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1 Introduction

Let D denote the open unit disk in the complex plane C and T 2 be cartesian product of two

copies of T , where T is the unit circle. It is well known that T 2, as usually is endowed with

the rotation invariant Lebesgue measure, is the distinguished boundary of D2. Let dm(z)

denote the normalized Lebesgue measure on T and dm(z)dm(ω) be the product measure

on the torus T 2. The Bergman space is denoted by L2
a(D) and Bergman shift is denoted

by Mz. Let H2(Γ 2) be the Hardy space on the two dimensional torus T 2. We denote by

z and ω the coordinate functions. Shift operators Tz and Tω on H2(Γ 2) are defined by

Tzf = zf and Tωf = ωf for f ∈ H2(Γ 2). Clearly, both Tz and Tω have infinite multiplicity.

A closed subspace M of H2(Γ 2) is called a submodule (over the algebra H∞(D2)), if it is

invariant under multiplications by functions H∞(D2). Equivalently, M is a submodule if it

is invariant for both Tz and Tω. The quotient space N : H2(Γ 2) ⊖M is called a quotient

module. Clearly, T ∗
zN ⊂ N and T ∗

ωN ⊂ N . In the study here, it is necessary to distinguish

the classical Hardy space in the variable z and that in the variable ω, for which we denote

∗
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by H2(Γz) and H2(Γω), respectively. In this paper, we look at submodules of the form [z-

ϕ(ω)], where ϕ is an inner function in H2(Γω) and [z-ϕ(ω)] is the closure of (z-ϕ)H∞(Γ 2)

in H2(Γ 2). For simplicity we denote [z-ϕ(ω)] by Mϕ. Nϕ = H2(Γ 2) ⊖Mϕ denote Nϕ-type

quotient modules on the torus. For a function ψ ∈ H∞(D2), we define the Toeplitz operator

Sψ on Nϕ with symbol ψ by

Sψ(f) = PNϕ
(ψf), ∀f ∈ Nϕ,

where PNϕ
is a projection from H2(Γ 2) to Nϕ.

The quotient module Nϕ has a very rich structure. In deed, when ϕ is inner, Nϕ can be

identified with the tensor product of two well-known classical spaces, namely the quotient

space H2(Γ ) ⊖ ϕH2(Γ ) and the Bergman space L2
a(D). Clearly, when ϕ(ω) = ω, Nϕ is

unitary equivalent to L2
a(D). In fact, it is shown in [1] that {Tz, Tω, H2(Γ 2)} is the minimal

super-isometrical dilation of Mz. Then the reducible problem of Toeplitz operator with

finite Blaschke product on the Bergman space is turned to the reducible problem of Toeplitz

operator with finite Blaschke product on Nω. It is obtained in [1] that Toeplitz operator

with finite Blaschke product Sψ(z) on Nω has at least a reducing subspace M , moreover,

Sψ|M ∼= Mz. In this paper, we prove that when ϕ is a non-constant inner function, the

conclusion like that in [1] is also true.

2 Preliminaries

In order to prove the main theorem, we need the following lemma.

Lemma 2.1[2] Let ϕ(ω) be a one variable non-constant inner function and {λk(ω) : k =

1, 2, · · · ,m} be an orthonormal basis of H2(Γω) ⊖ ϕ(ω)H2(Γω), and

ej(z, ω) =
ωj + ωj−1z + · · · + zj√

j + 1
(j = 0, 1, · · · ).

Let

Ek,j = λk(ω)ej(z, ϕ(ω)).

Then {Ek,j : k = 1, 2, · · · ,m; j = 0, 1, · · · } is an orthonormal basis for Nϕ.

Lemma 2.2[2] There exists a unitary operator U ,

U : Nϕ −→ (H2(Γω) ⊖ ϕ(ω)H2(Γω)) ⊗ L2
a(D),

Ek,j 7−→ λk(ω)
√
j + 1ξj

such that

USz = (I
⊗
Mz)U,

where I is an identity map on H2(Γω)⊖ϕ(ω)H2(Γω).

Lemma 2.3[1] Suppose that

ϕ(ω) = ω, ψ(z) = z

N−1∏

l=1

z − αl

1 − ᾱlz
(| αl |> 0, αl 6= αk(∀l 6= k), 1 ≤ l, k ≤ N − 1).
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Then there exists a unique unit vector e such that

e ∈ kerT ∗
ψ(z) ∩ kerT ∗

ψ(ω) ∩Nϕ = kerS∗
ψ(z) ∩ kerS∗

ψ(ω), (2.1)

(ψ(z) + ψ(ω))e ∈ Nϕ. (2.2)

Lemma 2.4[3] Suppose that ϕ is the inner function. Then the boundary value of ϕ is

the measurable transformation on T , mϕ−1 is the measure on T . And the Radon-Nikodym

derivative of mϕ−1 is equal to poisson’s kernel, i.e.,

dm(ϕ−1(t))

dm(t)
= pa(t) = Re

(
t+ a

t− a

) (
a =

∫ 2π

0

ϕ(eiθ)dm(θ)

)
.

Lemma 2.5 Suppose that λ ∈ D and ηλ =
λ− z

1 − λz
. Then the Toeplitz operator Sηλ

on

Nϕ is unitary equivalent to Sz, i.e., Sηλ
∼= Sz.

Proof. There exists a unitary transformation (see [2]),

W1 : L2
a(D) −→ L2

a(D),

W1(h) = (1 − |λ|2)h ◦ ηλ · k̃λ
(
k̃λ =

1

(1 − λz)2

)

such that

W1Mηλ
W ∗

1 = Mz.

Let

W2 = I ⊗W1.

Then it is clear that W2 is the unitary transformation on (H2(Γω)⊖ϕ(ω)H2(Γω))⊗L2
a(D).

What’s more,

W2(I ⊗Mηλ
) = (I ⊗W1)(I ⊗Mηλ

)

= I ⊗ (W1Mηλ
)

= I ⊗ (MzW1)

= (I ⊗Mz)(I ⊗W1)

= (I ⊗Mz)W2.

Thus

I ⊗Mηλ
∼= I ⊗Mz.

By Lemma 2.2, there exists a unitary operator U such that

USz = (I ⊗Mz)U.

By the function calculus, it is well known that

USηλ
U∗ = Uηλ(Sz)U

∗

= ηλ(USzU
∗)

= ηλ(I ⊗Mz)

= I ⊗Mηλ
.
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Let

W3 = U∗W2U.

Then

W3Sηλ
W ∗

3 = U∗W2USηλ
U∗W ∗

2U

= U∗W2(I ⊗Mηλ
)W ∗

2 U

= U∗(I ⊗Mz)U

= Sz.

Therefore

Sηλ
∼= Sz.

The proof is completed.

Lemma 2.6 Suppose that ψ is a finite Blaschke product and ψλ = ψ ◦ ηλ. If Sψλ
has at

least a non-trivial reducing subspace on which the restriction of Sψλ
is unitary equivalent to

the Bergman shift, then Sψ also has at least a non-trivial reducing subspace on which the

restriction of Sψ is unitary equivalent to the Bergman shift.

Proof. Let M be the non-trivial reducing subspace of Sψλ
and there exists a unitary trans-

formation W : M −→ L2
a(D) such that

WSψλ
|M = MzW.

Because

ηλ ◦ ηλ(ω) = ω,

we have

ψ = ψλ ◦ ηλ.

By Lemma 2.5,

W3Sηλ
W ∗

3 = Sz.

By the function calculus,

W3SψW
∗
3 = W3Sψλ

◦ ηλW ∗
3

= W3ψλ(Sηλ
)W ∗

3

= ψλ(W3Sηλ
W ∗

3 )

= ψλ(Sz)

= Sψλ
,

i.e.,

Sψ ∼= Sψλ
.

Let

M1 = W ∗
3M.

Then M1 is the non-trivial reducing subspace of Sψ . Let

W4 = WW3.
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It is easy to prove that

W4Sψ|M1
= MzW4,

i.e.,

Sψ|M1

∼= Mz.

The proof is completed.

Lemma 2.7[1] Suppose that ψ(z) is the finite Blaschke product having zeros with multi-

plicity greater than one and ηλ =
λ− z

1 − λz
. Let ψλ(z) = (ηλ ◦ ψ)(z). Then there exists a

λ ∈ D such that ψλ(z) has distinct zeros.

3 Principal Results and Proofs

In this section we give our main results.

Theorem 3.1 Suppose that ϕ(ω) be a one variable non-constant inner function, and

ψ(z) = z

N−1∏

l=1

z − αl

1 − ᾱlz
(|αl| > 0, αl 6= αk (∀l 6= k), 1 ≤ l, k ≤ N − 1).

Then there exists a unique unit vector e′ such that

e′ ∈ kerT ∗
ψ(z) ∩ kerT ∗

ψ(ϕ(ω)) ∩Nϕ = kerS∗
ψ(z) ∩ kerS∗

ψ(ϕ(ω)), (3.1)

(ψ(z) + ψ(ϕ(ω)))e′ ∈ Nϕ. (3.2)

Proof. Picking the unit vector e in Lemma 2.3, then we have

e ∈ H2(T 2) ⊖ [z-ω] = Nω.

By Lemma 2.1, {ej(z, ω) : j ≥ 0} is an orthonormal basis for H2(T 2) ⊖ [z-ω]. Then there

exsits a sequence of constant numbers {kj}, such that

e =

∞∑

j=0

kjej(z, ω).

Let

e′(z, ω) = λ1(ω)e(z, ϕ(ω)).

Then obviously

e′(z, ω) =

∞∑

j=0

kj(λ1(ω)ej(z, ϕ(ω))) =

∞∑

j=0

kjE1,j ∈ Nϕ (3.3)

and

‖e′‖2 =

∞∑

j=0

|kj |2 = ‖e‖2 = 1.

Because

e ∈ kerT ∗
ψ(z) ⇐⇒ T ∗

ψ(z)e(z, ω) = 0,

i.e., ∫

T

∫

T

|T ∗
ψ(z)e(z, ω)|2dm(z)dm(ω) = 0,
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then

‖T ∗
ψ(z)e(z, ϕ(ω))‖2

=

∫

T

∫

T

|T ∗
ψ(z)e(z, ϕ(ω))|2dm(z)dm(ω) (let t = ϕ(ω))

=

∫

T

∫

T

|T ∗
ψ(z)e(z, t)|2

dm(ϕ−1(t))

dm(t)
dm(z)dm(t).

Let

a =

∫ 2π

0

ϕ(eiθ)dm(θ).

Then by Lemma 2.4,
∣∣∣
dm(ϕ−1(t))

dm(t)

∣∣∣ = |pa(t)|

=
∣∣∣Re

( t+ a

t− a

)∣∣∣

≤
∣∣∣
t+ a

t− a

∣∣∣

≤ 1 + |a|
1 − |a|

≤
∫

T

∫

T

|T ∗
ψ(z)e(z, t)|2

1 + |a|
1 − |a|dm(z)dm(t)

≤ 1 + |a|
1 − |a|

∫

T

∫

T

|T ∗
ψ(z)e(z, t)|2dm(z)dm(t)

= 0.

Thus

T ∗
ψ(z)e(z, ϕ(ω)) = 0.

Then

T ∗
ψ(z)e

′(z, ω) = T ∗
ψ(z)(λ1(ω)e(z, ϕ(ω))) = λ1(ω)T ∗

ψ(z)e(z, ϕ(ω)) = 0. (3.4)

By (3.3) and (3.4),

e′ ∈ kerT ∗
ψ(z) ∩Nϕ.

We have

T ∗
ψ(z)|Nϕ

= T ∗
ψ(ϕ(ω))|Nϕ

.

In fact, because ψ ∈ A(D), it is easy to prove that

ψ(z) − ψ(ϕ(ω)) ∈ [z-ϕ(ω)] = Mϕ,

and it is well known that ψ ∈ H∞(D2). Then for any g ∈ H2(T 2), (ψ(z)−ψ(ϕ(ω)))g ∈Mϕ.

Therefore,

〈(T ∗
ψ(z) − T ∗

ψ(ϕ(ω)))f, g〉 = 〈f, (ψ(z) − ψ(ϕ(ω)))g〉 = 0, ∀f, g ∈ Nϕ,

i.e.,

T ∗
ψ(z)|Nϕ

= T ∗
ψ(ϕ(ω))|Nϕ

.

Then

e′ ∈ kerT ∗
ψ(z) ∩ kerT ∗

ψ(ϕ(ω)) ∩Nϕ.
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Let

ψ0(z) =

N−1∏

l=1

z − αl

1 − ᾱlz
.

By the fact that

T ∗
z e

′ = T ∗
ϕ(ω)e

′,

moreover the conclusion (3.2) is equivalent to the following:

[ψ0(z) − ψ0(ϕ(ω))]e′ = [ψ(z) − ψ(ϕ(ω))]T ∗
z e

′. (3.5)

In fact,

(ψ(z) + ψ(ϕ(ω)))e′ ∈ Nϕ

⇐⇒ (T ∗
z − T ∗

ϕ(ω))[(ψ(z) + ψ(ϕ(ω)))e′] = 0

⇐⇒ [ψ0(z) − ψ0(ϕ(ω))]e′ = [ψ(z) − ψ(ϕ(ω))]T ∗
z e

′.

Similarly, by (2.2), we have

[ψ0(z) − ψ0(ω)]e(z, ω) = [ψ(z) − ψ(ω)]T ∗
z e(z, ω).

So

‖[ψ0(z) − ψ0(ω)]e(z, ω) − [ψ(z) − ψ(ω)]T ∗
z e(z, ω)‖2

=

∫

T

∫

T

|[ψ0(z) − ψ0(ω)]e(z, ω) − [ψ(z) − ψ(ω)]T ∗
z e(z, ω)|2dm(z)dm(ω)

= 0.

Then

‖[ψ0(z) − ψ0(ϕ(ω))]e(z, ϕ(ω)) − [ψ(z) − ψ(ϕ(ω))]T ∗
z e(z, ϕ(ω))‖2

=

∫

T

∫

T

|[ψ0(z) − ψ0(ϕ(ω))]e(z, ϕ(ω)) − [ψ(z) − ψ(ϕ(ω))]T ∗
z e(z, ϕ(ω))|2dm(z)dm(ω)

(let t = ϕ(ω))

=

∫

T

∫

T

|[ψ0(z) − ψ0(t)]e(z, t) − [ψ(z) − ψ(t)]T ∗
z e(z, t)|2

dm(ϕ−1(t))

dm(t)
dm(z)dm(t)

=

∫

T

∫

T

|[ψ0(z) − ψ0(t)]e(z, t) − [ψ(z) − ψ(t)]T ∗
z e(z, t)|2pa(t)dm(z)dm(t)

≤ 1 + |a|
1 − |a|

∫

T

∫

T

|[ψ0(z) − ψ0(t)]e(z, t) − [ψ(z) − ψ(t)]T ∗
z e(z, t)|2dm(z)dm(t)

= 0.

Therefore,

[ψ0(z) − ψ0(ϕ(ω))]e(z, ϕ(ω)) = [ψ(z) − ψ(ϕ(ω))]T ∗
z e(z, ϕ(ω)).

Multiplied by λ1(ω), we can obtain the conclusion (3.5). The proof is completed.

Remark It is different from Lemma 2.3, e′ in the theorem is not unique. We can let

e′ = λk(ω)e(z, ϕ(ω)),

where λk(ω) is any element of the orthonormal basis of H2(Γω) ⊖ ϕ(ω)H2(Γω) in Lemma

2.1.
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Theorem 3.2 Suppose that ϕ(ω) be a one variable non-constant inner function, and

ψ(z) = z

N−1∏

l=1

z − αl

1 − ᾱlz
(|αl| > 0, αl 6= αk (∀l 6= k), 1 ≤ l, k ≤ N − 1).

Pick e′ in Theorem 3.1. Then

Me′ = span{p′n(ψ)e′ : n ≥ 0},
where

p′n(ψ) = ψn(z) + ψn−1(z)ψ(ϕ(ω)) + · · · + ψ(z)ψn−1(ϕ(ω)) + ψn(ϕ(ω))

is a non-trivial minimal reducing subspace of Sψ(z). Moreover Sψ(z)|Me′
is unitary equivalent

to Bergman shift Mz.

Proof.

T ∗
z p

′
n(ψ)e′ − T ∗

ϕ(ω)p
′
n(ψ)e′

= T ∗
z [ψn(z) + ψn−1(z)ψ(ϕ(ω)) + · · · + ψ(z)ψn−1(ϕ(ω)) + ψn(ϕ(ω))]e′

− T ∗
ϕ(ω)[ψ

n(z) + ψn−1(z)ψ(ϕ(ω)) + · · · + ψ(z)ψn−1(ϕ(ω)) + ψn(ϕ(ω))]e′

= [ψ0(z)ψ
n−1(z)e′ + ψ0(z)ψ

n−2(z)ψ(ϕ(ω))e′ + · · · + ψ0(z)ψ
n−1(ϕ(ω))e′ + ψn(ϕ(ω))T ∗

z e
′]

− [ψn(z)T ∗
ϕ(ω)e

′ + ψn−1(z)ψ0(ϕ(ω))e′ + · · ·
+ ψ(z)ψ0(ϕ(ω))ψn−2(ϕ(ω))e′ + ψ0(ϕ(ω))ψn−1(ϕ(ω))e′]

= [ψ0(z)ψ
n−1(z)e′ + ψ0(z)ψ

n−2(z)ψ(ϕ(ω))e′ + · · · + ψ0(z)ψ
n−1(ϕ(ω))e′ + ψn(ϕ(ω))T ∗

z e
′]

− [ψn(z)T ∗
z e

′ + ψn−1(z)ψ0(ϕ(ω))e′ + · · ·
+ ψ(z)ψ0(ϕ(ω))ψn−2(ϕ(ω))e′ + ψ0(ϕ(ω))ψn−1(ϕ(ω))e′]

= p′n−1(ψ)(ψ0(z) − ψ0(ϕ(ω)))e′ + (ψn(ϕ(ω)) − ψn(z))T ∗
z e

′

(by (3.5))

= p′n−1(ψ)(ψ(z) − ψ(ϕ(ω)))T ∗
z e

′ + (ψn(ϕ(ω)) − ψn(z))T ∗
z e

′

= (ψn(z) − ψn(ϕ(ω)))T ∗
z e

′ + (ψn(ϕ(ω)) − ψn(z))T ∗
z e

′

= 0.

We have

(T ∗
z − T ∗

ϕ(ω))p
′
n(ψ)e′ = 0.

So

p′n(ψ)e′ ∈ Nϕ.

Also,

Sψ(z)(p
′
n(ψ)e′)

= qψ(z)p′n(ψ)e′

= qψ(z)[ψn(z) + ψn−1(z)ψ(ϕ(ω)) + · · · + ψ(z)ψn−1(ϕ(ω)) + ψn(ϕ(ω))]e′

= q[ψn+1(z) + ψn(z)ψ(ϕ(ω)) + · · · + ψ2(z)ψn−1(ϕ(ω)) + ψ(z)ψn(ϕ(ω))]e′
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= q
{n+ 1

n+ 2
p′n+1(ψ)e′ +

1

n+ 2
[(ψn+1(z) − ψn+1(ϕ(ω)) + (ψn(z) − ψn(ϕ(ω))ψ(ϕ(ω)) + · · ·

+ (ψ(z) − ψ(ϕ(ω))ψn(ϕ(ω))]e′
}

=
n+ 1

n+ 2
p′n+1(ψ)e′ ∈Me′ , (3.6)

and

S∗
ψ(z)(p

′
n(ψ)e′)

= qψ(z)p′n(ψ)e′

= qψ(z)[ψn(z) + ψn−1(z)ψ(ϕ(ω)) + · · · + ψ(z)ψn−1(ϕ(ω)) + ψn(ϕ(ω))]e′

= q[ψn−1(z) + ψn−2(z)ψ(ϕ(ω)) + · · · + ψn−1(ϕ(ω))]e
′

+ ψn(ϕ(ω))T ∗
ψ(z)e

′

(by (3.1))

= q[ψn−1(z) + ψn−2(z)ψ(ϕ(ω)) + · · · + ψn−1(ϕ(ω))]e′

= p′n−1(ψ)e′ ∈Me′ . (3.7)

Hence by (3.6) and (3.7), Me′ is the non-trivial reducing subspace of Sψ(z). Because

|ψ(z)| = |ψ(ϕ(ω))| = 1 a.e. on T 2,

then

p′n(ψ)p′m(ψ) =






∑
k+l=n−m,−n≤k,l≤n

ck,lψ
k(z)ψl(ϕ(ω)), if m > n;

∑
−n≤k≤n,k 6=0

ckψ
k(z)ψ−k(ϕ(ω)) + (n+ 1), if m = n

a.e. on T 2.

Since e′ ∈ kerT ∗
ψ(z) ∩ kerT ∗

ψ(ϕ(ω)) ∩Nϕ, it is easy to check

〈p′n(ψ)e′, p′m(ψ)e′〉 =

{
0, if m 6= n;
n+ 1, if m = n.

Therefore,
{p′n(ψ)e′√

n+ 1
: n = 0, 1, · · ·

}
is an orthonormal basis for M e′ . By (3.6) we can

define a unitary transformation

W1 : Me′ → L2
a(D),

p′n(ψ)e′√
n+ 1

7→
√
n+ 1zn

such that

W1Sψ(z)|Me′
= MzW1.

Hence

Sψ(z)|Me′
∼= Mz.

The proof is completed.

Corollary 3.1 Suppose that ϕ(ω) be a one variable non-constant inner function, and

ψ(z) = z

N−1∏

l=1

z − αl

1 − ᾱlz
(|αl| > 0, αl 6= αk (∀l 6= k), 1 ≤ l, k ≤ N − 1).

Then the Toeplitz operator Sψ(z) has at least m non-trivial minimal reducing subspaces (m =

dim(H2(Γω)⊖ϕ(ω)H2(Γω)) and m may be +∞). Moreover, the restriction of Sψ(z) on any

of these minimal reducing subspaces is unitary equivalent to the Bergman shift Mz.
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Theorem 3.3 Suppose that ψ(z) is a common finite Blaschke product. Then Sψ(z) has

at least a non-trivial minimal reducing subspace on which the restriction of Sψ(z) is unitary

equivalent to the Bergman shift.

Proof. Suppose that ψ(z) is a finite Blaschke product of order N . If ψ(z) is the finite

Blaschke product having zero with multiplicity greater than one, then, by Lemma 2.7, there

exists a λ0 ∈ D such that ψλ0
(z) has distinct zeros, where

ψλ0
(z) = (ηλ0

◦ ψ)(z), ηλ0
(z) =

λ0 − z

1 − λ0z
.

If ψλ0
(0) 6= 0, let

ψλ1
(z) = (ψλ0

◦ ηλ1
)(z).

Suppose that λ1 satisfies the condition

ψλ0
(λ1) = 0.

Then

ψλ1
(0) = ψλ0

(ηλ1
(0)) = ψλ0

(λ1) = 0.

Hence ψλ1
(z) is the case in Theorem 3.2. Therefore, Sψλ1

(z) has at least a reducing subspace

on which the restriction of Sψλ1
(z) is unitary equivalent to the Bergman shift. By Lemma

2.6, Sψλ0
(z) also has at least a reducing subspace, denoted by M and

W1Sψλ0
|M = MzW1.

By ηλ ◦ ηλ(ω) = ω and function calculus, one has

Sψ(z) = Sηλ0
◦ψλ0

(z) = ηλ0
(Sψλ0

(z)) =
λ0 − Sψλ0

(z)

1 − λ̄0Sψλ0
(z)

.

So M is the reducing subspace of Sψ(z). We have

W1Sψ(z)W
∗
1 = W1Sηλ0

◦ψλ0
(z)W

∗
1

= W1ηλ0
(Sψλ0

)W ∗
1

= ηλ0
(W1Sψλ0

W ∗
1 )

= ηλ0
(Mz)

= Mηλ0
.

By [1], there exists a unitary transformation W2 such that

W2Mηλ0
W ∗

2 = Mz.

Define a unitary transformation:

W : M → L2
a(D)W = W2W1.

Therefore,

WSψW
∗ = W2W1SψW

∗
1W

∗
2 = W2Mηλ0

W ∗
2 = Mz,

i.e.,

Sψ|M ∼= Mz.

Corollary 3.2 Suppose that ϕ(ω) be a one variable non-constant inner function and ψ(z)

is a common finite Blaschke product. Then Sψ(z) has at least m non-trivial minimal reducing
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subspaces (m = dim(H2(Γω)⊖ϕ(ω)H2(Γω)) and m may be +∞). Moreover, the restriction

of Sψ(z) on any of these minimal reducing subspaces is unitary equivalent to the Bergman

shift Mz.

Proof. It can be easily obtained by Corollary 3.1 and Theorem 3.3.
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