The Existence of Coupled Solutions for a Kind of Nonlinear Operator Equations in Partial Ordered Linear Topology Space*

Wu Yue-xiang ${ }^{1}$, Huo Yan-mei ${ }^{2}$ and Wu Ya-kun ${ }^{1}$
(1. College of Applied Mathematics, Shanxi University of Finance and Economics, Taiyuan, 030006)
(2. College of Economics, Shanxi University of Finance and Economics, Taiyuan, 030006)
\section*{Communicated by Li Yong}

Abstract

The main purpose of this paper is to examine the existence of coupled solutions and coupled minimal-maximal solutions for a kind of nonlinear operator equations in partial ordered linear topology spaces by employing the semi-order method. Some new existence results are obtained.

Key words: partial order, mixed monotone operator, coupled solution, existence 2000 MR subject classification: 34C25, 47H10
Document code: A
Article ID: 1674-5647(2012)01-0065-10

1 Introduction

The techniques of partial order theory are used to discuss the existence of coupled solutions and coupled minimal-maximal solutions for a kind of nonlinear operator equation in a partial ordered linear topology space as follows:

$$
\begin{equation*}
N x=A(x, x), \tag{1.1}
\end{equation*}
$$

where N is an increasing operator and A is a mixed monotone operator.
In 1987, Guo and Lakshmikantham ${ }^{[1]}$ studied a nonlinear operator equation in a Banach space as

$$
\begin{equation*}
x=A(x, x), \tag{1.2}
\end{equation*}
$$

where A is a mixed monotone operator. They obtained some existence results of coupled solution for this operator equation. In 2005, Liu and Feng ${ }^{[2]}$ considered the following operator equation:

$$
\begin{equation*}
N x=A x \tag{1.3}
\end{equation*}
$$

[^0]in a complete metric space and a Banach space, respectively, and by using the technique of partial order theory they obtained some existence results of solution. Very recently, $\mathrm{He}^{[3]}$ has dealt with the operator equation (1.1) in Banach spaces and have given some solvability results for this kind of equations by using the concept of ϕ concave- ψ convex operator (see [4]).

Motivated and inspired by the above works, the main purpose of this paper is to further study the solvability of the equation (1.1). Under some suitable conditions, we give some new existence theorems for this kind of equations. To the knowledge of the author, there are very few works on the existence of coupled solutions and coupled minimal-maximal solutions for the equation (1.1) in partial ordered linear topology space, and therefore, our results generalize and improve some corresponding results.

2 Preliminaries

In this section, we give some concepts and lemmas which are necessary for proving the main results of this paper, and the other unstated concepts can be seen in [5-8].

Let E be a real linear topology space, P be a cone of E and " \leq " be a partial order induced by the cone P, i.e., for any $x, y \in E, x \leq y$ (or alternatively, denoted as $y \geq x$) if and only if $y-x \in P$. We write $x<y$, if $x \leq y$ and $x \neq y$.

Let $x, y \in E, x<y$. The set defined by $[x, y]=\{z \mid x \leq z \leq y\}$ is called an ordered interval in E. For any subset $D \subset E \times E$, we denote by $\bar{D}^{w}, \overline{\mathrm{co}}(D)$ and $C D$ the weak closure of D, the closed convex hull of D and the complement of D, respectively.

Let

$$
P_{1}=\{(x, y) \in E \times E \mid x \geq \theta, y \leq \theta\}
$$

where θ denotes the zero element of E. It is easy to see that P_{1} is a cone of the product space $E \times E$, and P_{1} defines a partial order in $E \times E$ as follows (denoted as \prec):
$(x, y) \prec(u, v)$ (or alternatively, denoted as $(u, v) \succ(x, y)$) if and only if $x \leq u$ and $y \geq v$.

Definition 2.1 ${ }^{[9-10]}$ Let D be a nonempty subset of a real partial order linear topology space (E, \leq).
(i) The operator $A: D \times D \rightarrow E$ is said to be mixed monotone if $A(x, y)$ is both nondecreasing in x and nonincreasing in y, i.e., if $u_{1} \leq u_{2}, v_{2} \leq v_{1}, u_{i}, v_{i} \in D(i=1,2)$ imply

$$
A\left(u_{1}, v_{1}\right) \leq A\left(u_{2}, v_{2}\right)
$$

(ii) A point $\left(x^{*}, y^{*}\right) \in D \times D, x^{*} \leq y^{*}$ is called a coupled solution of the nonlinear operator equation (1.1) if

$$
N x^{*}=A\left(x^{*}, y^{*}\right), \quad A\left(y^{*}, x^{*}\right)=N y^{*}
$$

(iii) A point $\left(x^{*}, y^{*}\right) \in D \times D, x^{*} \leq y^{*}$ is called a coupled minimal-maximal solution of the nonlinear operator equation (1.1), if $\left(x^{*}, y^{*}\right)$ is a coupled solution of the nonlinear
operator equation (1.1) such that for any coupled solution $\left(u^{*}, v^{*}\right)$ of (1.1), we have

$$
x^{*} \leq u^{*}, \quad y^{*} \geq v^{*} .
$$

Lemma 2.1 Assume that $G: D \times D \rightarrow E$ is a mixed monotone operator and N is a nonlinear operator. Let

$$
H(x, y) \doteq(G(x, y), G(y, x)), \quad B(x, y) \doteq(N x, N y), \quad(x, y) \in D \times D
$$

Then the following conclusions hold:
(i) H is an increasing operator on the partial order deduced by P_{1};
(ii) $H(x, y)=B(x, y)$ has a solution $\left(x^{*}, y^{*}\right)$ if and only if $\left(x^{*}, y^{*}\right)$ is a coupled solution of

$$
N x=G(x, x) ;
$$

(iii) A minimal solution of

$$
H(x, y)=B(x, y)
$$

is a coupled minimal-maximal solution of

$$
N x=G(x, x) .
$$

Proof. (i) For any $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right) \in D \times D$, if $\left(u_{1}, v_{1}\right) \prec\left(u_{2}, v_{2}\right)$, then it follows from the definition of \prec that

$$
u_{1} \leq u_{2}, \quad v_{1} \geq v_{2}
$$

The mixed monotonicity of G implies that

$$
G\left(u_{1}, v_{1}\right) \leq G\left(u_{2}, v_{2}\right), \quad G\left(v_{2}, u_{2}\right) \leq G\left(v_{1}, u_{1}\right) .
$$

Therefore, by the definition of \prec again, we have

$$
\left(G\left(u_{1}, v_{1}\right), G\left(v_{1}, u_{1}\right)\right) \prec\left(G\left(u_{2}, v_{2}\right), G\left(v_{2}, u_{2}\right)\right),
$$

i.e.,

$$
H\left(u_{1}, v_{1}\right) \prec H\left(u_{2}, v_{2}\right) .
$$

Thus, H is an increasing operator on the partial order deduced by P_{1}.
(ii) $\left(x^{*}, y^{*}\right)$ is a solution of

$$
H(x, y)=B(x, y)
$$

if and only if $\left(x^{*}, y^{*}\right)$ is a solution of

$$
(G(x, y), G(y, x))=(N x, N y)
$$

i.e.,

$$
N x^{*}=G\left(x^{*}, y^{*}\right), \quad N y^{*}=G\left(y^{*}, x^{*}\right) .
$$

Thus,

$$
H(x, y)=B(x, y)
$$

has a solution $\left(x^{*}, y^{*}\right)$ if and only if $\left(x^{*}, y^{*}\right)$ is a coupled solution of

$$
N x=G(x, x) .
$$

(iii) Suppose that $\left(u^{*}, v^{*}\right)$ is a minimal solution of

$$
H(x, y)=B(x, y)
$$

For any solution (u, v) of

$$
H(x, y)=B(x, y)
$$

by the minimal quality, we have

$$
\left(u^{*}, v^{*}\right) \prec(u, v) .
$$

Therefore,

$$
u^{*} \leq u, \quad v \leq v^{*}
$$

By (ii) and Definition 2.1, it is easy to see that $\left(u^{*}, v^{*}\right)$ is a coupled minimal-maximal solution of

$$
N x=G(x, x) .
$$

This completes the proof.
We also need the following lemmas.
Lemma $2.2{ }^{[8]}$ Assume that (E, P) is a partially ordered space, D is a nonempty subset of E and $y \in E$. If $z \leq y$ (or $y \leq z$) for all $z \in D$, then $z \leq y$ (corresponding $y \leq z$) for all $z \in \overline{\mathrm{Co}}(D)$.

Let $L(E)$ be the space of all linear operators on E. We give the following lemma on an operator, whose proof is omitted, due to it is easy to prove.

Lemma 2.3 Assume that $\Lambda \in(0,1], T \in L(E)$, and $(\Lambda I+T)^{-1} \in L(E)$. Then

$$
(\Lambda I+T)^{-1}[\Lambda A(x, y)+T u]=u
$$

if and only if

$$
A(x, y)=u
$$

3 Main Results and Their Proofs

Our main results are the following two theorems:
Theorem 3.1 Let E be a real linear topology space, P be a cone of E, $u_{0}, v_{0} \in E$, $u_{0}<v_{0}, D_{0}=\left[u_{0}, v_{0}\right]$ be an ordered interval in E and N be an increasing operator with $N\left(D_{0}\right)=D_{0}$. Assume that $A: D \doteq\left[\left(u_{0}, v_{0}\right),\left(v_{0}, u_{0}\right)\right] \rightarrow E$ is a mixed monotone operator, $\Lambda \in(0,1], T \in L(E)$ and $(\Lambda I+T)^{-1} \in L(E)$ are positive operators. If the following conditions are satisfied:
(i) $N u_{0} \leq A\left(u_{0}, v_{0}\right), A\left(v_{0}, u_{0}\right) \leq N v_{0}$;
(ii) for any $x_{1}, x_{2} \in D_{0}, N x_{1} \leq N x_{2}$ implies $x_{1} \leq x_{2}$;
(iii) any totally ordered subset of $G(D)$ is relatively compact with weak topology, where

$$
G(x, y) \doteq(\Lambda I+T)^{-1}[\Lambda A(x, y)+T N x], \quad(x, y) \in D
$$

then the nonlinear operator equation (1.1) has a coupled solution $\left(x^{*}, y^{*}\right) \in D$.
Proof. First, we verify that the following conclusions hold:

$$
G: D \rightarrow\left[u_{0}, v_{0}\right]
$$

is a mixed monotone operator and

$$
N u_{0} \leq G\left(u_{0}, v_{0}\right), \quad G\left(v_{0}, u_{0}\right) \leq N v_{0} .
$$

In fact, if $(x, y) \in D$, then

$$
u_{0} \leq x, \quad y \leq v_{0}
$$

Since N is an increasing operator with $N\left(D_{0}\right)=D_{0}$, we can get

$$
u_{0} \leq N u_{0} \leq N x \leq N v_{0} \leq v_{0}
$$

Since $T \in L(E)$ is a positive operator, we have

$$
T u_{0} \leq T N x \leq T v_{0} .
$$

On the other hand, by the mixed monotonicity of A and the condition (i), we have

$$
\begin{aligned}
& A(x, y) \leq A\left(v_{0}, u_{0}\right) \leq N v_{0} \leq v_{0} \\
& A(x, y) \geq A\left(u_{0}, v_{0}\right) \geq N u_{0} \geq u_{0}
\end{aligned}
$$

Therefore, we can get

$$
\Lambda u_{0}+T u_{0} \leq \Lambda A(x, y)+T N x \leq \Lambda v_{0}+T v_{0}
$$

i.e.,

$$
(\Lambda I+T) u_{0} \leq \Lambda A(x, y)+T N x \leq(\Lambda I+T) v_{0}
$$

Since $(\Lambda I+T)^{-1} \in L(E)$ is a positive operator, we have

$$
u_{0} \leq(\Lambda I+T)^{-1}[\Lambda A(x, y)+T N x] \leq v_{0}
$$

i.e.,

$$
u_{0} \leq G(x, y) \leq v_{0}
$$

If $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in D$, and $\left(x_{1}, y_{1}\right) \prec\left(x_{2}, y_{2}\right)$, then

$$
x_{1} \leq x_{2}, \quad y_{1} \geq y_{2}
$$

Hence

$$
N x_{1} \leq N x_{2}, \quad N x_{2}-N x_{1} \in P .
$$

Since $T \in L(E)$ is a positive operator, by the mixed monotonicity of A, we have $T\left(N x_{2}-\right.$ $\left.N x_{1}\right) \in P$, i.e.,

$$
T N x_{2} \geq T N x_{1}, \quad A\left(x_{1}, y_{1}\right) \leq A\left(x_{2}, y_{2}\right) .
$$

Therefore,

$$
\Lambda A\left(x_{1}, y_{1}\right)+T N x_{1} \leq \Lambda A\left(x_{2}, y_{2}\right)+T N x_{2} .
$$

Since $(\Lambda I+T)^{-1} \in L(E)$ is a positive operator, we have

$$
(\Lambda I+T)^{-1}\left[\Lambda A\left(x_{1}, y_{1}\right)+T N x_{1}\right] \leq(\Lambda I+T)^{-1}\left[\Lambda A\left(x_{2}, y_{2}\right)+T N x_{2}\right]
$$

i.e.,

$$
G\left(x_{1}, y_{1}\right) \leq G\left(x_{2}, y_{2}\right) .
$$

Therefore, G is a mixed monotone operator.
And then we show that

$$
N u_{0} \leq G\left(u_{0}, v_{0}\right), \quad G\left(v_{0}, u_{0}\right) \leq N v_{0} .
$$

In fact, by the condition (i), we have

$$
\Lambda A\left(v_{0}, u_{0}\right) \leq \Lambda N v_{0}, \quad \Lambda N u_{0} \leq \Lambda A\left(u_{0}, v_{0}\right) .
$$

Hence,

$$
\begin{aligned}
& \Lambda A\left(v_{0}, u_{0}\right)+T N v_{0} \leq \Lambda N v_{0}+T N v_{0}=(\Lambda I+T) N v_{0} \\
& (\Lambda I+T) N u_{0}=\Lambda N u_{0}+T N u_{0} \leq \Lambda A\left(u_{0}, v_{0}\right)+T N u_{0}
\end{aligned}
$$

Notice that $(\Lambda I+T)^{-1} \in L(E)$ is a positive operator. Thus we have

$$
\begin{aligned}
& N v_{0} \geq(\Lambda I+T)^{-1}\left[\Lambda A\left(v_{0}, u_{0}\right)+T N v_{0}\right]=G\left(v_{0}, u_{0}\right) \\
& N u_{0} \leq(\Lambda I+T)^{-1}\left[\Lambda A\left(u_{0}, v_{0}\right)+T N u_{0}\right]=G\left(u_{0}, v_{0}\right)
\end{aligned}
$$

Next, we show that the nonlinear operator equation

$$
\begin{equation*}
B(x, y)=H(x, y) \tag{*}
\end{equation*}
$$

has a solution in D, where

$$
H(x, y) \doteq(G(x, y), G(y, x)), \quad B(x, y) \doteq(N x, N y)
$$

Step 1. By Lemma 2.1, H is an increasing operator. Let

$$
\begin{aligned}
& M_{1}=\{(x, y) \in D \mid B(x, y) \prec H(x, y)\}, \\
& M_{2}=\left\{(y, x) \mid(x, y) \in M_{1}\right\} .
\end{aligned}
$$

Then $M_{1} \neq \emptyset$ (since $\left.\left(u_{0}, v_{0}\right) \in M_{1}\right)$.
Suppose that K_{1} is a totally ordered subset of M_{1}. Then $K_{2}=\left\{(y, x) \mid(x, y) \in K_{1}\right\}$ is a totally ordered subset of M_{2}. For any $q_{1} \in G\left(K_{1}\right), q_{2} \in G\left(K_{2}\right)$, let

$$
\begin{aligned}
& R_{1}\left(q_{1}\right)=\left\{z \in D_{0} \mid q_{1} \leq z\right\}, \\
& R_{2}\left(q_{2}\right)=\left\{z \in D_{0} \mid z \leq q_{2}\right\}, \\
& S_{1}\left(q_{1}\right)=\overline{\operatorname{co}}\left(G\left(K_{1}\right)\right) \cap R_{1}\left(q_{1}\right), \\
& S_{2}\left(q_{2}\right)=\overline{\mathrm{co}}\left(G\left(K_{2}\right)\right) \cap R_{2}\left(q_{2}\right) .
\end{aligned}
$$

It is easy to see that $R_{1}\left(q_{1}\right), R_{2}\left(q_{2}\right), S_{1}\left(q_{1}\right)$ and $S_{2}\left(q_{2}\right)$ are all convex and closed sets.
The mixed monotonicity for G implies that $G\left(K_{i}\right)(i=1,2)$ are totally ordered subsets of $G(D)$. From the condition (iii), we know that $\overline{G\left(K_{i}\right)}{ }^{w}(i=1,2)$ are weakly compact sets in $G(D)$. Hence $\overline{\mathrm{Co}}\left(\overline{G\left(K_{i}\right)}\right)^{w}(i=1,2)$ are also weakly compact sets due to the Krein-Smulian theorem.

Since $\overline{\operatorname{co}}\left(G\left(K_{i}\right)\right) \subset \overline{\operatorname{co}}\left(\overline{G\left(K_{i}\right)}\right)^{w}(i=1,2)$, we know that $\overline{\mathrm{co}}\left(G\left(K_{i}\right)\right)(i=1,2)$ are weakly compact.

Step 2. Notice that $S_{i}\left(q_{i}\right) \neq \emptyset$ (since for any $\left.q_{i} \in G\left(K_{i}\right), q_{i} \in S_{i}\left(q_{i}\right), i=1,2\right)$. For any $q_{1}^{\prime}, q_{2}^{\prime}, \cdots, q_{n}^{\prime} \in G\left(K_{1}\right)$ and $q_{1}^{\prime \prime}, q_{2}^{\prime \prime}, \cdots, q_{n}^{\prime \prime} \in G\left(K_{2}\right)$, without loss of generality, we suppose that $q_{1}^{\prime} \leq q_{2}^{\prime} \leq \cdots \leq q_{n}^{\prime}$ and $q_{1}^{\prime \prime} \leq q_{2}^{\prime \prime} \leq \cdots \leq q_{n}^{\prime \prime}$. Then $S_{1}\left(q_{1}^{\prime}\right) \supset S_{1}\left(q_{2}^{\prime}\right) \supset \cdots \supset S_{1}\left(q_{n}^{\prime}\right)$ and $S_{2}\left(q_{1}^{\prime \prime}\right) \subset S_{2}\left(q_{2}^{\prime \prime}\right) \subset \cdots \subset S_{2}\left(q_{n}^{\prime \prime}\right)$. It is obvious that

$$
\begin{equation*}
\bigcap_{i=1}^{n} S_{1}\left(q_{i}^{\prime}\right) \supset S_{1}\left(q_{n}^{\prime}\right) \neq \emptyset, \quad \bigcap_{i=1}^{n} S_{2}\left(q_{i}^{\prime \prime}\right) \supset S_{2}\left(q_{1}^{\prime \prime}\right) \neq \emptyset . \tag{3.1}
\end{equation*}
$$

It is easy to prove that

$$
\bigcap_{q_{j} \in G\left(K_{i}\right)} S_{i}\left(q_{j}\right) \neq \emptyset, \quad i=1,2, \quad j=1,2, \cdots, n
$$

Step 3. There exist $q_{i}^{*} \in \bigcap_{q_{j} \in G\left(K_{i}\right)} S_{i}\left(q_{j}\right)(i=1,2)$ such that $q_{i}^{*} \in S_{i}\left(q_{j}\right)$ for all $q_{j} \in$ $G\left(K_{i}\right)$. Thus $q_{i}^{*} \in R_{i}\left(q_{j}\right)$ for all $q_{j} \in G\left(K_{i}\right)$. By the construction of $R_{i}\left(q_{j}\right)$, we have

$$
q_{1} \leq q_{1}^{*}, \quad q_{1} \in G\left(K_{1}\right), \quad q_{2} \geq q_{2}^{*}, \quad q_{2} \in G\left(K_{2}\right)
$$

Since $N\left(D_{0}\right)=D_{0}$, we know that there exist $w_{1}, w_{2} \in D_{0}$ such that

$$
N w_{1}=q_{1}^{*}, \quad N w_{2}=q_{2}^{*} .
$$

Now for any $(x, y) \in K_{1}$, we have $(y, x) \in K_{2}$. Hence

$$
G(x, y) \leq q_{1}^{*}=N w_{1}, \quad G(y, x) \geq q_{2}^{*}=N w_{2}
$$

Therefore,

$$
(N x, N y) \prec H(x, y)=(G(x, y), G(y, x)),
$$

i.e.,

$$
N x \leq G(x, y), \quad G(y, x) \leq N y
$$

Thus

$$
N x \leq N w_{1}, \quad N w_{2} \leq N y
$$

From the condition (ii), we have

$$
x \leq w_{1}, \quad w_{2} \leq y
$$

Therefore

$$
\begin{equation*}
(x, y) \prec\left(w_{1}, w_{2}\right), \quad(y, x) \succ\left(w_{2}, w_{1}\right) . \tag{3.2}
\end{equation*}
$$

This indicates that $\left(w_{1}, w_{2}\right)$ is an upper bound of K_{1} and $\left(w_{1}, w_{2}\right) \in M_{1}$. From Zorn's Lemma we know that M_{1} contains a maximal element $\left(x^{*}, y^{*}\right)$.

Step 4. Finally we prove that the maximal element $\left(x^{*}, y^{*}\right)$ is the solution of the nonlinear operator equation $(*)$.

By the definition of B, the condition (ii) and N being an increasing operator, it is not difficult to check that B is also an increasing operator and if

$$
B\left(x_{1}, y_{1}\right) \prec B\left(x_{2}, y_{2}\right), \quad\left(x_{i}, y_{i}\right) \in D(i=1,2),
$$

then

$$
\left(x_{1}, y_{1}\right) \prec\left(x_{2}, y_{2}\right) .
$$

Since $\left(x^{*}, y^{*}\right) \in M_{1}$, we have

$$
B\left(x^{*}, y^{*}\right) \prec H\left(x^{*}, y^{*}\right)=B\left(B^{-1} H\left(x^{*}, y^{*}\right)\right),
$$

and hence

$$
\left(x^{*}, y^{*}\right) \prec B^{-1} H\left(x^{*}, y^{*}\right) .
$$

Since H is increasing, we have

$$
\left.B\left(B^{-1} H\left(x^{*}, y^{*}\right)\right)=H\left(x^{*}, y^{*}\right)\right) \prec H\left(B^{-1} H\left(x^{*}, y^{*}\right)\right),
$$

and hence $B^{-1} H\left(x^{*}, y^{*}\right) \in M_{1}$.
Since $\left(x^{*}, y^{*}\right)$ is the maximal element of M_{1}, we have

$$
B\left(B^{-1} H\left(x^{*}, y^{*}\right)\right)=H\left(x^{*}, y^{*}\right) \prec B\left(x^{*}, y^{*}\right),
$$

and therefore

$$
H\left(x^{*}, y^{*}\right)=B\left(x^{*}, y^{*}\right)
$$

i.e., $\left(x^{*}, y^{*}\right)$ is a solution of the nonlinear operator equation $(*)$.

By Lemma 2.1, that is,

$$
N x^{*}=G\left(x^{*}, y^{*}\right), \quad N y^{*}=G\left(y^{*}, x^{*}\right) .
$$

It follows from Lemma 2.3 that

$$
N x^{*}=A\left(x^{*}, y^{*}\right), \quad N y^{*}=A\left(y^{*}, x^{*}\right) .
$$

Therefore, $\left(x^{*}, y^{*}\right)$ is a coupled solution of the equation (1.1). The proof is completed.
Theorem 3.2 Assume that all conditions of Theorem 3.1 are satisfied. Then the nonlinear operator equation (1.1) has a coupled minimal-maximal solution $\left(x^{*}, y^{*}\right) \in D$.

Proof. Let

$$
F(H)=\{(x, y) \in D \mid H(x, y)=B(x, y)\} .
$$

Theorem 3.1 implies that $F(H)$ is nonempty. Let

$$
S \doteq\{[(u, v),(v, u)] \mid B(u, v) \prec H(u, v),(u, v) \in D, F(H) \subset[(u, v),(v, u)]\}
$$

where $[(u, v),(v, u)]$ is an ordered interval in $E \times E$. Then $S \neq \emptyset$ (since $D \in S$). Define the relation " \leq_{1} " in S as follows:

$$
I_{1}, I_{2} \in S, \quad I_{1} \leq_{1} I_{2} \Longleftrightarrow I_{1} \subset I_{2}
$$

It is easy to see that " \leq_{1} " is a partial order in S.
Next we show that S has a minimal element.
Step 1. Suppose that $\Gamma=\left\{\left[\left(u_{\alpha}, v_{\alpha}\right),\left(v_{\alpha}, u_{\alpha}\right)\right] \mid \alpha \in \Lambda\right\}$ is any totally order subset of S, where Λ is an index set. Let

$$
R_{1}=\left\{\left(u_{\alpha}, v_{\alpha}\right) \mid \alpha \in \Lambda\right\}, \quad R_{2}=\left\{\left(v_{\alpha}, u_{\alpha}\right) \mid \alpha \in \Lambda\right\} .
$$

Then R_{1} and R_{2} are totally ordered subsets of D. It follows from the mixed monotonicity of G that $G\left(R_{i}\right)(i=1,2)$ are totally ordered subsets of $G(D)$.

Let $K_{1}=R_{1}$ and $K_{2}=R_{2}$ be the same as in Theorem 3.1. Then by similar proofs of Steps 1-3 of Theorem 3.1, we know that there exist $\bar{q}_{i} \in \overline{\operatorname{co}}\left(G\left(R_{i}\right)\right)(i=1,2)$ with $N \bar{w}_{i}=\bar{q}_{i}$ such that

$$
\left(u_{\alpha}, v_{\alpha}\right) \prec\left(\bar{w}_{1}, \bar{w}_{2}\right), \quad \alpha \in \Lambda .
$$

On the other hand, for any $\left(u_{\alpha}, v_{\alpha}\right) \in R_{1}$, we have $\left(v_{\alpha}, u_{\alpha}\right) \in R_{2}$. Thus

$$
\begin{equation*}
\left(u_{\alpha}, v_{\alpha}\right) \prec\left(\bar{w}_{1}, \bar{w}_{2}\right), \quad\left(v_{\alpha}, u_{\alpha}\right) \succ\left(\bar{w}_{2}, \bar{w}_{1}\right) . \tag{3.3}
\end{equation*}
$$

It follows from the mixed monotonicity for G that

$$
G\left(u_{\alpha}, v_{\alpha}\right) \leq G\left(\bar{w}_{1}, \bar{w}_{2}\right), \quad G\left(v_{\alpha}, u_{\alpha}\right) \geq G\left(\bar{w}_{2}, \bar{w}_{1}\right) .
$$

By Lemma 2.2, for $N \bar{w}_{i}=\bar{q}_{i} \in \overline{\operatorname{co}}\left(G\left(R_{i}\right)\right)(i=1,2)$, we have

$$
N \bar{w}_{1} \leq G\left(\bar{w}_{1}, \bar{w}_{2}\right), \quad G\left(\bar{w}_{2}, \bar{w}_{1}\right) \leq N \bar{w}_{2},
$$

i.e.,

$$
\begin{equation*}
B\left(\bar{w}_{1}, \bar{w}_{2}\right)=\left(N \bar{w}_{1}, N \bar{w}_{2}\right) \prec\left(G\left(\bar{w}_{1}, \bar{w}_{2}\right), \quad G\left(\bar{w}_{2}, \bar{w}_{1}\right)\right)=H\left(\bar{w}_{1}, \bar{w}_{2}\right) . \tag{3.4}
\end{equation*}
$$

Step 2. Given any $\left(u_{\alpha}, v_{\alpha}\right) \in R_{1}$, we have $\left(v_{\alpha}, u_{\alpha}\right) \in R_{2}$. Let $(x, y) \in F(H)$. By the definition of S, one has

$$
\left(u_{\alpha}, v_{\alpha}\right) \prec(x, y) \prec\left(v_{\alpha}, u_{\alpha}\right) .
$$

The mixed monotonicity for G implies that

$$
G\left(u_{\alpha}, v_{\alpha}\right) \leq G(x, y) \leq G\left(v_{\alpha}, u_{\alpha}\right) .
$$

Since $\bar{q}_{i} \in \overline{\operatorname{co}}\left(G\left(R_{i}\right)\right)(i=1,2)$, by Lemma 2.2, we have

$$
\begin{equation*}
N \bar{w}_{1} \leq G(x, y) \leq N \bar{w}_{2}, \tag{3.5}
\end{equation*}
$$

Similarly to the proof of (3.5), we also get

$$
\begin{equation*}
N \bar{w}_{1} \leq G(y, x) \leq N \bar{w}_{2} . \tag{3.6}
\end{equation*}
$$

Thus,

$$
\left(N \bar{w}_{1}, N \bar{w}_{2}\right) \prec(G(x, y), G(y, x))=H(x, y)=(N x, N y)
$$

and

$$
\left(N \bar{w}_{2}, N \bar{w}_{1}\right) \succ(G(x, y), G(y, x))=H(x, y)=(N x, N y) .
$$

Therefore

$$
\begin{equation*}
\left(\bar{w}_{1}, \bar{w}_{2}\right) \prec(x, y) \prec\left(\bar{w}_{2}, \bar{w}_{1}\right), \quad(x, y) \in F(H) . \tag{3.7}
\end{equation*}
$$

Let $I=\left[\left(\bar{w}_{1}, \bar{w}_{2}\right),\left(\bar{w}_{2}, \bar{w}_{1}\right)\right]$. Then it follows from (3.4) and (3.7) that $I \in S$. (3.3) shows that if $(x, y) \in I$, then $(x, y) \in\left[\left(u_{\alpha}, v_{\alpha}\right),\left(v_{\alpha}, u_{\alpha}\right)\right]$, i.e., $I \subset\left[\left(u_{\alpha}, v_{\alpha}\right),\left(v_{\alpha}, u_{\alpha}\right)\right]$. Hence,

$$
I \leq_{1}\left[\left(u_{\alpha}, v_{\alpha}\right),\left(v_{\alpha}, u_{\alpha}\right)\right], \quad \alpha \in \Lambda .
$$

I is a lower bound of Γ in S. By Zorn' Lemma, S contains a minimal element denoted as $I^{*}=\left[\left(x^{*}, y^{*}\right),\left(y^{*}, x^{*}\right)\right]$.
Step 3. By the definition of S, we have

$$
B\left(x^{*}, y^{*}\right) \prec H\left(x^{*}, y^{*}\right)=B\left(B^{-1} H\left(x^{*}, y^{*}\right)\right),
$$

i.e.,

$$
\begin{equation*}
\left(x^{*}, y^{*}\right) \prec B^{-1} H\left(x^{*}, y^{*}\right) . \tag{3.8}
\end{equation*}
$$

The monotonicity of H implies that

$$
\begin{equation*}
H\left(x^{*}, y^{*}\right)=B\left(B^{-1} H\left(x^{*}, y^{*}\right)\right) \prec H\left(B^{-1} H\left(x^{*}, y^{*}\right)\right) . \tag{3.9}
\end{equation*}
$$

For any $(x, y) \in F(H)$, the monotonicity of H and the definition of S show that

$$
H\left(x^{*}, y^{*}\right) \prec H(x, y)=B(x, y) \prec H\left(y^{*}, x^{*}\right) .
$$

Hence,

$$
B\left(B^{-1} H\left(x^{*}, y^{*}\right)\right) \prec B\left(B^{-1} H(x, y)\right)=B(x, y) \prec B\left(B^{-1} H\left(y^{*}, x^{*}\right)\right) .
$$

Therefore,

$$
B^{-1} H\left(x^{*}, y^{*}\right) \prec(x, y) \prec B^{-1} H\left(y^{*}, x^{*}\right),
$$

i.e.,

$$
\begin{equation*}
F(H) \subset\left[B^{-1} H\left(x^{*}, y^{*}\right), B^{-1} H\left(y^{*}, x^{*}\right)\right] . \tag{3.10}
\end{equation*}
$$

From (3.9) and (3.10) we know that $\left[B^{-1} H\left(x^{*}, y^{*}\right), B^{-1} H\left(y^{*}, x^{*}\right)\right] \in S$.
By virtue of the minimality of I^{*}, we get

$$
I^{*} \leq_{1}\left[B^{-1} H\left(x^{*}, y^{*}\right), B^{-1} H\left(y^{*}, x^{*}\right)\right]
$$

i.e.,

$$
\begin{equation*}
\left(x^{*}, y^{*}\right) \succ B^{-1} H\left(x^{*}, y^{*}\right) . \tag{3.11}
\end{equation*}
$$

(3.8) and (3.11) indicate that

$$
\left(x^{*}, y^{*}\right)=B^{-1} H\left(x^{*}, y^{*}\right),
$$

i.e.,

$$
B\left(x^{*}, y^{*}\right)=H\left(x^{*}, y^{*}\right) .
$$

On the other hand, for any $(x, y) \in F(H) \subset I^{*}$, it is easy to see that

$$
\left(x^{*}, y^{*}\right) \prec(x, y) \prec\left(y^{*}, x^{*}\right) .
$$

This shows that $\left(x^{*}, y^{*}\right)$ is a minimal solution of the equation $(*)$.
By Lemma 2.1, $\left(x^{*}, y^{*}\right)$ is a coupled minimal-maximal solution of

$$
N x=G(x, x) .
$$

It follows from Lemma 2.3 that

$$
N x^{*}=A\left(x^{*}, y^{*}\right), \quad N y^{*}=A\left(y^{*}, x^{*}\right) .
$$

Therefore, $\left(x^{*}, y^{*}\right)$ is a coupled minimal-maximal solution of the equation (1.1). The proof is completed.

Remark 3.1 In Theorems 3.1 and 3.2, we do not assume that the operators are continuous or compact, and the results hold in partial ordered linear topology space. Therefore our conclusions generalize or improve some corresponding results of $[3,5,8,11-12]$.

References

[1] Guo D J, Lakshmikantham V. Couple fixed points of nonlinear operators with applications. Nonlinear Anal., 1987, 11: 623-632.
[2] Liu S Y, Feng Y Q. Solvability of a class of operator equations in partially ordered complete metric space and in partially ordered Banach space. Acta. Math. Sinica., 2005, 48: 109-114.
[3] He G, Lee B S, Huang N J. Solvability of a new class of mixed monotone operator equations with an application. Nonlinear Anal. Forum, 2005, 10: 145-151.
[4] Xu S Y, Jia B G. Fixed-point theorems of ϕ concave- ψ convex mixed monotone operators and applications. J. Math. Anal. Appl., 2004, 295: 645-657.
[5] Duan H G, Li G Z. The existence of couple minimal-maximal quasi-solutions for a class of nonlinear operator equations. J. Math., 2005, 25: 527-532.
[6] Deimling K. Nolinear Functional Analsis. New York: Springer-Verlag, 1985.
[7] Guo D, Lakshmikantham V. Nonlinear Problems in Abstract Cones. New York: Academic Press, 1988.
[8] Liu X Y, Wu C X. Fixed point of discontinous weakly compact increasing operators and its applications to initial value problem in Banach space. J. System Sci. Math. Sci., 2000, 20: 175-180.
[9] Guo D. Partial Order Methods in Nonlinear Analysis. Jinan: Shangdong Science and Technology Press, 2000.
[10] Wu Y X, Liang Z D. Existence and uniqueness of fixed point for mixed monotone operators with applications. Nonlinear Anal., 2006, 65: 1913-1924.
[11] Syau Y R. Some fixed point theorems of T-monotone oprators. J. Math. Anal. Appl., 1997, 205: 325-329.
[12] Zhang K M, Xie X J. Solution and coupled minimal-maximal quasi-solutions of nonlinear nonmonotone operator equations in Banach space. J. Math. Res. Exposition, 2003, 23: 47-52.

[^0]: *Received date: Jan. 12, 2010.
 Foundation item: The Innovation Foundation for College Research Team of Shanxi University of Finance and Economics.

