
Communications
in
Mathematical
Research
28(1)(2012), 91–96

Two Generator Subsystems

of Lie Triple System∗

Feng Jian-qiang

(Academy of Mathematical and Computer Sciences, Hebei University, Baoding, Hebei, 071002)

Communicated by Du Xian-kun

Abstract: For a Lie triple system T over a field of characteristic zero, some sufficient

conditions for T to be two-generated are proved. We also discuss to what extent the

two-generated subsystems determine the structure of the system T . One of the main

results is that T is solvable if and only if every two elements generates a solvable

subsystem. In fact, we give an explicit two-generated law for the two-generated

subsystems.
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1 Introduction

Lie triple system (L.t.s.) is a generalization of the concept of Lie algebra, since every Lie

algebra L is also an L.t.s. with the multiplication

[x, y, z] := [x, [y, z]].

And also every L.t.s. is a subsystem of an L.t.s. coming from a Lie algebra, due to the

concept of standard imbedding. Hence L.t.s. is strongly linked to Lie algebra, and many

results of Lie algebra can be generalized in an appropriate form, to the L.t.s. (see [1–5]).

In this section we recall some definitions and facts about L.t.s. We start with the

definition of an L.t.s. (see [1–2]).

Definition 1.1 A Lie triple system (L.t.s.) is a vector space T over a field K, which is

closed with respect to a trilinear multiplication [ ·, ·, · ] and satisfies

[xxy] = 0, (1.1)

[xyz] + [yzx] + [zxy] = 0, (1.2)

[uv[xyz]] = [[uvx]yz] + [x[uvy]z] + [xy[uvz]], (1.3)
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where u, v, x, y, z ∈ T .

A derivation of an L.t.s. T is a linear transformation D of T such that

D[xyz] = [(Dx)yz] + [x(Dy)z] + [xy(Dz)], x, y, z ∈ T.

For x, y, z ∈ T , define linear transformations L( ·, · ), R( ·, · ) on the vector space T by

L(x, y)(z) = R(y, z)(x) = [xyz].

We can see by the definition of T that all L(x, y), x, y ∈ T , are derivations. A derivation D

of the form

D =
∑

L(xi, yi), xi, yi ∈ T

is called an inner derivation.

A subspace U of T is called an ideal of T if for all x, y ∈ T , u ∈ U we have [uxy] ∈ U .

For any submodule V in T , the centralizer ZT (V ) of V in T is defined by

ZT (V ) = {x ∈ T | [xvt] = [tvx] = 0, t ∈ T, v ∈ V }.

In particular, ZT (T ) is called the center of T and denoted simply by Z(T ). An L.t.s. T is

called abelian if it satisfies

[xyz] = 0, x, y, z ∈ T.

For an ideal V of an L.t.s. T , define the lower central series (see [6]) for V by

V 0 := V

and

V n+1 := [V nTV ] + [V TV n], n ≥ 0.

Then V is called T -nilpotent if V m = 0 for some m. It is called nilpotent if it is T -nilpotent.

Put

V (0) := V, V (n+1) := [V (n)TV (n)].

Then V is called solvable if there is a positive integer k for which V (k) = 0. T is solvable if

it is a solvable ideal.

The Frattini subsystem F (T ) of an L.t.s. T is the intersection of all maximal subsystems

of T . The Frattini ideal φ(T ) is the largest ideal of T contained in F (T ).

For a subset U of an L.t.s. T , 〈U〉 denotes the subsystem of T generated by U .

2 Two Generated Subsystems of L.t.s.

In this section we give some results about two generated subsystems of L.t.s., which are

generalisations of corresponding results of Lie algebras (see [7]).

Definition 2.1 Let T be an L.t.s. For arbitrary x, y ∈ T , the subsystem 〈x, y〉 generated

by x, y is called a two-generated subsystem. T is called two-generated if it is a two-generated

subsystem of itself.

Lemma 2.1 An L.t.s. T is two-generated if and only if T/φ(T ) is two-generated.
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Proof. Let π be the natural homomorphism from T to T/φ(T ), that is,

π : T → T/φ(T ), x 7→ x̄.

Evidently, T = 〈x, y〉 implies that

T/φ(T ) = 〈x̄, ȳ〉.

Now suppose that

T/φ(T ) = 〈x̄, ȳ〉.

Then

T = 〈x, y〉 + φ(T ).

If T 6= 〈x, y〉, then there exists a maximal subsystem M of T such that 〈x, y〉 ⊆ M. Since

by definition φ(T ) is contained in every maximal subsystem of T , we have

〈x, y〉 + φ(T ) ⊆ M ( T,

which is a contradiction and the proof is completed.

Definition 2.2 Suppose that V is a subspace of an L.t.s. T . The normalizer NT (V ) of

V in T is defined by

NT (V ) = 〈V, N(T, V )〉,

where N(T, V ) is given by

N(T, V ) = {x ∈ T | [xvt], [xtv] ∈ V, t ∈ T, v ∈ V }.

Lemma 2.2 (1) If V is a subspace of T , then N(T, V ) is a subsystem of T ;

(2) If V is a subsystem of T , then NT (V ) = V + N(T, V );

(3) If V is a subsystem of T , then V is an ideal of NT (V );

(4) If V is an ideal of T , then NT (V ) is an ideal of T .

Proof. (1) Notice that by definition [xyz] ∈ V if two of x, y, z belong to V and N(T, V )

respectively. Now for all x, y, z ∈ N(T, V ), v ∈ V , t ∈ T , by the identity (3) we have

[[xyz]vt] = [xy[zvt]] − [z[xyv]t] − [zv[xyt]] ∈ V.

Similarly, [[xyz]tv] ∈ V .

(2) Clearly, we only need to prove that V + N(T, V ) is a subsystem. If all x, y, z belong

to V or N(T, V ), then by assumption and (1), [xyz] ∈ V + N(T, V ). Otherwise, by the

definition of N(T, V ), we also have [xyz] ∈ V + N(T, V ).

(3) Clearly, V ⊆ NT (V ). Then (3) follows from the definition of N(T, V ) and (2).

(4) We only need to prove that N(T, V ) is an ideal of T . By using the identity (3), the

proof is similar to that of (1).

Lemma 2.3 If S is a subsystem of a nilpotent L.t.s. T and S 6= T , then NT (S) 6= S.

Proof. Since T is nilpotent, there is a p such that

T 0 = T ⊇ T 1 ⊇ · · · ⊇ T p = 0.

By assumption, S 6= T , so there is a k such that

T k ( S, T k+1 ( S.
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Now, for all x ∈ T k − S, s ∈ S, t ∈ T , we have

[xst], [xts] ∈ T k+1 ⊆ S,

that is, x ∈ N(T, S) ⊆ NT (S). So NT (S) 6= S. The proof is completed.

Theorem 2.1 Let T be a simple L.t.s. over a field K. Assume that every proper subsys-

tem of T is nilpotent. Then the following hold:

(1) M1 ∩ M2 = 0 for every pair of different maximal subsystem M1 and M2 of T ;

(2) there is no x(6= 0) ∈ T such that R(x, x) is a nilpotent linear transformation on T ;

(3) T is two-generated.

Proof. (1) Let M be a maximal subsystem of T . Assume that there exists a proper

subsystem S of T such that dimM ∩S is maximal. By Lemma 2.3, the nilpotency of M and

S implies that

NM (M ∩ S) 6= M ∩ S, NS(M ∩ S) 6= M ∩ S.

Let U be the subsystem of T generated by NM (M ∩ S) and NS(M ∩ S). Since M ∩ S is

a non-zero ideal of U , it follows from the simplicity of T that U 6= T . Moreover, S ∩ M is

properly contained in U ∩ M , which contradicts our choice of S.

(2) Suppose that 0 6= x ∈ T and R(x, x) is nilpotent. Let H be a maximal subsystem of

T containing x. Let T = T0 + T1 be the fitting decomposition of T relative to H . Since H

is a maximal subsystem of T , we have H = T0. Since R(x, x) acts nilpotently on T1, there

exists 0 6= y ∈ T1 such that [yxx] = 0. Hence y ∈ ZT (x) and ZT (x) is not contained in H .

Take a maximal subsystem M of T containing ZT (x). We get H 6= M and H ∩M ⊇ x 6= 0,

which contradicts (1).

(3) Assume T 6= 〈x, y〉 for every x, y ∈ T . Let M be a maximal subsystem of T . Take

0 6= x ∈ M and y ∈ T − M . There exists a maximal subsystem S of T containing 〈x, y〉.

We have S ∩ M 6= 0, which contradicts (1).

It is known that in group theory, a finite group is solvable if and only if every two elements

generate a solvable subgroup. The same is true for Lie algebra g. In fact, Grunewald et

al. (cf. [7]) have given an explicit two-variable law for a Lie algebra L. They defined a

reasonable sequence {en(x, y)}∞n=1 for x, y ∈ L by

e1 = [x, y],

e′1 = [e1, x], e′′1 = [e1, y], e2 = [e′1, e′′1 ], · · · , (2.1)

e′n = [en, x], e′′n = [en, y], en+1 = [e′n, e′′n], · · · ,

and proved the following:

Theorem 2.2 Let L be a finite dimensional Lie algebra over an infinite field K of char-

acteristic p > 5. Then L is solvable if and only if for some n the identity en ≡ 0 holds in

L.

We can generalize this to L.t.s.
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Definition 2.3 The reasonable sequences {fn(x, y)}∞n=1 and {gn(x, y)}∞n=1 of an L.t.s. T

are defined by

f1 = [xyx], g1 = [xyy],

f2 = [f1g1x], g2 = [f1g1y], · · · , (2.2)

fn+1 = [fngnx], gn+1 = [fngny], · · ·

Theorem 2.3 Let T be a finite dimensional L.t.s. over a field of characteristic zero.

Then T is solvable if and only if for some n the identity fn ≡ 0 (or gn ≡ 0) holds in T . So

T is solvable if and only if every two elements generate a solvable subsystem.

Proof. We only need to prove the first assertion. If T is solvable, then it satisfies an identity

of the form fn ≡ 0 (or gn ≡ 0) since for any x, y ∈ T the value fn ≡ 0 (or gn ≡ 0) belongs to

the corresponding term of the derived series T (n). To prove sufficiency, we use the standard

imbedding. If T is not solvable, then L(T ) = T ⊕ L(T, T ) is not solvable. So Theorem 2.2

tells us that for any n ∈ N, en(x, y) ≡ 0 can not hold. Notice that by definition fn(x, y)

(resp. gn(x, y)) in T is just e′n(x, y) (resp. e′′n) in L(T ), so, both fn ≡ 0 and gn ≡ 0 cannot

hold. The theorem is proved.

Corollary 2.1 Let T be an L.t.s. over a field of characteristic zero and L(T ) be its

standard imbedding. Then every two elements of T generates a solvable subsystem of T if

and only if every two elements of L(T ) generates a solvable subalgebra of L(T ).

Recall that the Engel sequence {vi} on a Lie algebra L is defined by

vi(x, y) = [· · · [[x, y], y] · · · , y]
︸ ︷︷ ︸

i

x, y ∈ L.

Similarly we give the following:

Definition 2.4 Let T be a Lie triple system. The Engel sequence {wi} on T is given by

wi(x, y) = [· · · [[x yy]yy] · · ·yy]
︸ ︷︷ ︸

i

, x, y ∈ T.

For the Engel sequence {wi} of a Lie triple system T , we have the following theorem.

Theorem 2.4 Let T be a Lie triple system, and {wi} the Engel sequence of T . If wk ≡ wl

holds in T for k 6= l, then T is solvable.

Proof. Let L(T ) = T ∔L(T, T ) be the standard imbedding of T and {vi} the Engel sequence

of L(T ). Then it is easy to see that for all x, y ∈ T we have

wi(x, y) = v2i(x, y).

Hence that wk ≡ wl holds in T implies that v2k ≡ v2l holds in L(T ), which means that L(T )

is solvable (see Proposition 3.3 of [7]). Therefore T is solvable. The proof is completed.

We conclude this paper by the following collection of some classes of L.t.s. which behave

like solvable Lie triple systems. For short, we will say that the property P satisfies the

condition
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(∗) if for every L.t.s. T all of its two-generated proper subsystems possess the property

P , then either T itself possesses the property P or T is two-generated.

Then we have

Theorem 2.5 (1) The class of abelian L.t.s. satisfies the condition (∗);

(2) The class of nilpotent L.t.s. satisfies the condition (∗);

(3) The class of solvable L.t.s. satisfies the condition (∗).

Proof. (1) is clear.

(2) By assumption, for all x, y ∈ T , 〈x, y〉 is nilpotent. Thus

Rn(x, x)(y) = 0

for some n (cf. [6]). Hence

Rd(x, x)(y) = 0,

where d is the dimension of the standard imbedding L(T ) of T . Since the above assertion

holds for any y ∈ T , R(x, x) is nilpotent for all x ∈ T . It follows from Engel’s theorem for

Lie triple systems that T is nilpotent.

(3) It follows from Theorem 2.4.
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