Reducing Subspaces of Toeplitz Operators on N_{φ}-type Quotient Modules on the Torus*

Wu Yan ${ }^{1,2}$ and Xu Xian-min ${ }^{2}$
(1. School of Mathematical Sciences, Fudan University, Shanghai, 200433)
(2. Institute of Mathematics, Jiaxing University, Jiaxing, Zhejiang, 314001)

Communicated by Ji You-qing

Abstract

In this paper, we prove that the Toeplitz operator with finite Blaschke product symbol $S_{\psi(z)}$ on N_{φ} has at least m non-trivial minimal reducing subspaces, where m is the dimension of $H^{2}\left(\Gamma_{\omega}\right) \ominus \varphi(\omega) H^{2}\left(\Gamma_{\omega}\right)$. Moreover, the restriction of $S_{\psi(z)}$ on any of these minimal reducing subspaces is unitary equivalent to the Bergman shift M_{z}.

Key words: module, N_{φ}-type quotient module, the analytic Toeplitz operator, reducing subspace, finite Blaschke product
2000 MR subject classification: 47B35, 47A15
Document code: A
Article ID: 1674-5647(2009)01-0019-11

1 Introduction

Let D denote the open unit disk in the complex plane \mathbb{C} and T^{2} be cartesian product of two copies of T, where T is the unit circle. It is well known that T^{2}, as usually is endowed with the rotation invariant Lebesgue measure, is the distinguished boundary of D^{2}. Let $d m(z)$ denote the normalized Lebesgue measure on T and $\mathrm{d} m(z) \mathrm{d} m(\omega)$ be the product measure on the torus T^{2}. The Bergman space is denoted by $L_{a}^{2}(D)$ and Bergman shift is denoted by M_{z}. Let $H^{2}\left(\Gamma^{2}\right)$ be the Hardy space on the two dimensional torus T^{2}. We denote by z and ω the coordinate functions. Shift operators T_{z} and T_{ω} on $H^{2}\left(\Gamma^{2}\right)$ are defined by $T_{z} f=z f$ and $T_{\omega} f=\omega f$ for $f \in H^{2}\left(\Gamma^{2}\right)$. Clearly, both T_{z} and T_{ω} have infinite multiplicity. A closed subspace M of $H^{2}\left(\Gamma^{2}\right)$ is called a submodule (over the algebra $H^{\infty}\left(D^{2}\right)$), if it is invariant under multiplications by functions $H^{\infty}\left(D^{2}\right)$. Equivalently, M is a submodule if it is invariant for both T_{z} and T_{ω}. The quotient space $N: H^{2}\left(\Gamma^{2}\right) \ominus M$ is called a quotient module. Clearly, $T_{z}^{*} N \subset N$ and $T_{\omega}^{*} N \subset N$. In the study here, it is necessary to distinguish the classical Hardy space in the variable z and that in the variable ω, for which we denote

[^0]by $H^{2}\left(\Gamma_{z}\right)$ and $H^{2}\left(\Gamma_{\omega}\right)$, respectively. In this paper, we look at submodules of the form [z $\varphi(\omega)]$, where φ is an inner function in $H^{2}\left(\Gamma_{\omega}\right)$ and $[z-\varphi(\omega)]$ is the closure of $(z-\varphi) H^{\infty}\left(\Gamma^{2}\right)$ in $H^{2}\left(\Gamma^{2}\right)$. For simplicity we denote $[z-\varphi(\omega)]$ by $M_{\varphi} . N_{\varphi}=H^{2}\left(\Gamma^{2}\right) \ominus M_{\varphi}$ denote N_{φ}-type quotient modules on the torus. For a function $\psi \in H^{\infty}\left(D^{2}\right)$, we define the Toeplitz operator S_{ψ} on N_{φ} with symbol ψ by
$$
S_{\psi}(f)=P_{N_{\varphi}}(\psi f), \quad \forall f \in N_{\varphi},
$$
where $P_{N_{\varphi}}$ is a projection from $H^{2}\left(\Gamma^{2}\right)$ to N_{φ}.
The quotient module N_{φ} has a very rich structure. In deed, when φ is inner, N_{φ} can be identified with the tensor product of two well-known classical spaces, namely the quotient space $H^{2}(\Gamma) \ominus \varphi H^{2}(\Gamma)$ and the Bergman space $L_{a}^{2}(D)$. Clearly, when $\varphi(\omega)=\omega, N_{\varphi}$ is unitary equivalent to $L_{a}^{2}(D)$. In fact, it is shown in [1] that $\left\{T_{z}, T_{\omega}, H^{2}\left(\Gamma^{2}\right)\right\}$ is the minimal super-isometrical dilation of M_{z}. Then the reducible problem of Toeplitz operator with finite Blaschke product on the Bergman space is turned to the reducible problem of Toeplitz operator with finite Blaschke product on N_{ω}. It is obtained in [1] that Toeplitz operator with finite Blaschke product $S_{\psi(z)}$ on N_{ω} has at least a reducing subspace M, moreover, $\left.S_{\psi}\right|_{M} \cong M_{z}$. In this paper, we prove that when φ is a non-constant inner function, the conclusion like that in [1] is also true.

2 Preliminaries

In order to prove the main theorem, we need the following lemma.
Lemma 2.1 ${ }^{[2]}$ Let $\varphi(\omega)$ be a one variable non-constant inner function and $\left\{\lambda_{k}(\omega): k=\right.$ $1,2, \cdots, m\}$ be an orthonormal basis of $H^{2}\left(\Gamma_{\omega}\right) \ominus \varphi(\omega) H^{2}\left(\Gamma_{\omega}\right)$, and

$$
e_{j}(z, \omega)=\frac{\omega^{j}+\omega^{j-1} z+\cdots+z^{j}}{\sqrt{j+1}} \quad(j=0,1, \cdots) .
$$

Let

$$
E_{k, j}=\lambda_{k}(\omega) e_{j}(z, \varphi(\omega))
$$

Then $\left\{E_{k, j}: k=1,2, \cdots, m ; j=0,1, \cdots\right\}$ is an orthonormal basis for N_{φ}.
Lemma 2.2 ${ }^{[2]}$ There exists a unitary operator U,

$$
\begin{aligned}
& U: N_{\varphi} \longrightarrow\left(H^{2}\left(\Gamma_{\omega}\right) \ominus \varphi(\omega) H^{2}\left(\Gamma_{\omega}\right)\right) \otimes L_{a}^{2}(D), \\
& E_{k, j} \longmapsto \lambda_{k}(\omega) \sqrt{j+1} \xi^{j}
\end{aligned}
$$

such that

$$
U S_{z}=\left(I \otimes M_{z}\right) U
$$

where I is an identity map on $H^{2}\left(\Gamma_{\omega}\right) \ominus \varphi(\omega) H^{2}\left(\Gamma_{\omega}\right)$.
Lemma 2.3 ${ }^{[1]}$ Suppose that

$$
\varphi(\omega)=\omega, \quad \psi(z)=z \prod_{l=1}^{N-1} \frac{z-\alpha_{l}}{1-\bar{\alpha}_{l} z} \quad\left(\left|\alpha_{l}\right|>0, \alpha_{l} \neq \alpha_{k}(\forall l \neq k), 1 \leq l, k \leq N-1\right)
$$

Then there exists a unique unit vector e such that

$$
\begin{gather*}
e \in \operatorname{ker} T_{\psi(z)}^{*} \cap \operatorname{ker} T_{\psi(\omega)}^{*} \cap N_{\varphi}=\operatorname{ker} S_{\psi(z)}^{*} \cap \operatorname{ker} S_{\psi(\omega)}^{*} \tag{2.1}\\
(\psi(z)+\psi(\omega)) e \in N_{\varphi} \tag{2.2}
\end{gather*}
$$

Lemma 2.4 ${ }^{[3]}$ Suppose that φ is the inner function. Then the boundary value of φ is the measurable transformation on $T, m \varphi^{-1}$ is the measure on T. And the Radon-Nikodym derivative of $m \varphi^{-1}$ is equal to poisson's kernel, i.e.,

$$
\frac{\mathrm{d} m\left(\varphi^{-1}(t)\right)}{\mathrm{d} m(t)}=p_{a}(t)=\operatorname{Re}\left(\frac{t+a}{t-a}\right) \quad\left(a=\int_{0}^{2 \pi} \varphi\left(e^{i \theta}\right) \mathrm{d} m(\theta)\right)
$$

Lemma 2.5 Suppose that $\lambda \in D$ and $\eta_{\lambda}=\frac{\lambda-z}{1-\bar{\lambda} z}$. Then the Toeplitz operator $S_{\eta_{\lambda}}$ on N_{φ} is unitary equivalent to S_{z}, i.e., $S_{\eta_{\lambda}} \cong S_{z}$.

Proof. There exists a unitary transformation (see [2]),

$$
W_{1}: L_{a}^{2}(D) \longrightarrow L_{a}^{2}(D),
$$

$$
W_{1}(h)=\left(1-|\lambda|^{2}\right) h \circ \eta_{\lambda} \cdot \widetilde{k}_{\lambda} \quad\left(\widetilde{k}_{\lambda}=\frac{1}{(1-\bar{\lambda} z)^{2}}\right)
$$

such that

$$
W_{1} M_{\eta_{\lambda}} W_{1}^{*}=M_{z} .
$$

Let

$$
W_{2}=I \otimes W_{1}
$$

Then it is clear that W_{2} is the unitary transformation on $\left(H^{2}\left(\Gamma_{\omega}\right) \ominus \varphi(\omega) H^{2}\left(\Gamma_{\omega}\right)\right) \otimes L_{a}^{2}(D)$. What's more,

$$
\begin{aligned}
W_{2}\left(I \otimes M_{\eta_{\lambda}}\right) & =\left(I \otimes W_{1}\right)\left(I \otimes M_{\eta_{\lambda}}\right) \\
& =I \otimes\left(W_{1} M_{\eta_{\lambda}}\right) \\
& =I \otimes\left(M_{z} W_{1}\right) \\
& =\left(I \otimes M_{z}\right)\left(I \otimes W_{1}\right) \\
& =\left(I \otimes M_{z}\right) W_{2} .
\end{aligned}
$$

Thus

$$
I \otimes M_{\eta_{\lambda}} \cong I \otimes M_{z}
$$

By Lemma 2.2, there exists a unitary operator U such that

$$
U S_{z}=\left(I \otimes M_{z}\right) U
$$

By the function calculus, it is well known that

$$
\begin{aligned}
U S_{\eta_{\lambda}} U^{*} & =U \eta_{\lambda}\left(S_{z}\right) U^{*} \\
& =\eta_{\lambda}\left(U S_{z} U^{*}\right) \\
& =\eta_{\lambda}\left(I \otimes M_{z}\right) \\
& =I \otimes M_{\eta_{\lambda}} .
\end{aligned}
$$

Let

$$
W_{3}=U^{*} W_{2} U
$$

Then

$$
\begin{aligned}
W_{3} S_{\eta_{\lambda}} W_{3}^{*} & =U^{*} W_{2} U S_{\eta_{\lambda}} U^{*} W_{2}^{*} U \\
& =U^{*} W_{2}\left(I \otimes M_{\eta_{\lambda}}\right) W_{2}^{*} U \\
& =U^{*}\left(I \otimes M_{z}\right) U \\
& =S_{z} .
\end{aligned}
$$

Therefore

$$
S_{\eta_{\lambda}} \cong S_{z}
$$

The proof is completed.
Lemma 2.6 Suppose that ψ is a finite Blaschke product and $\psi_{\lambda}=\psi \circ \eta_{\lambda}$. If $S_{\psi_{\lambda}}$ has at least a non-trivial reducing subspace on which the restriction of $S_{\psi_{\lambda}}$ is unitary equivalent to the Bergman shift, then S_{ψ} also has at least a non-trivial reducing subspace on which the restriction of S_{ψ} is unitary equivalent to the Bergman shift.

Proof. Let M be the non-trivial reducing subspace of $S_{\psi_{\lambda}}$ and there exists a unitary transformation $W: M \longrightarrow L_{a}^{2}(D)$ such that

$$
\left.W S_{\psi_{\lambda}}\right|_{M}=M_{z} W .
$$

Because

$$
\eta_{\lambda} \circ \eta_{\lambda}(\omega)=\omega
$$

we have

$$
\psi=\psi_{\lambda} \circ \eta_{\lambda}
$$

By Lemma 2.5,

$$
W_{3} S_{\eta_{\lambda}} W_{3}^{*}=S_{z}
$$

By the function calculus,

$$
\begin{aligned}
W_{3} S_{\psi} W_{3}^{*} & =W_{3} S_{\psi_{\lambda}} \circ \eta_{\lambda} W_{3}^{*} \\
& =W_{3} \psi_{\lambda}\left(S_{\eta_{\lambda}}\right) W_{3}^{*} \\
& =\psi_{\lambda}\left(W_{3} S_{\eta_{\lambda}} W_{3}^{*}\right) \\
& =\psi_{\lambda}\left(S_{z}\right) \\
& =S_{\psi_{\lambda}},
\end{aligned}
$$

i.e.,

$$
S_{\psi} \cong S_{\psi_{\lambda}}
$$

Let

$$
M_{1}=W_{3}^{*} M
$$

Then M_{1} is the non-trivial reducing subspace of S_{ψ}. Let

$$
W_{4}=W W_{3}
$$

It is easy to prove that

$$
\left.W_{4} S_{\psi}\right|_{M_{1}}=M_{z} W_{4},
$$

i.e.,

$$
\left.S_{\psi}\right|_{M_{1}} \cong M_{z}
$$

The proof is completed.
Lemma 2.7 ${ }^{[1]}$ Suppose that $\psi(z)$ is the finite Blaschke product having zeros with multiplicity greater than one and $\eta_{\lambda}=\frac{\lambda-z}{1-\bar{\lambda} z}$. Let $\psi_{\lambda}(z)=\left(\eta_{\lambda} \circ \psi\right)(z)$. Then there exists a $\lambda \in D$ such that $\psi_{\lambda}(z)$ has distinct zeros.

3 Principal Results and Proofs

In this section we give our main results.
Theorem 3.1 Suppose that $\varphi(\omega)$ be a one variable non-constant inner function, and

$$
\psi(z)=z \prod_{l=1}^{N-1} \frac{z-\alpha_{l}}{1-\bar{\alpha}_{l} z} \quad\left(\left|\alpha_{l}\right|>0, \alpha_{l} \neq \alpha_{k}(\forall l \neq k), 1 \leq l, k \leq N-1\right)
$$

Then there exists a unique unit vector e^{\prime} such that

$$
\begin{gather*}
e^{\prime} \in \operatorname{ker} T_{\psi(z)}^{*} \cap \operatorname{ker} T_{\psi(\varphi(\omega))}^{*} \cap N_{\varphi}=\operatorname{ker} S_{\psi(z)}^{*} \cap \operatorname{ker} S_{\psi(\varphi(\omega))}^{*} \tag{3.1}\\
(\psi(z)+\psi(\varphi(\omega))) e^{\prime} \in N_{\varphi} \tag{3.2}
\end{gather*}
$$

Proof. Picking the unit vector e in Lemma 2.3, then we have

$$
e \in H^{2}\left(T^{2}\right) \ominus[z-\omega]=N_{\omega}
$$

By Lemma 2.1, $\left\{e_{j}(z, \omega): j \geq 0\right\}$ is an orthonormal basis for $H^{2}\left(T^{2}\right) \ominus[z-\omega]$. Then there exsits a sequence of constant numbers $\left\{k_{j}\right\}$, such that

$$
e=\sum_{j=0}^{\infty} k_{j} e_{j}(z, \omega)
$$

Let

$$
e^{\prime}(z, \omega)=\lambda_{1}(\omega) e(z, \varphi(\omega))
$$

Then obviously

$$
\begin{equation*}
e^{\prime}(z, \omega)=\sum_{j=0}^{\infty} k_{j}\left(\lambda_{1}(\omega) e_{j}(z, \varphi(\omega))\right)=\sum_{j=0}^{\infty} k_{j} E_{1, j} \in N_{\varphi} \tag{3.3}
\end{equation*}
$$

and

$$
\left\|e^{\prime}\right\|^{2}=\sum_{j=0}^{\infty}\left|k_{j}\right|^{2}=\|e\|^{2}=1 .
$$

Because

$$
e \in \operatorname{ker} T_{\psi(z)}^{*} \Longleftrightarrow T_{\psi(z)}^{*} e(z, \omega)=0
$$

i.e.,

$$
\int_{T} \int_{T}\left|T_{\psi(z)}^{*} e(z, \omega)\right|^{2} \mathrm{~d} m(z) \mathrm{d} m(\omega)=0
$$

then

$$
\begin{aligned}
& \left\|T_{\psi(z)}^{*} e(z, \varphi(\omega))\right\|^{2} \\
= & \left.\int_{T} \int_{T}\left|T_{\psi(z)}^{*} e(z, \varphi(\omega))\right|^{2} \mathrm{~d} m(z) \mathrm{d} m(\omega) \quad \text { (let } t=\varphi(\omega)\right) \\
= & \int_{T} \int_{T}\left|T_{\psi(z)}^{*} e(z, t)\right|^{2} \frac{\mathrm{~d} m\left(\varphi^{-1}(t)\right)}{\mathrm{d} m(t)} \mathrm{d} m(z) \mathrm{d} m(t) .
\end{aligned}
$$

Let

$$
a=\int_{0}^{2 \pi} \varphi\left(e^{i \theta}\right) \mathrm{d} m(\theta)
$$

Then by Lemma 2.4,

$$
\begin{aligned}
\left|\frac{\mathrm{d} m\left(\varphi^{-1}(t)\right)}{\mathrm{d} m(t)}\right| & =\left|p_{a}(t)\right| \\
& =\left|\operatorname{Re}\left(\frac{t+a}{t-a}\right)\right| \\
& \leq\left|\frac{t+a}{t-a}\right| \\
& \leq \frac{1+|a|}{1-|a|} \\
& \leq \int_{T} \int_{T}\left|T_{\psi(z)}^{*} e(z, t)\right|^{2} \frac{1+|a|}{1-|a|} \mathrm{d} m(z) \mathrm{d} m(t) \\
& \leq \frac{1+|a|}{1-|a|} \int_{T} \int_{T}\left|T_{\psi(z)}^{*} e(z, t)\right|^{2} \mathrm{~d} m(z) \mathrm{d} m(t) \\
& =0
\end{aligned}
$$

Thus

$$
T_{\psi(z)}^{*} e(z, \varphi(\omega))=0 .
$$

Then

$$
\begin{equation*}
T_{\psi(z)}^{*} e^{\prime}(z, \omega)=T_{\psi(z)}^{*}\left(\lambda_{1}(\omega) e(z, \varphi(\omega))\right)=\lambda_{1}(\omega) T_{\psi(z)}^{*} e(z, \varphi(\omega))=0 \tag{3.4}
\end{equation*}
$$

By (3.3) and (3.4),

$$
e^{\prime} \in \operatorname{ker} T_{\psi(z)}^{*} \cap N_{\varphi}
$$

We have

$$
\left.T_{\psi(z)}^{*}\right|_{N_{\varphi}}=\left.T_{\psi(\varphi(\omega))}^{*}\right|_{N_{\varphi}} .
$$

In fact, because $\psi \in A(D)$, it is easy to prove that

$$
\psi(z)-\psi(\varphi(\omega)) \in[z-\varphi(\omega)]=M_{\varphi},
$$

and it is well known that $\psi \in H^{\infty}\left(D^{2}\right)$. Then for any $g \in H^{2}\left(T^{2}\right),(\psi(z)-\psi(\varphi(\omega))) g \in M_{\varphi}$. Therefore,

$$
\left\langle\left(T_{\psi(z)}^{*}-T_{\psi(\varphi(\omega))}^{*}\right) f, g\right\rangle=\langle f,(\psi(z)-\psi(\varphi(\omega))) g\rangle=0, \quad \forall f, g \in N_{\varphi}
$$

i.e.,

$$
\left.T_{\psi(z)}^{*}\right|_{N_{\varphi}}=\left.T_{\psi(\varphi(\omega))}^{*}\right|_{N_{\varphi}} .
$$

Then

$$
e^{\prime} \in \operatorname{ker} T_{\psi(z)}^{*} \cap \operatorname{ker} T_{\psi(\varphi(\omega))}^{*} \cap N_{\varphi}
$$

Let

$$
\psi_{0}(z)=\prod_{l=1}^{N-1} \frac{z-\alpha_{l}}{1-\overline{\alpha_{l}} z}
$$

By the fact that

$$
T_{z}^{*} e^{\prime}=T_{\varphi(\omega)}^{*} e^{\prime}
$$

moreover the conclusion (3.2) is equivalent to the following:

$$
\begin{equation*}
\left[\psi_{0}(z)-\psi_{0}(\varphi(\omega))\right] e^{\prime}=[\psi(z)-\psi(\varphi(\omega))] T_{z}^{*} e^{\prime} . \tag{3.5}
\end{equation*}
$$

In fact,

$$
\begin{aligned}
& (\psi(z)+\psi(\varphi(\omega))) e^{\prime} \in N_{\varphi} \\
\Longleftrightarrow & \left(T_{z}^{*}-T_{\varphi(\omega)}^{*}\right)\left[(\psi(z)+\psi(\varphi(\omega))) e^{\prime}\right]=0 \\
\Longleftrightarrow & {\left[\psi_{0}(z)-\psi_{0}(\varphi(\omega))\right] e^{\prime}=[\psi(z)-\psi(\varphi(\omega))] T_{z}^{*} e^{\prime} . }
\end{aligned}
$$

Similarly, by (2.2), we have

$$
\left[\psi_{0}(z)-\psi_{0}(\omega)\right] e(z, \omega)=[\psi(z)-\psi(\omega)] T_{z}^{*} e(z, \omega)
$$

So

$$
\begin{aligned}
& \left\|\left[\psi_{0}(z)-\psi_{0}(\omega)\right] e(z, \omega)-[\psi(z)-\psi(\omega)] T_{z}^{*} e(z, \omega)\right\|^{2} \\
= & \int_{T} \int_{T}\left|\left[\psi_{0}(z)-\psi_{0}(\omega)\right] e(z, \omega)-[\psi(z)-\psi(\omega)] T_{z}^{*} e(z, \omega)\right|^{2} \mathrm{~d} m(z) \mathrm{d} m(\omega) \\
= & 0
\end{aligned}
$$

Then

$$
\begin{aligned}
& \left\|\left[\psi_{0}(z)-\psi_{0}(\varphi(\omega))\right] e(z, \varphi(\omega))-[\psi(z)-\psi(\varphi(\omega))] T_{z}^{*} e(z, \varphi(\omega))\right\|^{2} \\
= & \int_{T} \int_{T}\left|\left[\psi_{0}(z)-\psi_{0}(\varphi(\omega))\right] e(z, \varphi(\omega))-[\psi(z)-\psi(\varphi(\omega))] T_{z}^{*} e(z, \varphi(\omega))\right|^{2} \mathrm{~d} m(z) \mathrm{d} m(\omega) \\
& (\text { let } t=\varphi(\omega)) \\
= & \int_{T} \int_{T}\left|\left[\psi_{0}(z)-\psi_{0}(t)\right] e(z, t)-[\psi(z)-\psi(t)] T_{z}^{*} e(z, t)\right|^{2} \frac{\mathrm{~d} m\left(\varphi^{-1}(t)\right)}{\mathrm{d} m(t)} \mathrm{d} m(z) \mathrm{d} m(t) \\
= & \int_{T} \int_{T}\left|\left[\psi_{0}(z)-\psi_{0}(t)\right] e(z, t)-[\psi(z)-\psi(t)] T_{z}^{*} e(z, t)\right|^{2} p_{a}(t) \mathrm{d} m(z) \mathrm{d} m(t) \\
\leq & \frac{1+|a|}{1-|a|} \int_{T} \int_{T}\left|\left[\psi_{0}(z)-\psi_{0}(t)\right] e(z, t)-[\psi(z)-\psi(t)] T_{z}^{*} e(z, t)\right|^{2} \mathrm{~d} m(z) \mathrm{d} m(t) \\
= & 0
\end{aligned}
$$

Therefore,

$$
\left[\psi_{0}(z)-\psi_{0}(\varphi(\omega))\right] e(z, \varphi(\omega))=[\psi(z)-\psi(\varphi(\omega))] T_{z}^{*} e(z, \varphi(\omega))
$$

Multiplied by $\lambda_{1}(\omega)$, we can obtain the conclusion (3.5). The proof is completed.
Remark It is different from Lemma 2.3, e^{\prime} in the theorem is not unique. We can let

$$
e^{\prime}=\lambda_{k}(\omega) e(z, \varphi(\omega)),
$$

where $\lambda_{k}(\omega)$ is any element of the orthonormal basis of $H^{2}\left(\Gamma_{\omega}\right) \ominus \varphi(\omega) H^{2}\left(\Gamma_{\omega}\right)$ in Lemma 2.1.

Theorem 3.2 Suppose that $\varphi(\omega)$ be a one variable non-constant inner function, and

$$
\psi(z)=z \prod_{l=1}^{N-1} \frac{z-\alpha_{l}}{1-\overline{\alpha_{l} z}} \quad\left(\left|\alpha_{l}\right|>0, \alpha_{l} \neq \alpha_{k}(\forall l \neq k), 1 \leq l, k \leq N-1\right)
$$

Pick e^{\prime} in Theorem 3.1. Then

$$
M_{e^{\prime}}=\overline{\operatorname{span}}\left\{p_{n}^{\prime}(\psi) e^{\prime}: n \geq 0\right\}
$$

where

$$
p_{n}^{\prime}(\psi)=\psi^{n}(z)+\psi^{n-1}(z) \psi(\varphi(\omega))+\cdots+\psi(z) \psi^{n-1}(\varphi(\omega))+\psi^{n}(\varphi(\omega))
$$

is a non-trivial minimal reducing subspace of $S_{\psi(z)}$. Moreover $\left.S_{\psi(z)}\right|_{M_{e^{\prime}}}$ is unitary equivalent to Bergman shift M_{z}.

Proof.

$$
\begin{aligned}
& T_{z}^{*} p_{n}^{\prime}(\psi) e^{\prime}-T_{\varphi(\omega)}^{*} p_{n}^{\prime}(\psi) e^{\prime} \\
= & T_{z}^{*}\left[\psi^{n}(z)+\psi^{n-1}(z) \psi(\varphi(\omega))+\cdots+\psi(z) \psi^{n-1}(\varphi(\omega))+\psi^{n}(\varphi(\omega))\right] e^{\prime} \\
& \quad-T_{\varphi(\omega)}^{*}\left[\psi^{n}(z)+\psi^{n-1}(z) \psi(\varphi(\omega))+\cdots+\psi(z) \psi^{n-1}(\varphi(\omega))+\psi^{n}(\varphi(\omega))\right] e^{\prime} \\
= & {\left[\psi_{0}(z) \psi^{n-1}(z) e^{\prime}+\psi_{0}(z) \psi^{n-2}(z) \psi(\varphi(\omega)) e^{\prime}+\cdots+\psi_{0}(z) \psi^{n-1}(\varphi(\omega)) e^{\prime}+\psi^{n}(\varphi(\omega)) T_{z}^{*} e^{\prime}\right] } \\
& \quad-\left[\psi^{n}(z) T_{\varphi(\omega)}^{*} e^{\prime}+\psi^{n-1}(z) \psi_{0}(\varphi(\omega)) e^{\prime}+\cdots\right. \\
& \left.\quad+\psi(z) \psi_{0}(\varphi(\omega)) \psi^{n-2}(\varphi(\omega)) e^{\prime}+\psi_{0}(\varphi(\omega)) \psi^{n-1}(\varphi(\omega)) e^{\prime}\right] \\
= & {\left[\psi_{0}(z) \psi^{n-1}(z) e^{\prime}+\psi_{0}(z) \psi^{n-2}(z) \psi(\varphi(\omega)) e^{\prime}+\cdots+\psi_{0}(z) \psi^{n-1}(\varphi(\omega)) e^{\prime}+\psi^{n}(\varphi(\omega)) T_{z}^{*} e^{\prime}\right] } \\
& \quad-\left[\psi^{n}(z) T_{z}^{*} e^{\prime}+\psi^{n-1}(z) \psi_{0}(\varphi(\omega)) e^{\prime}+\cdots\right. \\
& \left.\quad+\psi(z) \psi_{0}(\varphi(\omega)) \psi^{n-2}(\varphi(\omega)) e^{\prime}+\psi_{0}(\varphi(\omega)) \psi^{n-1}(\varphi(\omega)) e^{\prime}\right] \\
= & p_{n-1}^{\prime}(\psi)\left(\psi_{0}(z)-\psi_{0}(\varphi(\omega))\right) e^{\prime}+\left(\psi^{n}(\varphi(\omega))-\psi^{n}(z)\right) T_{z}^{*} e^{\prime} \\
& (\operatorname{byy}(3.5)) \\
= & p_{n-1}^{\prime}(\psi)(\psi(z)-\psi(\varphi(\omega))) T_{z}^{*} e^{\prime}+\left(\psi^{n}(\varphi(\omega))-\psi^{n}(z)\right) T_{z}^{*} e^{\prime} \\
= & \left(\psi^{n}(z)-\psi^{n}(\varphi(\omega))\right) T_{z}^{*} e^{\prime}+\left(\psi^{n}(\varphi(\omega))-\psi^{n}(z)\right) T_{z}^{*} e^{\prime} \\
= & 0 .
\end{aligned}
$$

We have

$$
\left(T_{z}^{*}-T_{\varphi(\omega)}^{*}\right) p_{n}^{\prime}(\psi) e^{\prime}=0
$$

So

$$
p_{n}^{\prime}(\psi) e^{\prime} \in N_{\varphi} .
$$

Also,

$$
\begin{aligned}
& S_{\psi(z)}\left(p_{n}^{\prime}(\psi) e^{\prime}\right) \\
= & q \psi(z) p_{n}^{\prime}(\psi) e^{\prime} \\
= & q \psi(z)\left[\psi^{n}(z)+\psi^{n-1}(z) \psi(\varphi(\omega))+\cdots+\psi(z) \psi^{n-1}(\varphi(\omega))+\psi^{n}(\varphi(\omega))\right] e^{\prime} \\
= & q\left[\psi^{n+1}(z)+\psi^{n}(z) \psi(\varphi(\omega))+\cdots+\psi^{2}(z) \psi^{n-1}(\varphi(\omega))+\psi(z) \psi^{n}(\varphi(\omega))\right] e^{\prime}
\end{aligned}
$$

$$
\begin{align*}
& =q\left\{\frac{n+1}{n+2} p_{n+1}^{\prime}(\psi) e^{\prime}+\frac{1}{n+2}\left[\left(\psi^{n+1}(z)-\psi^{n+1}(\varphi(\omega))+\left(\psi^{n}(z)-\psi^{n}(\varphi(\omega)) \psi(\varphi(\omega))+\cdots\right.\right.\right.\right. \\
& \left.\quad \quad \quad+\left(\psi(z)-\psi(\varphi(\omega)) \psi^{n}(\varphi(\omega))\right] e^{\prime}\right\} \\
& = \tag{3.6}\\
& \frac{n+1}{n+2} p_{n+1}^{\prime}(\psi) e^{\prime} \in M_{e^{\prime}}
\end{align*}
$$

and

$$
\begin{aligned}
& S_{\psi(z)}^{*}\left(p_{n}^{\prime}(\psi) e^{\prime}\right) \\
= & q \overline{\psi(z)} p_{n}^{\prime}(\psi) e^{\prime} \\
= & q \overline{\psi(z)}\left[\psi^{n}(z)+\psi^{n-1}(z) \psi(\varphi(\omega))+\cdots+\psi(z) \psi^{n-1}(\varphi(\omega))+\psi^{n}(\varphi(\omega))\right] e^{\prime} \\
= & q\left[\psi^{n-1}(z)+\psi^{n-2}(z) \psi(\varphi(\omega))+\cdots+\psi^{n-1}(\varphi(\omega))\right] e^{\prime}+\psi^{n}(\varphi(\omega)) T_{\psi(z)}^{*} e^{\prime}
\end{aligned}
$$

$$
\text { (by }(3.1))
$$

$$
=q\left[\psi^{n-1}(z)+\psi^{n-2}(z) \psi(\varphi(\omega))+\cdots+\psi^{n-1}(\varphi(\omega))\right] e^{\prime}
$$

$$
\begin{equation*}
=p_{n-1}^{\prime}(\psi) e^{\prime} \in M_{e^{\prime}} \tag{3.7}
\end{equation*}
$$

Hence by (3.6) and (3.7), $M_{e^{\prime}}$ is the non-trivial reducing subspace of $S_{\psi(z)}$. Because

$$
|\psi(z)|=|\psi(\varphi(\omega))|=1 \quad \text { a.e. on } T^{2}
$$

$$
\begin{aligned}
& \text { then } \\
& p_{n}^{\prime}(\psi) \overline{p_{m}^{\prime}(\psi)}=\left\{\begin{array}{ll}
\sum_{k+l=n-m,-n \leq k, l \leq n} c_{k, l} \psi^{k}(z) \psi^{l}(\varphi(\omega)), & \text { if } m>n ; \\
\sum_{-n \leq k \leq n, k \neq 0} c_{k} \psi^{k}(z) \psi^{-k}(\varphi(\omega))+(n+1), & \text { if } m=n
\end{array} \quad \text { a.e. on } T^{2} .\right.
\end{aligned}
$$

Since $e^{\prime} \in \operatorname{ker} T_{\psi(z)}^{*} \cap \operatorname{ker} T_{\psi(\varphi(\omega))}^{*} \cap N_{\varphi}$, it is easy to check

$$
\left\langle p_{n}^{\prime}(\psi) e^{\prime}, p_{m}^{\prime}(\psi) e^{\prime}\right\rangle= \begin{cases}0, & \text { if } m \neq n \\ n+1, & \text { if } m=n\end{cases}
$$

Therefore, $\left\{\frac{p_{n}^{\prime}(\psi) e^{\prime}}{\sqrt{n+1}}: n=0,1, \cdots\right\}$ is an orthonormal basis for $M_{e^{\prime}}$. By (3.6) we can define a unitary transformation

$$
\begin{gathered}
W_{1}: M_{e^{\prime}} \rightarrow L_{a}^{2}(D) \\
\frac{p_{n}^{\prime}(\psi) e^{\prime}}{\sqrt{n+1}} \mapsto \sqrt{n+1} z^{n}
\end{gathered}
$$

such that

$$
\left.W_{1} S_{\psi(z)}\right|_{M_{e^{\prime}}}=M_{z} W_{1}
$$

Hence

$$
\left.S_{\psi(z)}\right|_{M_{e^{\prime}}} \cong M_{z}
$$

The proof is completed.
Corollary 3.1 Suppose that $\varphi(\omega)$ be a one variable non-constant inner function, and

$$
\psi(z)=z \prod_{l=1}^{N-1} \frac{z-\alpha_{l}}{1-\overline{\alpha_{l}} z} \quad\left(\left|\alpha_{l}\right|>0, \alpha_{l} \neq \alpha_{k}(\forall l \neq k), 1 \leq l, k \leq N-1\right)
$$

Then the Toeplitz operator $S_{\psi(z)}$ has at least m non-trivial minimal reducing subspaces ($m=$ $\operatorname{dim}\left(H^{2}\left(\Gamma_{\omega}\right) \ominus \varphi(\omega) H^{2}\left(\Gamma_{\omega}\right)\right)$ and m may be $\left.+\infty\right)$. Moreover, the restriction of $S_{\psi(z)}$ on any of these minimal reducing subspaces is unitary equivalent to the Bergman shift M_{z}.

Theorem 3.3 Suppose that $\psi(z)$ is a common finite Blaschke product. Then $S_{\psi(z)}$ has at least a non-trivial minimal reducing subspace on which the restriction of $S_{\psi(z)}$ is unitary equivalent to the Bergman shift.

Proof. Suppose that $\psi(z)$ is a finite Blaschke product of order N. If $\psi(z)$ is the finite Blaschke product having zero with multiplicity greater than one, then, by Lemma 2.7, there exists a $\lambda_{0} \in D$ such that $\psi_{\lambda_{0}}(z)$ has distinct zeros, where

$$
\psi_{\lambda_{0}}(z)=\left(\eta_{\lambda_{0}} \circ \psi\right)(z), \quad \eta_{\lambda_{0}}(z)=\frac{\lambda_{0}-z}{1-\overline{\lambda_{0}} z}
$$

If $\psi_{\lambda_{0}}(0) \neq 0$, let

$$
\psi_{\lambda_{1}}(z)=\left(\psi_{\lambda_{0}} \circ \eta_{\lambda_{1}}\right)(z) .
$$

Suppose that λ_{1} satisfies the condition

$$
\psi_{\lambda_{0}}\left(\lambda_{1}\right)=0
$$

Then

$$
\psi_{\lambda_{1}}(0)=\psi_{\lambda_{0}}\left(\eta_{\lambda_{1}}(0)\right)=\psi_{\lambda_{0}}\left(\lambda_{1}\right)=0
$$

Hence $\psi_{\lambda_{1}}(z)$ is the case in Theorem 3.2. Therefore, $S_{\psi_{\lambda_{1}}}(z)$ has at least a reducing subspace on which the restriction of $S_{\psi_{\lambda_{1}}}(z)$ is unitary equivalent to the Bergman shift. By Lemma 2.6, $S_{\psi_{\lambda_{0}}}(z)$ also has at least a reducing subspace, denoted by M and

$$
\left.W_{1} S_{\psi_{\lambda_{0}}}\right|_{M}=M_{z} W_{1} .
$$

By $\eta_{\lambda} \circ \eta_{\lambda}(\omega)=\omega$ and function calculus, one has

$$
S_{\psi(z)}=S_{\eta_{\lambda_{0}} \circ \psi_{\lambda_{0}}(z)}=\eta_{\lambda_{0}}\left(S_{\psi_{\lambda_{0}}(z)}\right)=\frac{\lambda_{0}-S_{\psi_{\lambda_{0}}(z)}}{1-\bar{\lambda}_{0} S_{\psi_{\lambda_{0}}}(z)}
$$

So M is the reducing subspace of $S_{\psi(z)}$. We have

$$
\begin{aligned}
W_{1} S_{\psi(z)} W_{1}^{*} & =W_{1} S_{\eta_{\lambda_{0}} \circ \psi_{\lambda_{0}}(z)} W_{1}^{*} \\
& =W_{1} \eta_{\lambda_{0}}\left(S_{\psi_{\lambda_{0}}}\right) W_{1}^{*} \\
& =\eta_{\lambda_{0}}\left(W_{1} S_{\psi_{\lambda_{0}}} W_{1}^{*}\right) \\
& =\eta_{\lambda_{0}}\left(M_{z}\right) \\
& =M_{\eta_{\lambda_{0}}} .
\end{aligned}
$$

By [1], there exists a unitary transformation W_{2} such that

$$
W_{2} M_{\eta_{\lambda_{0}}} W_{2}^{*}=M_{z}
$$

Define a unitary transformation:

$$
W: M \rightarrow L_{a}^{2}(D) W=W_{2} W_{1} .
$$

Therefore,

$$
W S_{\psi} W^{*}=W_{2} W_{1} S_{\psi} W_{1}^{*} W_{2}^{*}=W_{2} M_{\eta_{\lambda_{0}}} W_{2}^{*}=M_{z}
$$

i.e.,

$$
\left.S_{\psi}\right|_{M} \cong M_{z}
$$

Corollary 3.2 Suppose that $\varphi(\omega)$ be a one variable non-constant inner function and $\psi(z)$ is a common finite Blaschke product. Then $S_{\psi(z)}$ has at least m non-trivial minimal reducing
subspaces $\left(m=\operatorname{dim}\left(H^{2}\left(\Gamma_{\omega}\right) \ominus \varphi(\omega) H^{2}\left(\Gamma_{\omega}\right)\right)\right.$ and m may be $\left.+\infty\right)$. Moreover, the restriction of $S_{\psi(z)}$ on any of these minimal reducing subspaces is unitary equivalent to the Bergman shift M_{z}.

Proof. It can be easily obtained by Corollary 3.1 and Theorem 3.3.
Acknowledgements The first author would like to thank Prof. Yan Congquan and Prof. Hu Jiuyun for their helpful discussions and suggestions.

References

[1] Hu, Junyun, Sun, Shunhua, Xu, Xianmin and Yu, Dahai, Reducing subspace of analytic Toeplitz operators on the Bergman Space, Integral Equations Operator Theory, 49(2004), 387-395.
[2] Keiji Izuchi and Yang, Rongwei, N_{φ}-type quotient modules on the torus, preprint.
[3] Xu, Xianmin, Theory of Composition Operator, Science Press, Beijing, 1999.

[^0]: *Received date: Oct. 29, 2007.
 Foundation item: The NSF (10671083) of China.

