1 − m2) +
√

1 − m2),

p = l = 1,

ω = ∆ − (ak3 + bτ3)(m2 − 2 − 3ε
√

1 − m2).

We obtain the following solutions of (1.1):










u5 = c0 ∓
kτ(ε(1 − m2) +

√
1 − m2)snξ5

1 ± ε(1 + ε
√

1 − m2)snξ5 + dnξ5

,

ξ5 = kx + τy − (∆ − (ak3 + bτ3)(m2 − 2 − 3ε
√

1 − m2))t + ξ0.

Family 4: For l = 0, we have

Case 6.


























d2 = 2kτm2p2,

q = r = 0,

p 6= 0,

ω = ∆ − 4(ak3 + bτ3)(1 + m2);

Case 7.


























d5 = −2kr2τ
4
√

1 − m2(m2 − 2
√

1 − m2 − 2),

q = ±r
4
√

1 − m2,

p = 0,

ω = ∆ − (m2 − 18
√

1 − m2 − 2)(ak3 + bτ3);
Case 8.















































p2 = 1,

q2 = 1,

r = ±1,

c3 = ∓2kτ,

d3 = 2kτ,

ω = ∆ − (ak3 + bτ3)(4m2 − 5).

We obtain the following solutions of (1.1):
{

u6 = c0 + 2kτm2sn2ξ6,

ξ6 = kx + τy − (∆ − 4(ak3 + bτ3)(1 + m2))t + ξ0;
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u7 = c0 −
2kτ

4
√

1 − m2(m2 − 2
√

1 − m2 − 2)snξ7cnξ7

(± 4
√

1 − m2snξ7 + cnξ7)2
,

ξ7 = kx + τy − (∆ − (ak3 + bτ3)(m2 − 18
√

1 − m2 − 2))t + ξ0;










u8 = c0 ∓
2kτcnξ8

p + qsnξ8 ± cnξ8
+

2kτcn2ξ8

(p + qsnξ8 ± cnξ8)2
,

ξ8 = kx + τy − (∆ − (ak3 + bτ3)(4m2 − 5))t + ξ0.

Remark 3.1 Solutions u1, u6, u7, u8 degenerate to solitary solutions when the modulus

m → 1, and solutions u1, u3, u5, u7, u8 degenerate to triangular function solutions when

the modulus m → 0. Here u6 is just the solutions u1, u2, u3 in [1]. The other seven types

of explicit solutions to (1.1) we obtained are not shown in the previous literature to our

knowledge.

4 Conclusion

In this paper, we propose an approach for finding the new exact solutions for the nonlinear

evolution equations by constructing the four new types of Jacobi elliptic functions (2.3).

By using this method and computerized symbolic computation, we have found abundant

new exact solutions of (1.1). More importantly, our method is much simple and powerful

for finding new solutions to various kinds of nonlinear evolution equations. We believe that

this method should play an important role in finding the exact solutions in mathematical

physics.
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