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Abstract: Let Mn be the algebra of all n × n complex matrices and gl(n,C) be

the general linear Lie algebra, where n ≥ 2. An invertible linear map φ : gl(n,C) →

gl(n,C) preserves solvability in both directions if both φ and φ−1 map every solvable

Lie subalgebra of gl(n,C) to some solvable Lie subalgebra. In this paper we classify

the invertible linear maps preserving solvability on gl(n,C) in both directions. As a

sequence, such maps coincide with the invertible linear maps preserving commutativ-

ity on Mn in both directions.
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1 Introduction

Let L be a Lie algebra. Recall that the derived Lie algebra L(1) of L is the Lie ideal [L, L]

spanned by all [x, y], x, y ∈ L. To each Lie algebra L we associated the derived series:

L ⊇ L(1) ⊇ L(2) = (L(1))(1) ⊇ · · · .

The Lie algebra L is solvable if there exists a positive integer r such that L(r) = {0}. The

set of all n × n complex matrices is denoted by Mn when considered as a set or a linear

space or an algebra. If the linear space Mn is equipped with the Lie product

[ · , · ] : [A,B] = AB −BA,

then it becomes a general linear Lie algebra, denoted by gl(n,C).

A lot of attention has been paid to linear preserver problem, which concerns the charac-

terization of linear maps on matrix spaces or algebras that leave certain functions, subsets,

relations, etc., invariant. The earliest paper on linear preserver problem dates back to 1897

(see [1]), and a great deal of effort has been devoted to the study of this type of question since
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then. One may consult the survey papers [2–4] for details. For linear or nonlinear preserver

problem concerning linear Lie algebras we refer to the literature [5–12]. The author in [7]

characterized the invertible linear maps on simple Lie algebras of linear types preserving zero

Lie products. Radjavi and Semrl in [11] characterized the nonlinear maps which preserve

solvability in both directions on the general linear Lie algebras and the special linear Lie

algebras. In this article we determine the invertible linear maps preserving solvability on

gl(n,C) in both directions, where an invertible linear map φ : gl(n,C) → gl(n,C) is said to

preserve solvability in both directions if for any solvable Lie algebra s ⊆ gl(n,C), both φ(s)

and φ−1(s) are solvable Lie algebras of gl(n,C). Now we state our main theorem:

Theorem 1.1 Let φ : gl(n,C) → gl(n,C) be an invertible linear map. The following two

conditions are equivalent:

(1) φ preserves solvability in both directions;

(2) There exists a non-zero scalar µ ∈ C, a linear functional f on gl(n,C) with f(I) 6=

−µ and an invertible matrix S ∈ gl(n,C) such that either

φ(X) = µSXS−1 + f(X)I

for every X ∈ gl(n,C), or

φ(X) = µSXtS−1 + f(X)I

for every X ∈ gl(n,C), where Xt denotes the transpose of X.

The above result determines an explicit form of the linear invertible map preserving

solvability described in Theorem 1.1 of [11]. In [12], the author proved that any bijective

linear commutativity preserving map φ on Mn is also one of the above two standard maps.

Thus we have the following corollary.

Corollary 1.1 Let φ be an invertible linear map on gl(n,C). Then the following condi-

tions are equivalent:

(1) φ preserves solvability in both directions;

(2) φ preserves zero Lie products in both directions.

Here we specify some notations for later use. We denote by I the identity matrix in

gl(n,C) and by Eij the matrix in gl(n,C) whose sole nonzero entry 1 is in the (i, j)-position.

Let CI be the set {aI|a ∈ C} of all scalar matrices, H the set of all diagonal matrices in

gl(n,C), and n+ (resp., n−) the set of all strictly upper (resp., low) triangular matrices. Let

D be the set of the diagonalizable matrices. Denote the one-dimensional vector space CEst

by Lst for any pair (s, t), 1 ≤ s 6= t ≤ n. And denote C∗ = C − {0}.

2 Certain Invertible Linear Maps Preserving Solvability

In this section, we construct certain invertible linear maps preserving solvability in both

directions on gl(n,C), which will be used to describe arbitrary invertible linear maps pre-

serving solvability in both directions.
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(A) Inner automorphisms:

For any invertible matrix T ∈ gl(n,C), the map

σT : gl(n,C) → gl(n,C), X 7→ T−1XT,

is an automorphism of gl(n,C), called an inner automorphism of gl(n,C).

(B) Graph automorphisms:

Let

ω0 : gl(n,C) → gl(n,C), X 7→ −RXtR,

where

R = E1n + E2,n−1 + · · · + En−1,2 + En1.

Then ω0 is an automorphism of gl(n,C). Both 1 and ω0 are called graph automorphism of

gl(n,C).

(C) Scalar multiplication maps:

For any c ∈ C∗, define

ψc : gl(n,C) → gl(n,C), X 7→ cX.

We call ψc a scalar multiplication map on gl(n,C). It is obvious that any scalar multiplica-

tion map is an invertible linear map preserving solvability in both directions.

(D) Invertible linear maps induced by a linear function on gl(n,C):

Let f : gl(n,C) → C be a linear function such that

f(I) 6= −1.

It is easy to see that the map

ψf : gl(n,C) → gl(n,C), X 7→ X + f(X)I

is an invertible linear map, and its inverse is the linear map ψ−1
f defined by

ψ−1
f (X) = X −

f(X)

1 + f(I)
I.

The map ψf is called an invertible linear map induced by the linear function f . Since

[ψf (X), ψf (Y )] = [X,Y ]

for any X,Y ∈ gl(n,C), ψf preserves solvability in both directions.

The following lemma is easy to check.

Lemma 2.1 (1) ψc′ · ψc = ψc′c for any c, c′ ∈ C∗;

(2) σT ′ · σT = σTT ′ for any pair of invertible matrices T, T ′ ∈ gl(n,C);

(3) ω2
0 = 1.

By Lemma 2.1 we have

ψ−1
c = ψc−1 , σ−1

T = σT−1 , ω−1
0 = ω0.

3 Proof of the Main Theorem

Before proving the main theorem, we recall some results from Theorem 1.1, Proposition 2.4

and the proof of Lemma 2.5 in [11].
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Lemma 3.1 Let φ be a bijective map on gl(n,C) preserving solvability in both directions.

Then

φ(D) = D

and two diagonalizable matrices A and B commute if and only if φ(A) and φ(B) commute.

Moreover, let Dk (k = 1, 2, · · · , n) be the set of all diagonalizable matrices with exactly k

distinct eigenvalues. Then we have

φ(Dk) = Dk.

In particular,

φ(I) = λI

for some nonzero λ ∈ C∗.

Proof of Theorem 1.1 First we prove that Theorem 1.1 holds for n ≥ 3.

For the sufficient direction, it is easy to see that φ is an invertible linear map and its

inverse is given by

φ−1(X) = µ−1S−1XS −
f(S−1XS)

µ2 + µf(I)
I

or

φ−1(X) = µ−1StXt(St)−1 −
f(StXt(St)−1)

µ2 + µf(I)
I

for any X ∈ gl(n,C). Since

[φ(X), φ(Y )] = µ2S[X,Y ]S−1

or

[φ(X), φ(Y )] = −µ2S([X,Y ])tS−1

for any X,Y ∈ gl(n,C), for any solvable Lie subalgebra s of gl(n,C), φ(s) is a solvable Lie

subalgebra of gl(n,C). Similarly, φ−1 preserves solvability. Thus φ is an invertible linear

map preserving solvability in both directions.

Now we prove the essential direction of the theorem. Let φ be an invertible linear map

on gl(n,C) preserving solvability in both directions. First observe that the image (under

φ) of a solvable subalgebra generated by a subset X of gl(n,C) is precisely the subalgebra

generated by φ(X). We prove the main theorem through the following nine steps.

Step 1. There exists an invertible matrix S1 ∈ gl(n,C) such that

(σS1
· φ)(H) = H.

For a diagonal matrix

h0 = diag{1, 2, . . . , n} ∈ H ⊆ D,

we have φ(h0) ∈ D by Lemma 3.1, and so there exists an invertible matrix S1 ∈ gl(n,C)

such that

(σS1
· φ)(h0) = S−1

1 φ(h0)S1

is a diagonal matrix. Denote

φ1 = σS1
· φ.
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Then φ1 is still an invertible linear map on gl(n,C) preserving solvability in both directions.

Let

φ1(h0) = diag{λ1, λ2, · · · , λn}.

Since h0 ∈ Dn, by Lemma 3.1, φ1(h0) ∈ Dn, and so

λi 6= λj

for any i 6= j. For any h ∈ H ,

h0 · h = h · h0,

so by Lemma 3.1,

diag{λ1, λ2, · · · , λn} · φ1(h) = φ1(h) · diag{λ1, λ2, · · · , λn}. (3.1)

By the above equality (3.1), we know that φ1(h) is a diagonal matrix. It follows that

φ1(H) = H.

Step 2. For any pair (s, t), 1 ≤ s 6= t ≤ n, there exists some pair (p, q), 1 ≤ p 6= q ≤ n,

such that

φ1(Lst) = Lpq.

Consider φ1(H + Lst). Since H + Lst is an (n + 1)-dimensional solvable subalgebra

containing H , φ1(H +Lst) is also an (n+ 1)-dimensional solvable subalgebra containing H .

First we prove that

φ1(H + Lst) = H + Lpq

for some pair (p, q), where 1 ≤ p 6= q ≤ n. Denote

s = φ1(H + Lst).

For any element x ∈ s, write it in the form

x = h+
∑

u6=v

auvEuv,

where h ∈ H , auv ∈ C. Let

h1 = diag{1, 2, 22, · · · , 2n−2, 2n−1}.

Applying (ad h1) repeatedly on x, we have
∑

u6=v

(2u−1 − 2v−1)kauvEuv = (ad h1)
k(x) ∈ s, k = 1, 2, · · · , n(n− 1). (3.2)

View the above equations (3.2) as a system of linear equations in n2 − n variants (2u−1 −

2v−1)auvEuv for the pairs (u, v) with coefficients (2u−1−2v−1)k−1. For any (u, v) 6= (u′, v′),

it is easy to see that

2u−1 − 2v−1 6= 2u′−1 − 2v′−1.

So the determinant of coefficients of variants (2u−1 − 2v−1)auvEuv, being exactly a Vander-

monde determinant, takes a nonzero value. So each (2u−1 − 2v−1)auvEuv can be written as

a linear combination of

(ad h1)(x), (ad h1)
2(x), · · · , (ad h1)

n2−n−1(x), (ad h1)
n2−n(x).

Then (2u−1 − 2v−1)auvEuv ∈ s. For the case auv 6= 0, Euv ∈ s. Since dims = n + 1, there

exists only one pair (p, q), 1 ≤ p 6= q ≤ n, such that apq 6= 0. Thus

φ1(H + Lst) = H + Lpq.
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Assume that

φ1(Est) = h+ aEpq,

where h ∈ H , a ∈ C∗. We now need to show that h = 0. Otherwise, take

h′ = diag{λ1, λ2, · · · , λn} ∈ H

such that

λp − λq 6= 0

and h′, h are linearly independent (do exist). Let

h′′ = φ−1
1 (h′) ∈ H.

Since Lst +Ch′′ is a two-dimensional solvable subalgebra generated by Est and h′′, φ1(Lst +

Ch′′) is a two-dimensional solvable subalgebra generated by aEpq + h and h′. By

[h′, aEpq + h] = a(λp − λq)Epq,

we see that h = 0. Thus

φ1(Est) = aEpq ∈ Lpq.

Step 3. There exists some invertible matrix S2 such that

(1) (φ1 · σS2
)(H) = H ;

(2) (φ1 · σS2
)(Lst) ⊆ n+ for any 1 ≤ s < t ≤ n;

(3) (φ1 · σS2
)(Lst) ⊆ n− for any 1 ≤ t < s ≤ n.

It is not difficult to see that (2) is equivalent to the following announcement:

(∗) (φ1 · σS2
)(Ls,s+1) ⊆ n+

for any 1 ≤ s ≤ n− 1.

Since (3) follows from (2) by Step 2, we only need to prove (1) and (∗).

Let

P+
φ1

= {(s, t) | 1 ≤ s < t ≤ n, φ1(Lst) ⊆ n+}.

Now we use decreasing induction on Card P+
φ1

to complete (1) and (∗). If

Card P+
φ1

=
n2 − n

2
,

i.e., φ1(Lst) ⊆ n+ for any 1 ≤ s < t ≤ n, then we choose S2 = I to complete the proof. If

Card P+
φ1

= k <
n2 − n

2
,

then there exists at least one i ∈ {1, 2, · · · , n − 1} such that φ1(Li,i+1) ⊆ n−. Choose an

invertible matrix

S′ = (I − Ei,i+1)(I + Ei+1,i)(I − Ei,i+1).

By an easy computation, we have the following results:

(i) σS′(diag{a1, · · · , ai, ai+1, · · · , an}) = diag{a1, · · · , ai+1, ai, · · · , an}, and so

σS′(H) = H ;

(ii) σS′(Ei,i+1) = −Ei+1,i, and so

σS′(Li,i+1) = Li+1,i;

(iii) For any t > i+ 1,

σS′(Eit) = −Ei+1,t, σS′(Ei+1,t) = Eit,
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and then

σS′(Lit) = Li+1,t, σS′(Li+1,t) = Lit;

(iv) For any t < i,

σS′(Et,i+1) = −Eti, σS′(Eti) = Et,i+1,

and then

σS′(Lt,i+1) = Lti, σS′(Lti) = Lt,i+1;

(v) For any s 6= i, i+ 1 and t 6= i, i+ 1, 1 ≤ s < t ≤ n,

σS′(Est) = Est,

and then

σS′(Lst) = Lst.

Thus we have

(i)

(φ1 · σS′)(H) = H ;

(ii)

(φ1 · σS′)(Li,i+1) = φ1(Li+1,i) ⊆ n+

(if φ1(Li+1,i) ⊆ n−, then φ1(Li,i+1 +H + Li+1,i) = H + φ1(Li,i+1) + φ1(Li+1,i) ⊆ H + n−

is solvable, which contradicts the fact that Li,i+1 +H + Li+1,i is not solvable);

(iii) φ1 · σS′ induces a permutation on the set {Lst|(s, t) 6= (i, i + 1), 1 ≤ s < t ≤ n}.

One will see that the number of pairs (s, t), 1 ≤ s < t ≤ n, satisfying that

(φ1 · σS′)(Lst) ⊆ n+

is precisely k + 1. By induction hypotheses, there exists an invertible matrix S′′ such that

(i) ((φ1 · σS
′ ) · σS′′)(H) = H ;

(ii) ((φ1 · σS′) · σS′′)(Lst) ⊆ n+ for any 1 ≤ s < t ≤ n.

Let

S2 = S′′S′.

Then by Lemma 2.1(2), the proofs of (1) and (2) are completed.

In the remainder of this proof, we denote

φ2 = φ1 · σS2
.

Step 4. For any s ∈ {1, 2, · · · , n− 1}, there is some j ∈ {1, 2, · · · , n− 1} such that

φ2(Ls,s+1) = Lj,j+1.

By Step 3,

φ2(n
+) ⊆ n+.

Since dimφ2(n
+) =dimn+, we have

φ2(n
+) = n+.

Since n+ is a solvable subalgebra generated by all Ls,s+1 for s ∈ {1, 2, · · · , n − 1}, we see

that n+ is also generated by all φ2(Ls,s+1) for s ∈ {1, 2, · · · , n−1}. Then Step 4 holds from

Step 2.
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Step 5. There is a graph automorphism ω of gl(n,C) such that

(ω · φ2)(Ls,s+1) = Ls,s+1

for any s ∈ {1, 2, · · · , n− 1}.

For any two distinct s, t ∈ {1, 2, · · · , n − 1}, |s − t| = 1 if and only if the dimension of

the solvable subalgebra generated by Ls,s+1 and Lt,t+1 is 3, and |s − t| > 1 if and only if

the dimension of the solvable subalgebra generated by Ls,s+1 and Lt,t+1 is 2. By Step 4, we

can set π to be the permutation of {1, 2, · · · , n− 1} such that

φ2(Ls,s+1) = Lπ(s),π(s)+1

for any s = 1, 2, · · · , n−1. Since the dimension of the solvable subalgebra generated by Ls,s+1

and Lt,t+1 is equal to the dimension of the solvable subalgebra generated by Lπ(s),π(s)+1

and Lπ(t),π(t)+1, |s − t| = 1 if and only if |π(s) − π(t)| = 1, and |s − t| > 1 if and only if

|π(s) − π(t)| > 1. Then either

(1) π(s) = s, 1 ≤ s ≤ n− 1, or

(2) π(s) = n− s, 1 ≤ s ≤ n− 1.

For the case (1), we set ω = I; and for the case (2), we set ω = ω0. Then Step 5 holds.

Denote

φ3 = ω · φ2.

Step 6. φ3(Lst) = Lst for any s, t ∈ {1, 2, · · · , n} and s 6= t.

At first we prove that

φ3(Lst) = Lst for any 1 ≤ s < t ≤ n.

To achieve the aim we use decreasing induction on t − s, where 1 ≤ t − s ≤ n − 1. For

t−s = n−1, then t = n, s = 1. Since L1n +Lk,k+1 is a two-dimensional solvable subalgebra

for any k = 1, 2, · · · , n−1, the image φ3(L1n +Lk,k+1) is also a two-dimensional subalgebra,

which is generated by φ3(L1n) and φ3(Lk,k+1). Assume that

φ3(L1n) = Lpq 6= L1n.

Then there is some i ∈ {1, 2, · · · , n− 1} such that

[Lpq , Li,i+1] 6= 0,

i.e.,

[φ3(L1n), φ3(Li,i+1)] 6= 0,

which implies that the subalgebra of gl(n,C) generated by φ3(L1n) and φ3(Li,i+1) is at least

three-dimensional, a contradiction. Thus

φ3(L1n) = L1n.

Assume that

φ3(Lst) = Lst

for any pair (s, t) satisfying t − s ≥ k + 1, 1 ≤ s < t ≤ n. Let (p, q) be a pair satisfying

|p− q| = k and 1 ≤ p < q ≤ n. There is some i ∈ {1, 2, · · · , n− 1} such that

[Lpq , Li,i+1] 6= 0.

The subalgebra t generated by Lpq and Li,i+1 is

Lpq + Li,i+1 + [Lpq, Li,i+1],
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which is three-dimensional and solvable. We consider the three-dimensional solvable algebra

φ3(t). On the one hand, it is the subalgebra generated by φ3(Lpq) and Li,i+1, i.e., it is the

subalgebra

Li,i+1 + φ3(Lpq) + [Li,i+1, φ3(Lpq)].

On the other hand, it is

φ3(Li,i+1 + Lpq + [Li,i+1,Lpq]) = Li,i+1 + φ3(Lpq) + φ3([Li,i+1,Lpq ]).

By hypothesis,

φ3([Li,i+1,Lpq]) = [Li,i+1,Lpq].

Then

[Li,i+1,Lpq] = [Li,i+1, φ3(Lpq)],

and so

φ3(Lpq) = Lpq.

By induction,

φ3(Lst) = Lst for any 1 ≤ s < t ≤ n.

It is easy to see that

φ3(n
−) = n−, φ3(H) = H.

As in Step 4, we can similarly prove that for any 1 ≤ i ≤ n− 1, there is some j such that

φ3(Li+1,i) = Lj+1,j .

For a given i ∈ {1, 2, · · · , n−1}, if the above j 6= i, then the solvability of Lj+1,j +Li,i+1+H

will force

φ−1
3 (Lj+1,j + Li,i+1 +H) = Li+1,i + Li,i+1 +H

to be solvable, absurd. So

φ3(Li+1,i) = Li+1,i for any 1 ≤ i ≤ n− 1.

A similar discussion to the above shows that

φ3(Lst) = Lst for any 1 ≤ t < s ≤ n.

Step 7. There exist a constant v ∈ C∗ and a linear function f ′ such that

(ψf ′ · ψ−1
v · φ3)(h) = h for any h ∈ H.

Let

φ3(Eii) = diag{λ1i, λ2i, · · · , λni} for any 1 ≤ i ≤ n,

and

φ3(Est) = bstEst for any 1 ≤ s 6= t ≤ n.

For any fixed i ∈ {1, 2, · · · , n}, and any two distinct j, k 6= i, Eii and Ejk + Ekj generate a

two-dimensional solvable subalgebra of gl(n,C). So φ3(Eii) and φ3(Ekj +Ejk) also generate

a two-dimensional subalgebra of gl(n,C). Since

[φ3(Eii), φ3(Ekj + Ejk)] = bkj(λki − λji)Ekj + bjk(λji − λki)Ejk ,

we have

λki = λji
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for any two distinct j, k 6= i. Thus

λ1i = λ2i = · · · = λi−1,i = λi+1,i = · · · = λni for any i = 1, 2, · · · , n.

So

φ3(Eii) = (λii − λki)Eii + λkiI for some k 6= i.

We may assume that

φ3(Eii) = viEii + uiI for any i = 1, 2, · · · , n,

where ui, vi ∈ C. By Lemma 3.1,

φ3(I) = bI for some b ∈ C
∗.

Since

φ3(I) = φ3(E11) + φ3(E22) + · · · + φ3(Enn),

we have

v1 = v2 = · · · = vn,

denoted by v, and

b = v +

n
∑

i=1

ui.

Then

φ3(Eii) = vEii + uiI,

where v 6= 0 (otherwise, φ−1
3 (uiI) = Eii, a contradiction to Lemma 3.1). So

(ψ−1
v · φ3)(Eii) = Eii +

ui

v
I for any 1 ≤ i ≤ n.

Define a linear function

f ′ : gl(n,C) → C

determined by

f ′(Eii) = −
ui

b
for any 1 ≤ i ≤ n

and

f ′(Est) = 0 for any 1 ≤ s 6= t ≤ n.

So

f ′(I) = −

n
∑

i=1

ui

b
= −1 +

v

b
6= −1.

Correspondingly, there is an invertible linear map

ψf ′ : gl(n,C) → gl(n,C), A 7→ A+ f ′(A)I,

where A ∈ gl(n,C). Then

(ψf ′ · ψ−1
v · φ3)(Eii) = Eii for any 1 ≤ i ≤ n,

and so

(ψf ′ · ψ−1
v · φ3)(h) = h for any h ∈ H,

and

(ψf ′ · ψ−1
v · φ3)(Lst) = Lst for any 1 ≤ s 6= t ≤ n.
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Denote

φ4 = ψf ′ · ψ−1
v · φ3.

Step 8. There is an invertible matrix S3 such that

(σS3
· φ4)(A) = A for any A ∈ gl(n,C).

Suppose that

φ4(Ei,i+1) = biEi,i+1,

where bi ∈ C∗. Let

S3 = diag{1, b−1
1 , b−1

1 b−1
2 , · · · , b−1

1 b−1
2 · · · b−1

n−1}.

Then

(σS3
· φ4)(h) = h for any h ∈ H.

Let

(σS3
· φ4)(Est) = astEst for any 1 ≤ s 6= t ≤ n,

where ast ∈ C∗.

At first we prove that

ast = 1

for any pair (s, t) such that 1 ≤ s < t ≤ n by induction on t− s. It is easy to check that

(σS3
· φ4)(Ei,i+1) = Ei,i+1 for any 1 ≤ i ≤ n− 1.

So it holds for t− s = 1. Assume that

ast = 1 for any 1 < t− s < k.

We prove

ast = 1

when t− s = k. Since

[Et−1,t−1 + Et−1,t, Es,t−1 + Est] = −(Es,t−1 + Est),

Et−1,t−1 + Et−1,t and Es,t−1 + Est generate a two-dimensional solvable subalgebra, and so

(σS3
· φ4)(Et−1,t−1 + Et−1,t) and (σS3

· φ4)(Es,t−1 + Est) also generate a two-dimensional

solvable subalgebra, where

(σS3
· φ4)(Et−1,t−1 + Et−1,t) = Et−1,t−1 + Et−1,t,

and

(σS3
· φ4)(Es,t−1 + Est) = Es,t−1 + astEst

by hypothesis. Since

[Et−1,t−1 + Et−1,t, Es,t−1 + astEst] = −(Es,t−1 + Est),

we have

ast = 1.

By induction,

ast = 1 for any 1 ≤ s < t ≤ n.

Next, we prove that

ast = 1 for any 1 ≤ t < s ≤ n.
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First we prove that

at+1,t = 1 for any t = 1, 2, · · · , n− 1.

We prove it in the following two cases.

Case 1. t = 1.

Since

[E11 + E21, E13 + E23] = E13 + E23,

we see that E11 + E21 and E13 + E23 generate a two-dimensional solvable subalgebra of

gl(n,C), and so (σS3
·φ4)(E11+E21) and (σS3

·φ4)(E13+E23) also generate a two-dimensional

subalgebra of gl(n,C). Since

[(σS3
· φ4)(E11 + E21), (σS3

· φ4)(E13 + E23)]

= [E11 + a21E21, E13 + E23]

= E13 + a21E23,

we have

a21 = 1.

Case 2. t > 1.

Since

[Et+1,t+1 + Et+1,t, Et−1,t+1 + Et−1,t] = −(Et−1,t+1 + Et−1,t),

we see that Et+1,t+1 + Et+1,t and Et−1,t+1 + Et−1,t generate a two-dimensional solvable

subalgebra of gl(n,C), and so (σS3
· φ4)(Et+1,t+1 +Et+1,t) and (σS3

· φ4)(Et−1,t+1 +Et−1,t)

also generate a two-dimensional solvable subalgebra of gl(n,C). Since

[(σS3
· φ4)(Et+1,t+1 + Et+1,t), (σS3

· φ4)(Et−1,t+1 + Et−1,t)] = −(Et−1,t+1 + at+1,tEt−1,t),

we have

at+1,t = 1.

A similar discussion as above shows that

ast = 1 for any 1 ≤ t < s ≤ n.

Thus

(σS3
· φ4)(Est) = Est for any 1 ≤ s, t ≤ n.

Thus Step 8 holds.

Step 9. There are a nonzero element µ ∈ C
∗, an invertible matrix S and a linear

function f on gl(n,C) with f(I) 6= −µ such that either

φ(X) = µSXS−1 + f(X)I

or

φ(X) = µSXtS−1 + f(X)I

for any X ∈ gl(n,C).

By Step 8,

1 = σS3
· φ4 = σS3

· ψf ′ · ψ−1
v · ω · σS1

· φ · σS2
,
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and so

φ = σ−1
S1

· ω−1 · ψv · ψ−1
f ′ · σ−1

S3
· σ−1

S2
.

We prove Step 9 in the following two cases:

Case 1. ω = 1.

In this case, by Lemma 2.1, we have

φ(X) = (σS
−1

1

· ψv · ψ−1
f ′ · σS

−1

2
S

−1

3

)(X)

= v(S1S3S2)X(S1S3S2)
−1 − bf ′(S3S2XS

−1
2 S−1

3 )I.

Let

µ = v, S = S1S3S2,

and f be the linear function determined by

f(X) = −bf ′(S3S2XS
−1
2 S−1

3 ).

Then

f(I) = −bf ′(I) = b− v 6= −v = −u.

Thus Step 9 holds.

Case 2. ω = ω0.

In this case, by Lemma 2.1, we have

φ(X) = −v(S1R(S−1
2 S−1

3 )t)Xt(S1R(S−1
2 S−1

3 )t)−1 + bf ′(S3S2XS
−1
2 S−1

3 )I.

Let

µ = −v, S = S1R(S−1
2 S−1

3 )t,

and f be the linear map determined by

f(X) = bf ′(S3S2XS
−1
2 S−1

3 ).

Then

f(I) = bf ′(I) = −b+ v 6= v = −µ.

Thus Step 9 holds.

Finally, Theorem 1.1 holds for the case n ≥ 3.

Next we prove Theorem 1.1 holds for n = 2.

We only need to prove the essential direction.

Let φ be an invertible linear map preserving solvability on gl(2,C).

Since

T2 =

{(

a b

0 c

)

|a, b, c ∈ C

}

is a solvable subalgebra of gl(2,C), φ(T2) is a solvable subalgebra of gl(2,C), and so there

is an invertible matrix S1 such that

φ(T2) ⊆ S1T2S
−1
1 ,

which implies that

(σS1
· φ)(T2) = T2.

Here σS1
·φ is still an invertible linear map preserving solvability on gl(2,C). The set gl(2,C)

is a disjoint union of CI, N and D′, where N is the set of all matrices of the form λI +N
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with N 6= 0 and N2 = 0, and D′ is the set of all nonscalar diagonalizable matrices. By

Section 3 of [11], each of the sets CI, N , and D′ is invariant under σS1
· φ. Let

(σS1
· φ)(I) = λ0I, λ0 ∈ C

∗.

Since

E12 ∈ N ∩ T2,

we have

(σS1
· φ)(E12) ∈ N ∩ T2,

where

N ∩ T2 = {λI + λ′E12|λ, λ
′ ∈ C}.

So we may assume that

(σS1
· φ)(E12) = λ1I + tE12,

where λ1 ∈ C and t ∈ C
∗. Similarly, by E11 ∈ D′ ∩ T2, we have

(σS1
· φ)(E11) ∈ D′ ∩ T2,

and we may assume that

(σS1
· φ)(E11) = aE11 + bE12 + cE22,

where a, b, c ∈ C, and a 6= c. Choose

S2 = I −
b

a− c
E12.

It is easy to check that

(σS2
· σS1

· φ)(E11) = aE11 + cE22, (σS2
· σS1

· φ)(E12) = λ1I + tE12.

Denote

φ1 = σS2
· σS1

· φ.

Then

φ1(E11) = (a− c)E11 + cI,

φ1(E22) = φ1(I) − φ1(E11) = (a− c)E22 + (λ0 − a)I,

and so

φ1(H) = H.

Since E11, E12 generate a two-dimensional solvable subalgebra, φ1(E11) and φ1(E12) also

generate a two-dimensional solvable subalgebra. By computation,

[φ1(E11), φ1(E12)] = [aE11 + cE22, λ1I + tE12] = t(a− c)E12.

Thus

λ1 = 0,

which implies that

φ1(E12) = tE12.

Let

φ1(E21) = h+ a21E21 + a12E12,
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where h ∈ H , a12, a21 ∈ C. Since E11, E22, E21 generate a three-dimensional solvable

subalgebra, φ1(E11), φ1(E22) and φ1(E21) generate a three-dimensional solvable subalgebra,

denoted by t. Choose

h1 = E11 + 2E22 ∈ H ⊆ t.

Then (ad h1)(φ1(E21)) ∈ t, (ad h1)
2(φ1(E21)) ∈ t, i.e., a21E21 − a12E12 ∈ t, a21E21 +

a12E12 ∈ t. Thus a21E21 ∈ t, a12E12 ∈ t. If a12 6= 0 (resp., a21 6= 0), then E12 ∈ t (resp.,

E21 ∈ t). Thus one of a12, a21 is zero and the other is nonzero. Assume that

a12 6= 0, a21 = 0,

i.e.,

φ1(E21) = h+ a12E12.

In this case φ1(E12), φ1(E21) and φ1(E11 − E22) generate a solvable subalgebra of gl(2,C),

which contradicts the fact that the subalgebra generated by E21, E12 and E11 − E22 is not

solvable. Thus

a21 6= 0, a12 = 0,

i.e.,

φ1(E21) = h+ a21E21.

Next we prove that h = 0.

Assume that h 6= 0. Let

h = pE11 + qE22, p, q ∈ C.

We could choose p′, q′ ∈ C so that p′ 6= q′, and p′q 6= q′p. Then p′E11 + q′E22 and h are

linearly independent. Let

h′′ = φ−1
1 (p′E11 + q′E22) ∈ H.

Denote

t
′ = φ1(CE21 + Ch′′).

Since CE21 + Ch′′ is a two-dimensional solvable subalgebra generated by h′′ and E21, t
′ is a

two-dimensional solvable subalgebra generated by φ1(E21) and φ1(h
′′). However,

[φ1(E21), φ1(h
′′)] = [h+ a21E21, p

′E11 + q′E22] = a21(p
′ − q′)E21,

a contradiction. Thus

h = 0,

i.e.,

φ1(E21) = a21E21,

where a21 ∈ C∗. So

(ψ−1
a−c · φ1)(E11) = E11 +

c

a− c
I,

(ψ−1
a−c · φ1)(E22) = E22 +

λ0 − a

a− c
I,

(ψ−1
a−c · φ1)(E12) =

t

a− c
E12,

(ψ−1
a−c · φ1)(E21) =

a21

a− c
E21.
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Let f ′ be a linear function on C determined by

f ′(E11) =
c

a− c
, f ′(E22) =

λ0 − a

a− c
, f ′(E12) = f ′(E21) = 0.

Since

f ′(I) =
λ0

a− c
− 1 6= −1,

ψf ′ : gl(2,C) → gl(2,C), A 7→ A+ f ′(A)I,

is an invertible linear map preserving solvability. It is easy to check that

(ψ−1
f ′ · ψ−1

a−c · φ1)(E11) = E11,

(ψ−1
f ′ · ψ−1

a−c · φ1)(E22) = E22,

(ψ−1
f ′ · ψ−1

a−c · φ1)(E12) =
t

a− c
E12,

(ψ−1
f ′ · ψ−1

a−c · φ1)(E21) =
a21

a− c
E21.

Denote

φ2 = ψ−1
f
′ · ψ−1

a−c · φ1.

Choose

S3 = E11 +
a− c

t
E22.

Then

(σS3
· φ2)(E11) = E11,

(σS3
· φ2)(E22) = E22,

(σS3
· φ2)(E12) = E12,

(σS3
· φ2)(E21) =

ta21

(a− c)2
E21.

Set

t′ =
ta21

(a− c)2
.

We shall prove that

t′ = 1.

Since

[E11 + E12 − E21 − E22, E21 + E12] = 2(E11 + E12 − E21 − E22),

we see that E11 + E12 − E21 − E22 and E21 + E12 generate a two-dimensional solvable

subalgebra of gl(2,C), and so (σS3
· φ2)(E11 + E12 − E21 − E22) and (σS3

· φ2)(E21 + E12)

also generate a two-dimensional solvable subalgebra of gl(2,C). By computation,

[(σS3
· φ2)(E11 + E12 − E21 − E22), (σS3

· φ2)(E21 + E12)]

= 2(t′E11 + E12 − t′E21 − t′E22).

Thus t′ = 1, i.e.,

(σS3
· φ2)(E21) = E21.

Therefore

σS3
· φ2 = 1,
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i.e.,

σS3
· ψ−1

f ′ · ψ−1
a−c · σS2

· σS1
· φ = 1.

Thus by Lemma 2.1,

φ = σ−1
S1

· σ−1
S2

· ψa−c · ψf ′ · σ−1
S3

= σS
−1

2
S

−1

1

· ψa−c · ψf ′ · σS
−1

3

.

Therefore

φ(X) = (a− c)(S1S2S3)X(S1S2S3)
−1 + (a− c)f ′(S3XS

−1
3 )I

for any X ∈ gl(2,C). Let

µ = a− c, S = S1S2S3,

and f be the linear function determined by

f(X) = (a− c)f ′(S3XS
−1
3 ).

So

f(I) = (a− c)f ′(I) 6= −(a− c) = −µ.

Thus

φ(X) = µSXS−1 + f(X)I,

and Theorem 1.1 holds for n = 2.

The proof of Theorem 1.1 is completed.
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