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1 Introduction

Let {Xn, n ≥ 1} be a sequence of random variables defined on a fixed probability space

(Ω , F , P ),

Sn =
n

∑

i=1

(Xi − EXi), n ≥ 1, S0 = 0,

and {bn, n ≥ 1} be a nondecreasing sequence of positive numbers. Hájek and Rényi[1]

proved that: If {Xn, n ≥ 1} is a sequence of independent random variables with finite
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second moment, then for any ε > 0 and m < n,

P

{

max
m≤j≤n

∣

∣

∣

∣

1

bj

j
∑

i=1

(Xi − EXi)

∣

∣

∣

∣

≥ ε

}

≤ 1

ε2

{ m
∑

j=1

V ar(Xj)

b2
m

+

n
∑

j=m+1

V ar(Xj)

b2
j

}

. (1.1)

Hájek-Rényi-type inequality has been studied by many authors; one can refer to [2]–

[9]. In this paper, we study the Hájek-Rényi-type inequality under the general condition

A1 below. In addition, we give some applications of Hájek-Rényi-type inequality which

generalize and improve the results of Prakasa Rao[6] and Soo[9]. Let n and m be integers

and C be a positive constant not depending on n and m in what follows.

A1 For any positive integers m ≤ n,

E

{

max
m≤i≤n

∣

∣

∣

∣

i
∑

j=m

(Xj − EXj)

∣

∣

∣

∣

2}

≤ C · E
{ n

∑

j=m

(Xj − EXj)

}2

, (1.2)

Cov(Xi, Xj) ≥ 0, i, j = 1, 2, · · · (1.3)

Lemma 1.1([5], Theorem 1.1) Let β1, β2, · · · , βn be a nondecreasing sequence of positive

numbers, and α1, α2, · · · , αn be nonnegative numbers. Let r be a fixed positive number.

Assume that for each m with 1 ≤ m ≤ n,

E

(

max
1≤l≤m

∣

∣

∣

∣

l
∑

j=1

Xj

∣

∣

∣

∣

)r

≤
m

∑

l=1

αl. (1.4)

Then

E

(

max
1≤l≤n

∣

∣

∣

∣

l
∑

j=1

Xj

βl

∣

∣

∣

∣

)r

≤ 4

n
∑

l=1

αl

βr
l

. (1.5)

2 Hájek-Rényi-type Inequality

Theorem 2.1 Let {Xn, n ≥ 1} be a sequence of random variables satisfying A1 and

{bn, n ≥ 1} be a nondecreasing sequence of positive numbers. Then for any ε > 0 and

n ≥ 1,

P

{

max
1≤k≤n

∣

∣

∣

∣

1

bk

k
∑

j=1

(Xj − EXj)

∣

∣

∣

∣

≥ ε

}

≤ 4C

ε2

{ n
∑

j=1

V ar(Xj)

b2
j

+ 2
∑

1≤k<j≤n

Cov(Xk, Xj)

b2
j

}

,(2.1)

where C is defined in (1.2).

Proof. Without loss of generality, we assume that bn ≥ 1. Let α =
√

2. For i ≥ 0, define

Ai = {1 ≤ k ≤ n : αi ≤ bk < αi+1}.
For Ai 6= ∅, let

v(i) = max{k : k ∈ Ai},
and tn be the index of the last nonempty set Ai. Obviously,

AiAj = ∅, i 6= j

and
tn
∑

i=0

Ai = {1, 2, · · · , n}.
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It is easy to see that

αi ≤ bk ≤ bv(i) < αi+1, k ∈ Ai.

By Markov’s inequality and (1.2), we have

P

{

max
1≤k≤n

∣

∣

∣

∣

1

bk

k
∑

j=1

(Xj − EXj)

∣

∣

∣

∣

≥ ε

}

= P

{

max
0≤i≤tn,Ai 6=∅

max
k∈Ai

∣

∣

∣

∣

1

bk

k
∑

j=1

(Xj − EXj)

∣

∣

∣

∣

≥ ε

}

≤
tn
∑

i=0,Ai 6=∅

P

{

1

αi
max

1≤k≤v(i)

∣

∣

∣

∣

k
∑

j=1

(Xj − EXj)

∣

∣

∣

∣

≥ ε

}

≤ C

ε2

n
∑

j=1

{V ar(Xj) + 2Cov(Xj , Sj−1)}
tn
∑

i=0,Ai 6=∅,v(i)≥j

1

α2i
. (2.2)

Now we estimate

tn
∑

i=0,Ai 6=∅,v(i)≥j

1

α2i
. Let

i0 = min{i : Ai 6= ∅, v(i) ≥ j}.
Then

bj ≤ bv(i0) < αi0+1

follows from the definition of v(i). Therefore,
tn
∑

i=0,Ai 6=∅,v(i)≥j

1

α2i
<

∞
∑

i=i0

1

α2i
=

1

1 − 1

α2

1

α2i0
<

α2

1 − 1

α2

1

b2
j

=
4

b2
j

. (2.3)

Thus (2.1) follows from (2.2) and (2.3).

Theorem 2.2 Let {Xn, n ≥ 1} be a sequence of random variables satisfying A1 and

{bn, n ≥ 1} be a nondecreasing sequence of positive numbers. Then for any ε > 0 and any

positive integers m < n,

P

{

max
m≤k≤n

∣

∣

∣

∣

1

bk

k
∑

j=1

(Xj − EXj)

∣

∣

∣

∣

≥ ε

}

≤ 4

ε2

{ m
∑

j=1

V ar(Xj)

b2
m

+ 2
∑

1≤k<j≤m

Cov(Xk, Xj)

b2
m

+ 4C

n
∑

j=m+1

V ar(Xj)

b2
j

+ 8C
∑
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Cov(Xk, Xj)

b2
j

}

, (2.4)

where C is defined in (1.2).

Proof. Observe that

max
m≤k≤n
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∣
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∣

∣

∣
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∣

∣
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m+1≤k≤n
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∣

∣

1
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k
∑
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(Xj − EXj)

∣

∣

∣

∣
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thus

P

{

max
m≤k≤n

∣

∣

∣

∣

1
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k
∑

j=1

(Xj − EXj)

∣

∣

∣

∣

≥ ε

}

≤ P

{∣

∣

∣

∣

1

bm

m
∑

j=1

(Xj − EXj)

∣

∣

∣

∣

≥ ε

2

}

+ P

{

max
m+1≤k≤n

∣

∣

∣

∣

1

bk

k
∑

j=m+1

(Xj − EXj)

∣

∣

∣

∣

≥ ε

2

}

.
= I + II. (2.5)

For I, by Markov’s inequality, we have

I ≤ 4

ε2
E

{

1

bm

m
∑

j=1

(Xj − EXj)

}2

=
4

ε2

{ m
∑

j=1

V ar(Xj)

b2
m

+ 2
∑

1≤k<j≤m

Cov(Xk, Xj)

b2
m

}

. (2.6)

For II, we apply Theorem 2.1 to {Xm+i, 1 ≤ i ≤ n − m} and {bm+i, 1 ≤ i ≤ n − m}.
Noting that

max
m+1≤k≤n

∣

∣

∣

∣

1

bk

k
∑

j=m+1

(Xj − EXj)

∣

∣

∣

∣

= max
1≤k≤n−m

∣

∣

∣

∣

1

bm+k

k
∑

j=1

(Xm+j − EXm+j)

∣

∣

∣

∣

,

by (1.2) and Theorem 2.1, we get

II ≤ 4C

(ε/2)2

{ n−m
∑

j=1

V ar(Xm+j)

b2
m+j

+ 2
∑

1≤k<j≤n−m

Cov(Xm+k, Xm+j)

b2
m+j

}

=
16C

ε2

{ n
∑

j=m+1

V ar(Xj)

b2
j

+ 2
∑

m+1≤k<j≤n

Cov(Xk, Xj)

b2
j

}

. (2.7)

Therefore, the desired result (2.4) follows from (2.5)–(2.7) immediately.

Theorem 2.3 Let {Xn, n ≥ 1} be a sequence of random variables satisfying A1 and

{bn, n ≥ 1} be a nondecreasing sequence of positive numbers. Assume that
∞
∑

j=1

V ar(Xj)

b2
j

+ 2
∑

1≤k<j

Cov(Xk, Xj)

b2
j

< ∞. (2.8)

Then

E

(

sup
n≥1

∣

∣

∣

∣

Sn

bn

∣

∣

∣

∣

r)

≤ 1 +
4Cr

2 − r

{ ∞
∑

j=1

V ar(Xj)

b2
j

+ 2
∑

1≤k<j

Cov(Xk, Xj)

b2
j

}

< ∞, r ∈ (0, 2), (2.9)

E

(

sup
n≥1

∣

∣

∣

∣

Sn

bn

∣

∣

∣

∣

2)

≤ 4C

{ ∞
∑

j=1

V ar(Xj)

b2
j

+ 2
∑

1≤k<j

Cov(Xk, Xj)

b2
j

}

< ∞, (2.10)

where C is defined in (1.2). Furthermore, if lim
n→∞

bn = +∞, then

lim
n→∞

1

bn

n
∑

j=1

(Xj − EXj) = 0 a.s.
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Proof. By the Continuity of Probability and Theorem 2.1, we get

E

(

sup
n≥1

∣

∣

∣

∣

Sn

bn

∣

∣

∣

∣

r)

≤ 1 +

∫ ∞

1

lim
N→∞

P

(

max
1≤n≤N

∣

∣

∣

∣

Sn

bn

∣

∣

∣

∣

> t1/r

)

dt

≤ 1 +
4Cr

2 − r

{ ∞
∑

j=1

V ar(Xj)

b2
j

+ 2
∑

1≤k<j

Cov(Xk, Xj)

b2
j

}

< ∞.

By (1.2), we have

E

(

max
1≤i≤n

S2
i

)

≤ CES2
n

.
=

n
∑

j=1

αj , (2.11)

where

αj = C(ES2
j − ES2

j−1) = C(V ar(Xj) + 2Cov(Xj , Sj−1)) ≥ 0, j = 1, 2, · · · , n.

By (2.11) and Lemma 1.1,

E

(

max
1≤i≤n

∣

∣

∣

∣

Si

bi

∣

∣

∣

∣

2)

≤ 4

n
∑

j=1

αj

b2
j

= 4C

n
∑

j=1

V ar(Xj) + 2Cov(Xj , Sj−1)

b2
j

. (2.12)

Thus, by Monotone Convergence Theorem,

E

(

sup
n≥1

∣

∣

∣

∣

Sn

bn

∣

∣

∣

∣

2)

= E

{

lim
n→∞

(

max
1≤i≤n

∣

∣

∣

∣

Si

bi

∣

∣

∣

∣

2)}

= lim
n→∞

E

(

max
1≤i≤n

∣

∣

∣

∣

Si

bi

∣

∣

∣

∣

2)

≤ 4C

{ ∞
∑

j=1

V ar(Xj)

b2
j

+ 2
∑

1≤k<j

Cov(Xk, Xj)

b2
j

}

< ∞.

Observe that

P

( ∞
⋃

n=m

(∣

∣

∣

∣

Sn

bn

∣

∣

∣

∣

> ε

))

= P

( ∞
⋃

N=m

(

max
m≤n≤N

∣

∣

∣

∣

Sn

bn

∣

∣

∣

∣

> ε

))

= lim
N→∞

P

(

max
m≤n≤N

∣

∣

∣

∣

Sn

bn

∣

∣

∣

∣

> ε

)

.

By Theorem 2.2, we have that

P

(

max
m≤n≤N

∣

∣

∣

∣

Sn

bn

∣

∣

∣

∣

> ε

)

≤ 4

ε2

{ m
∑

j=1

V ar(Xj)

b2
m

+ 2
∑

1≤k<j≤m

Cov(Xk, Xj)

b2
m

}

+
16C

ε2

{ N
∑

j=m+1

V ar(Xj)

b2
j

+ 2
∑

m+1≤k<j≤N

Cov(Xk, Xj)

b2
j

}

.

Hence, by Kronecker’s Lemma, we get

lim
m→∞

P

( ∞
⋃

n=m

(∣

∣

∣

∣

Sn

bn

∣

∣

∣

∣

> ε

))

= 0,

which is equivalent to

lim
n→∞

1

bn

n
∑

j=1

(Xj − EXj) = 0 a.s.,

so the desired results are proved.
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3 Applications

3.1 Application for associated random variable sequences

Definition 3.1 A finite collection of random variables X1, X2, · · · , Xm is said to be

associated if

Cov{f(X1, · · · , Xm), g(X1, · · · , Xm)} ≥ 0 (3.1)

for any two coordinatewise nondecreasing functions f , g on Rm such that the covariance is

well defined. An infinite sequence {Xn, n ≥ 1} is associated if every finite subcollection is

associated.

Lemma 3.1 Let {Xn, n ≥ 1} be a sequence of associated random variables, and fn(x)

be a nondecreasing function of x for each n ≥ 1. Then {fn(Xn), n ≥ 1} and {−Xn, n ≥ 1}
are also sequences of associated random variable.

Lemma 3.2([10], Theorem 2) Let X1, X2, · · · , Xn be associated random variables with

mean zero and finite second moment. Then

E
(

max
1≤j≤n

Sj

)2

≤ ES2
n. (3.2)

Theorem 3.1 Let {Xn, n ≥ 1} be a sequence of associated random variables with finite

second moment and {bn, n ≥ 1} be a nondecreasing sequence of positive numbers. Then for

any ε > 0 and any positive integers m < n,

P

{

max
1≤k≤n

∣

∣

∣

∣

1

bk

k
∑

j=1

(Xj − EXj)

∣

∣

∣

∣

≥ ε

}

≤ 8

ε2

{ n
∑

j=1

V ar(Xj)

b2
j

+ 2
∑

1≤k<j≤n

Cov(Xk, Xj)

b2
j

}

, (3.3)

P

{

max
m≤k≤n

∣

∣

∣

∣

1

bk

k
∑

j=1

(Xj − EXj)

∣

∣

∣

∣

≥ ε

}

≤ 4

ε2

{ m
∑

j=1

V ar(Xj)

b2
m

+ 2
∑

1≤k<j≤m

Cov(Xk, Xj)

b2
m

+ 8

n
∑

j=m+1

V ar(Xj)

b2
j

+ 16
∑

m+1≤k<j≤n

Cov(Xk, Xj)

b2
j

}

. (3.4)

Proof. Since

fn(x)
.
= x − EXn

is a nondecreasing function of x, by Lemma 3.1, we can see that {Xn −EXn, n ≥ 1} is also

a sequence of associated random variables. Denote

Yn
.
= Xn − EXn, Tn

.
=

n
∑

i=1

Yi for each n ≥ 1.
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Observe that

E
(

max
1≤j≤n

T 2
j

)

≤ E
(

max
1≤j≤n

Tj

)2

+ E
(

max
1≤j≤n

(−Tj)
)2

, (3.5)

and by Lemma 3.2,

E
(

max
1≤j≤n

Tj

)2

≤ ET 2
n . (3.6)

By Lemma 3.1, {−Yn, n ≥ 1} is a sequence of associated random variables. By Lemma 3.2,

E
(

max
1≤j≤n

(−Tj)
)2

≤ E(−Tn)2 = ET 2
n . (3.7)

By (3.5)–(3.7), we have

E

(

max
1≤i≤n

∣

∣

∣

∣

i
∑

j=1

(Xj − EXj)

∣

∣

∣

∣

2)

≤ 2E

( n
∑

j=1

(Xj − EXj)

)2

. (3.8)

Similarly to the proof of (3.8), we can get (1.2) for C = 2. Therefore, (3.3) and (3.4) follow

from Theorem 2.1 and Theorem 2.2, respectively.

Remark 3.1 Under the conditions of Theorem 3.1, Prakasa Rao[6] obtained the following

results:

P

{

max
1≤k≤n

∣

∣

∣

∣

1

bk

k
∑

j=1

(Xj − EXj)

∣

∣

∣

∣

≥ ε

}

≤ 4

ε2

{ n
∑

j=1

V ar(Xj)

b2
j

+
∑

1≤k 6=j≤n

Cov(Xk, Xj)

bkbj

}

, (3.9)

P

{

max
m≤k≤n

∣

∣

∣

∣

1

bk

k
∑

j=1

(Xj − EXj)

∣

∣

∣

∣

≥ ε

}

≤ 4

ε2

{ m
∑

j=1

V ar(Xj)

b2
m

+
∑

1≤k 6=j≤m

Cov(Xk, Xj)

b2
m

+

n
∑

j=m+1

V ar(Xj)

b2
j

+
∑

m+1≤k 6=j≤n

Cov(Xk, Xj)

bkbj

}

. (3.10)

But there are some typos in (3.9) and (3.10). (3.9) and (3.10) should be replaced by

P

{

max
1≤k≤n

∣

∣

∣

∣

1

bk

k
∑

j=1

(Xj − EXj)

∣

∣

∣

∣

≥ ε

}

≤ 8

ε2

{ n
∑

j=1

V ar(Xj)

b2
j

+
∑

1≤k 6=j≤n

Cov(Xk, Xj)

bkbj

}

, (3.11)

P

{

max
m≤k≤n

∣

∣

∣

∣

1

bk

k
∑

j=1

(Xj − EXj)

∣

∣

∣

∣

≥ ε

}

≤ 4

ε2

{ m
∑

j=1

V ar(Xj)

b2
m

+
∑

1≤k 6=j≤m

Cov(Xk, Xj)

b2
m

+ 8

n
∑

j=m+1

V ar(Xj)

b2
j

+ 8
∑

m+1≤k 6=j≤n

Cov(Xk, Xj)

bkbj

}

, (3.12)
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respectively. Since {bn, n ≥ 1} is a nondecreasing sequence of positive numbers, the right-

hand side of (3.3) and (3.4) are dominated by the right-hand side of (3.11) and (3.12),

respectively. Hence, Theorem 3.1 improves the result of [6].

Remark 3.2 Under the conditions of Theorem 3.1, Soo[9] obtained the following result:

P

{

max
m≤k≤n

∣

∣

∣

∣

1

bk

k
∑

j=1

(Xj − EXj)

∣

∣

∣

∣

≥ ε

}

≤ 8

ε2

m
∑

j=1

Cov(Xj , Sj)

b2
m

+
16

ε2

n
∑

j=m+1

Cov(Xj , Sj)

b2
j

.

There is also a typo in [9] (the factor 16 should be 64). Since Cov(Xj , Xk) ≥ 0 by the

definition of associated random variables, the right-hand side of (3.4) is dominated by

8

ε2

m
∑

j=1

Cov(Xj , Sj)

b2
m

+
64

ε2

n
∑

j=m+1

Cov(Xj , Sj)

b2
j

.

Hence, Theorem 3.1 improves the result of [9].

Remark 3.3 According to the proof of Theorem 3.1, we can see that (1.2) and (1.3) are

satisfied for associated random variable sequences. Thus, Theorem 2.3 holds for associated

random variable sequences. Furthermore, since
n

∑

j=1

V ar(Xj)

b2
j

+ 2
∑

1≤k<j≤n

Cov(Xk, Xj)

b2
j

≤
n

∑

j=1

V ar(Xj)

b2
j

+
∑

1≤k 6=j≤n

Cov(Xk, Xj)

bjbk
,

n
∑

j=1

V ar(Xj)

b2
j

+ 2
∑

1≤k<j≤n

Cov(Xk, Xj)

b2
j

≤ 2
n

∑

j=1

Cov(Xj , Sj)

b2
j

,

and the integrability of supremum for r = 2 is obtained, the results of Theorem 2.3 for

associated random variable sequences generalize and improve Theorems 3.3–3.4 of [6] and

Theorems 3.1–3.2 of [9].

3.2 Application for strongly positive dependent stochastic sequences

Definition 3.2 A finite collection of random variables X1, X2, · · · , Xn is said to be

strongly positive dependent if

P (X̄1 ∈ Λ1; X̄2 ∈ Λ2) ≥ P (X̄1 ∈ Λ1)P (X̄2 ∈ Λ2) (3.13)

for all Borel measurable and increasing (or decreasing) set pairs (Λ1,Λ2) ⊂ R1 × R2 (A set

Λ is said to be increasing (or decreasing) if x ≤ (or ≥)y implies y ∈ Λ for any x ∈ Λ), where

X̄1 = (Xi, i ∈ I), X̄2 = (Xi, i ∈ Ic), I ⊂ (1, 2, · · · , n), Ic = (1, 2, · · · , n)\I,

R1 = R|I|, R2 = R|Ic| (|I| stands for the base of I).

An infinite sequence {Xn, n ≥ 1} is strongly positive dependent if every finite subcollec-

tion is strongly positive dependent.

Remark 3.4 Zheng[11] has proved that (3.13) is equivalent to

Ef1(X̄1)f2(X̄2) ≥ Ef1(X̄1)Ef2(X̄2)

for all Borel measurable and nonincreasing (or nondecreasing) function pairs (f1, f2) such

that the expectations above are well defined. Thus

Cov(Xj , Xk) = EXjXk − EXjEXk ≥ 0 for all j, k ≥ 1.
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Lemma 3.3([11], Theorem 1) Let {Xn, n ≥ 1} be a mean zero strongly positive dependent

stochastic sequence with finite second moment and q > 1. Then for each n ≥ 1,

E
(

max
1≤i≤n

|Si|
)q

≤
(

q

q − 1

)q

E|Sn|q. (3.14)

Theorem 3.2 Let {Xn, n ≥ 1} be a sequence of strongly positive dependent random

variables with finite second moment and {bn, n ≥ 1} be a nondecreasing sequence of positive

numbers. Then for any ε > 0 and any positive integers m < n,

P

{

max
1≤k≤n

∣

∣

∣

∣

1

bk

k
∑

j=1

(Xj − EXj)

∣

∣

∣

∣

≥ ε

}

≤ 16

ε2

{ n
∑

j=1

V ar(Xj)

b2
j

+ 2
∑

1≤k<j≤n

Cov(Xk, Xj)

b2
j

}

, (3.15)

P

{

max
m≤k≤n

∣

∣

∣

∣

1

bk

k
∑

j=1

(Xj − EXj)

∣

∣

∣

∣

≥ ε

}

≤ 4

ε2

{ m
∑

j=1

V ar(Xj)

b2
m

+ 2
∑

1≤k<j≤m

Cov(Xk, Xj)

b2
m

+ 16

n
∑

j=m+1

V ar(Xj)

b2
j

+ 32
∑

m+1≤k<j≤n

Cov(Xk, Xj)

b2
j

}

. (3.16)

Proof. By the definition of a strongly positive dependent random variable, we can see that

{Xn −EXn, n ≥ 1} is also a sequence of strongly positive dependent random variables. By

Lemma 3.3 for q = 2, we have

E

(

max
1≤i≤n

∣

∣

∣

∣

i
∑

j=1

(Xj − EXj)

∣

∣

∣

∣

2)

≤ 4E

( n
∑

j=1

(Xj − EXj)

)2

. (3.17)

Similarly to the proof of (3.17), we can get (1.2) for C = 4. Therefore, (3.15) and (3.16)

follow from Theorem 2.1 and Theorem 2.2, respectively.

3.3 Application for martingale difference sequences

Definition 3.3 Let {Xn, n ≥ 1} be a sequence of random variables and {Fn, n ≥ 1} be

an increasing sequence of σ fields with Fn ⊂ F for each n ≥ 1. If Xn is Fn measurable for

each n ≥ 1, then σ fields {Fn, n ≥ 1} are said to be adapted to the sequence {Xn, n ≥ 1}
and {Xn, Fn, n ≥ 1} is said to be an adapted stochastic sequence.

If {Xn, Fn, n ≥ 1} is an adapted stochastic sequence with

E(Xn|Fn−1) = 0 a.s. for each n ≥ 2,

then the sequence {Xn, Fn, n ≥ 1} is called a martingale difference sequence.

If {Xn, Fn, n ≥ 1} is an adapted stochastic sequence with

E(Xn|Fn−1) = Xn−1 a.s. for each n ≥ 2,

then the sequence {Xn, Fn, n ≥ 1} is called a martingale.
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Remark 3.5 By the definition of a martingale difference sequence, we can see that

EXn = 0, n ≥ 1.

Let j < k, Xj ∈ Fj ⊂ Fk−1. Then

EXjXk = E{E(XjXk|Fk−1)} = E{XjE(Xk|Fk−1)} = 0.

Thus

Cov(Xj , Xk) = EXjXk − EXjEXk = 0, j 6= k.

Lemma 3.4([12], Corollary 3.3.2) Let {Tn, n ≥ 1} be a martingale or nonnegative sub-

martingale. For fixed q > 1, suppose that

E|Tn|q < ∞, n ≥ 1.

Then

E
(

max
1≤i≤n

|Ti|
)q

≤
( q

q − 1

)q

E|Tn|q, n ≥ 1.

Corollary 3.1 Let {Xn, n ≥ 1} be a martingale difference sequence with finite second

moment and {bn, n ≥ 1} be a nondecreasing sequence of positive numbers. Then for any

ε > 0 and any positive integers m < n,

P

{

max
1≤k≤n

∣

∣

∣

∣

1

bk

k
∑

j=1

Xj

∣

∣

∣

∣

≥ ε

}

≤ 16

ε2

n
∑

j=1

V ar(Xj)

b2
j

, (3.18)

P

{

max
m≤k≤n

∣

∣

∣

∣

1

bk

k
∑

j=1

Xj

∣

∣

∣

∣

≥ ε

}

≤ 4

ε2

{ m
∑

j=1

V ar(Xj)

b2
m

+ 16
n

∑

j=m+1

V ar(Xj)

b2
j

}

. (3.19)

Proof. It is a simple fact that

EXn = 0.

Denote

Wn
.
=

n
∑

i=1

Xi, n ≥ 1.

Thus, {Wn, n ≥ 1} is a martingale satisfying the conditions of Lemma 3.4. By Lemma 3.4

for q = 2, we have

E

(

max
1≤i≤n

∣

∣

∣

∣

i
∑

j=1

Xj

∣

∣

∣

∣

2)

≤ 4E

( n
∑

j=1

Xj

)2

. (3.20)

Similarly to the proof of (3.20), we can get (1.2) for C = 4. Therefore, (3.18) and (3.19)

follow from Theorems 2.1 and 2.2, respectively.

Remark 3.6 According to the proof of Theorems 3.2 and 3.3, we can see that (1.2)

and (1.3) are satisfied for strongly positive dependent stochastic sequences and martingale

difference sequences, and thus, Theorem 2.3 also holds for them.
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