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Abstract: In this paper we mainly concern the persistence of lower-dimensional

invariant tori in generalized Hamiltonian systems. Here the generalized Hamiltonian

systems refer to the systems which may admit a distinct number of action and angle

variables. In particular, system under consideration can be odd dimensional. Under

the Rüssmann type non-degenerate condition, we proved that the majority of the

lower-dimension invariant tori of the integrable systems in generalized Hamiltonian

system are persistent under small perturbation. The surviving lower-dimensional tori

might be elliptic, hyperbolic, or of mixed type.
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1 Introduction and Result

The classical KAM theory, established by Kolmogorov[1], Arnold[2] and Moser[3] in the last

century, is a landmark of the development of Hamiltonian systems. It gives a reasonable

explanation for the stability of solar system and brings a new method into the study of

Hamiltonian systems. The classical KAM theory established on 2n-dimensional smoothly

symplectic manifold asserts that the majority of non-resonant tori of integrable systems can

survive small perturbations under the Kolmogorov non-degenerate condition. In 1967, Mel-

nikov formulated a KAM type persistence result for lower-dimensional elliptic tori of nearly

integrable Hamiltonian systems. But the complete proof was not carried out until fifteen

years later it was provided by Eliasson[4], Kuksin[5], Pöschel[6]. The persistence of hyperbolic
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type lower dimensional invariant tori was treated in [7]–[12]. Parasyuk[13] foremost studied

the existence of invariant tori for Hamiltonian systems with distinct numbers of action-angle

variables (coisotropic).

As the generalization of the traditional Hamiltonian systems which defined on a sym-

plectic manifold, the generalized Hamiltonian systems are defined on a Poisson manifold

which can be odd dimensional and structurally degenerate. The generalized Hamiltonian

systems can describe more general mathematical models, so in the study of the generalized

Hamiltonian systems there are some practical meanings. The symplectic structure brings

some special properties for the classical Hamiltonian systems. Since there is no symplec-

tic structure for odd-dimensional systems, some results in classical Hamiltonian systems no

longer hold. Hence the development of the KAM theory for odd-dimensional system has

been considered as a challenging problem (see [14]–[16]). The theory of KAM type has

been developed for volume preserving flows in [17] and [18]. For the case of diffeomorphism

which is volume preserving or satisfies the intersection property, it was treated by Cheng

and Sun[19], and Xia[20].

In paper [21], the authors established a KAM type theorem for the generalized Hamil-

tonian systems. In paper [22], the authors formulated a KAM type persistence result for

lower-dimensional hyperbolic tori of nearly integrable generalized Hamiltonian systems. In

this paper, we proved that the majority of the lower-dimensional invariant tori in the gen-

eralized Hamiltonian system are persistent under small perturbations, the surviving lower-

dimensional tori might be elliptic, hyperbolic, or of mixed type.

Consider the Poisson manifold (G×T n×R2m, ω2), where G ⊂ Rl is a bounded, connected,

closed region, T n is the standard n-torus, and l, n, m are positive integers. The structure

matrix

I = (Aij) : G × T n × R2m → R(l+n+2m)×(l+n+2m)

associated with 2-form ω2 is a real analytic, anti-symmetric, matrix valued function and

satisfies the following two conditions:

(i) rank I > 0;

(ii) Jacobi identity
l+n+2m∑

t=1

Ait
∂Ajk

∂wt
+ Ajt

∂Aki

∂wt
+ Akt

∂Aij

∂wt
= 0

holds for all w = (y, x, z) ∈ G × T n × R2m, i, j, k = 1, 2, · · · , l + n + 2m.

On the Poisson manifold (G × T n × R2m, ω2), we consider the generalized Hamiltonian

system

H(y, x, z) = h(y) +
δ

2
〈z, M(y)z〉+ εP (y, x, z), (1.1)

where x ∈ T n, y ∈ G ⊂ Rl, z ∈ R2m, G is a bounded closed region, δ and ε are small pa-

rameters satisfying ε ≪ δ, h(y), M(y) and P (y, x, z) are real analytic functions respectively,

and M(y) is a symmetric matrix.

The 2-form ω2 is required to be invariant relative to T n. Suppose that the unperturbed
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system of (1.1) is completely integrable, i.e.,

y = (y1, · · · , yl)
⊤ ∈ G

satisfies the involution conditions

{yi, yj} = 0, i, j = 1, 2 · · · l.
And suppose that the part corresponding to the variable z of the structure matrix I is of

constant coefficients. That is, in coordinates (y, x, z) the Poisson structure I satisfies

{yj, yk} = {yj, zl} = {xi, zl} = 0

and is standard symplectic in the normal z-direction, while

{xi, yk} = Bik(y) and {xi, xj} = Cij(y)

are given y-dependent matrices. So the structure matrix I have the following form

I(y) =

(

E(y) O1

O2 J

)

,

where

E(y) =

(

O B(y)

−B(y)T C(y)

)

,

O = Ol×l, O1 = O(l+n)×2m, O2 = O2m×(l+n),

B(y) = Bl×n(y), C(y) = Cn×n(y), CT = −C,

and J is the standard 2m × 2m symplectic matrix.

For the Poisson manifold (G × T n × R2m, ω2), the 2-form ω2 or the structure matrix I

is degenerate for all y ∈ G when l > n or l + n is odd. This kind of singularity shows an

essential difference between a generalized Hamiltonian system and a standard one.

The equation of motions of (1.1) associated to the 2-form ω2 reads as





ẏ

ẋ

ż




 = I(y)∇(h(y) +

δ

2
〈z, M(y)z〉 + εP (y, x, z)). (1.2)

Let

E(y)gradT
(y,x)h(y) = (

l
︷ ︸︸ ︷

0, 0, · · · , 0, ω(y))T ,

where gradT
(y,x)h denotes the gradient vector of the function h with respect to (y, x). When

ε = 0, the system (1.2) obviously has invariant torus

Ty0 = {(y, x, z) : y = y0, x ∈ T n, z = 0}, y0 ∈ G,

carrying parallel flows

x = x0 + ω(y0)t.

Remark 1.1 There are some backgrounds for studying the system (1.1). When we study

the invariant tori on resonant surface, by some reasonable restrictions on the perturbation,

the system can be reduced to the form of (1.1), where δ and ε are small parameters satisfying

ε ≪ δ (see [23]).
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Now we study the persistence of the invariant tori under small perturbation. We make

the following hypothesis:

i) For all x ∈ G, rank
{∂iω(y)

∂yi
: |i| ≤ n − 1

}

= n, where i ∈ Zn
+, |i| =

n∑

j=1

|ij |;

ii) There exists a constant d > 0 such that |detM(y)| ≥ d for all y ∈ G.

Our main result is as follows:

Theorem A Consider (1.1) and assume the non-degenerate conditions i) and ii). Then

there are sufficiently small ε0, δ0 > 0 (ε0 ≪ δ0) and a family of nonempty Cantor sets

Gε ⊂ G such that when 0 < ε < ε0, 0 < δ < δ0, the following holds:

1) For any y0 ∈ Gε, the invariant torus

Ty0 = {(y, x, z) : y = y0, x ∈ T n, z = 0}
of the unperturbed system persists and gives rise to an analytic, invariant torus of the per-

turbed system whose total frequency is of Diophantine type (γ, τ), where

0 < γ ≤ ε
1

24×4m2 , τ > max{0, l − 1, n− 1}.
Moreover, the perturbed tori forms a Whitney smooth family;

2) The Lebesgue measure

|G\Gε| = O(ε
1

24×4m2(a−1) ) → 0 (ε → 0),

where

a =

{

2, n = 1;

max(l, n), n > 1.

Remark 1.2 Theorem A shows that for the generalized Hamiltonian systems (1.1), we

only require that M(y) is a non-degenerate matrix, so the surviving tori might be of elliptic,

hyperbolic or mixed type.

Remark 1.3 If δ is not small, say δ = 1, to get a similar result, one has to require more

restrictions involving the normal frequencies such as: there exists a constant K > 0 such

that for 0 < |k| ≤ K,

|{y ∈ G :
√
−1〈k, ω(y)〉 − λi(y) − λj(y) = 0}| = 0, 1 ≤ i, j ≤ 2m,

where λi(y), λj(y), 1 ≤ i, j ≤ 2m are 2m eigenvalues of M(y)J (see (2.23), Lemma 5.3).

Throughout the paper, we shall use the symbol | · | to denote norm of vectors, matrices,

absolute value of functions and the Lebesgue measure of sets, etc., and use | · |D to denote

the supremum norm of functions on a domain D. They will have obvious meaning unless it

is specified otherwise. Also, for any two complex column vectors ξ, η of the same dimension,

〈ξ, η〉 always stands for ξT η.

Let us outline the proof of Theorem A. In Section2, we describe one cycle of KAM steps.

In Section 3 we provide an iteration lemma, which shows the validity of each step. In Section

4, we give the proof of Theorem A.
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2 KAM Step

For any y0 ∈ G, the Taylor expansion of Hamiltonian (1.1) about y0 reads as

H(y, y0, x, z) = h(y0) + 〈Ω(y0), y − y0〉 +
δ

2
〈z, M(y0)z〉

+ (O(|y − y0|2) + δO(|z|2|y − y0|) + εP (y, x, z))

= N0 + P0, (2.1)

where

Ω(y0) =
∂h(y)

∂y

∣
∣
∣
y=y0

.

Using the transformation y − y0 → y, we have

H(y, y0, x, z) = h(y0) + 〈Ω(y0) , y〉 +
δ

2
〈z, M(y0)z〉

+ (O(|y|2) + δO(|z|2|y|) + εP (y + y0, x, z))

= N0 + P0, (2.2)

where

N0 = h(y0) + 〈Ω(y0), y〉 +
δ

2
〈z, M(y0)z〉.

Thus, as ε = 0, for any y0 ∈ G, the invariant torus

Ty0 = {(y0, x, 0), x ∈ T n}
of (2.1) corresponds to the invariant torus

T0 = {(0, x, 0), x ∈ T n}
of (2.2).

For convenience, in the following we study the Hamiltonian (2.2) on

D(s, r) × G = {|y| < s2, |Im x| < r, |z| < s} × G,

where M(y0) is a real analytic function defined on G and P (y, y0, x, z), I(y + y0) are real

analytic functions defined on D(s, r)×G respectively, and M(y) is a symmetric matrix. To

begin with the induction, we initially set O0 = G, M0 = M , β0 = s0, s0 = ε
1
4 , δ = ε

1
12 ,

µ0 = ε
1
8 , γ0 = ε

1
24×4m2 . Without loss of generality, we assume that 0 < γ0, β0, µ0 < 1.

Clearly, as ε is a sufficiently small parameter we have

|P0|D(s0,r0)×O0
≤ δγ4m2

0 s2
0µ0.

Now suppose at a KAM step, say the ν-step, we have arrived at a Hamiltonian

H = Hν = Nν + Pν , (2.3)

N = hν(y0) + 〈Ων(y0), y〉 +
δ

2
〈z, Mν(y0)z〉,

where (y, x) ∈ Dν = D(sν , rν), rν ≤ r0, sν ≤ s0, y0 ∈ Oν , and hν(y0), Mν(y0) are real

analytic functions defined on Oν , and moreover

|Pν |Dν×Oν
≤ δγ4m2

ν s2
νµν . (2.4)

We will construct a generalized canonical transformation Φν+1, which transforms the Hamil-

tonian (2.3) in a smaller domain to the desired Hamiltonian into the nest KAM cycle (the

(ν + 1)-th KAM step):

Φν+1 : Dν+1 ×Oν+1 → Dν ,Dν+1 ⊂ Dν ,
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Hν+1 = Hν ◦ Φν+1

= hν+1(y0) + 〈Ων+1(y0), y〉 +
δ

2
〈z, Mν+1(y0)z〉 + Pν+1(y, y0, x, z)

= Nν+1 + Pν+1,

and prove

|Pν+1|Dν+1×Oν+1 ≤ δγ4m2

ν+1 s2
ν+1µν+1. (2.5)

Let

τ > max{0, l(l − 1) − 1, n(n − 1) − 1}
be fixed. Inductively define

rν+1 = r0

[

1 − 1

8

ν+1∑

i=1

(7

8

)i+1]

, γν+1 =
γν

2
+

γ0

4
, sν+1 = ανsν ,

βν+1 =
βν

2
+

β0

4
, β0 = s0, µν+1 = α

1
2
ν µν , αν = µ

1
3
ν , µν = s

1
2
ν ,

Kν =
[(

log
1

µν

)

+ 1
]3

, Γν(rν − rν+1) =
∑

0<|k|≤K+

|k|τ+2e−
rν−rν+1

16 ,

D∗ = D
(s

4
, r+ +

5

8
(r − r+)

)

, D∗∗ = D
(s

2
, r+ +

6

8
(r − r+)

)

,

D∗∗∗ = D(s, r+ +
7

8
(r − r+)), Dν = D(sν , rν),

D̃(β+) = D(β+, rν+1 +
5

8
(rν − rν+1)), c = max{1, c1, · · · , c8, c0},

Di = D(iανsν , rν+1 +
i − 1

8
(rν − rν+1)), i = 1, 2, · · · , 8.

2.1 Truncation

Consider the Taylor-Fourier series of P (y, y0, x, z):

P (y, y0, x, z) =
∑

i∈Zl

+, j∈Z2m

+ , k∈Zn

Pkijy
izje

√
−1〈k, x〉. (2.6)

Let

R =
∑

|k|≤K+, 2|i|+|j|<3

Pkijy
izje

√
−1〈k, x〉

=
∑

|k|≤K+, 2|i|+|j|<3

(Pk00 + 〈Pk10, y〉 + 〈Pk01, z〉 + 〈z, Pk02z〉)e
√
−1〈k, x〉 (2.7)

be the truncation of P , where K+ is the truncation order in x. Let

P − R =
( ∑

|k|>K+

+
∑

|k|≤K+, 2|i|+|j|≥3

)

Pkijy
izje

√
−1〈k, x〉. (2.8)

Lemma 2.1 Assume that

H1) α <
1

32
;

H2)

∫ ∞

K+

λne−λ
r−r+

16 dλ ≤ µ.

Then there exists a constant c1 such that

|P − R|D8 ≤ c1δγ
4m2

s2µ2. (2.9)
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Proof. Let

I =
∑

|k|>K+

Pkijy
izje

√
−1〈k, x〉,

II =
∑

|k|≤K+, 2|i|+|j|≥3

Pkijy
izje

√
−1〈k, x〉

=

∫
∂q

∂uq

∑

|k|≤K+, 2|i|+|j|≥3

Pkijy
izje

√
−1〈k, x〉du,

where u = (y, z),

∫

is the q-order anti-derivative of
∂q

∂uq
with |q| = 3. Obviously,

P − R = I + II.

By the Cauchy estimate, we have
∣
∣
∣

∑

i∈Zl

+, j∈Z2m

+

Pkijy
izj
∣
∣
∣ ≤ |P |D(s,r)e

−|k|r ≤ δγ4m2

s2µe−|k|r. (2.10)

By H2), we have

|I|D∗∗∗
≤

∑

|k|>K+

δγ4m2

s2µe−|k|re|k|(r++ 7
8 (r−r+))

≤ δγ4m2

s2µ
∑

|λ|≥K+

|λ|ne−|λ| r−r+
8

≤ δγ4m2

s2µ

∫ ∞

K+

λne−λ
r−r+

16 dλ

≤ δγ4m2

s2µ2. (2.11)

So

|P − I|D∗∗∗
≤ |P |D(s,r) + |I|D∗∗∗

< 2δγ4m2

s2µ. (2.12)

By H1) and D8 ⊂ D∗∗∗, it follows from the Cauchy estimate on D∗∗∗ that

|II|D8 ≤
∣
∣
∣

∫
∂q

∂uq

∑

|k|≤K+, 2|i|+|j|≥3

Pkijy
izje

√
−1〈k, x〉du

∣
∣
∣
D8

≤
∣
∣
∣

∫ ∣
∣
∣

∂q

∂uq
(P − I)

∣
∣
∣
D∗∗∗

du
∣
∣
∣
D8

≤ 2δγs2µ
( 1

s − αs

)3∣
∣
∣

∫

du
∣
∣
∣
D8

≤ 2δγs2µ
( 1

s − 8αs

)3

(8αs)
3

≤ 2δ83
(4

3

)3

γ4m2

s2µ2, (2.13)

where u = (y, z), |q| = 3. From the estimate above we have

|P − R|D8 ≤ c1δγ
4m2

s2µ2. (2.14)
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2.2 Modified Homology Equation

In the following we will find a Generalized Hamiltonian F such that, under the transforma-

tion of the time−1 map Φ+ generated by XF , we can eliminate all resonant terms in

R =
∑

i∈Zl

+, j∈Z2m

+ , k∈Zn

Pkijy
izje

√
−1〈k, x〉, 0 < |k| ≤ K+, 2|i| + |j| < 3.

We first construct a generalized Hamiltonian F of the form:

F =
∑

k∈Zn, 0<|k|≤K+,

(Fk00 + 〈Fk10, y〉 + 〈Fk01, z〉 + 〈z, Fk02z〉)e
√
−1〈k, x〉 + 〈F001, z〉,

(2.15)

such that F satisfies

{N, F} + R − [R] + 〈P001, z〉 − Q = 0, (2.16)

where

[R] =
1

(2π)n

∫

T n

R(y, x, z)dx,

Q =
∑

0<|k|≤K+

√
−1〈k, (BT (y + y0) − BT (y0))Ω(y0)〉

+ (Fk00〈Fk10, y〉 + 〈Fk01, z〉 + 〈z, Fk02z〉)e
√
−1〈k, x〉.

Putting (2.7), (2.15) into (2.16) and comparing the coefficients we obtain

〈k, ω(y0)〉Fk00 = − Pk00, (2.17)

〈k, ω(y0)〉Fk10 = − Pk10, (2.18)

〈k, ω(y0)〉Fk01 + δM(y0)JFk01 = − Pk01, (2.19)

〈k, ω(y0)〉Fk02 + δM(y0)JFk02 − δFT
k02JM(y0) = − Pk02, (2.20)

δM(y0)JF001 = − P001, (2.21)

where

ω(y0) = −BT (y0)Ω(y0).

(2.19) is equivalent to

[
√
−1〈k, ω(y0)〉I2m + δM(y0)J ]Fk01 = −Pk01. (2.22)

(2.20) is equivalent to

[
√
−1〈k, ω(y0)〉I4m2 + δM(y0)J ⊗ I2m + δI2m ⊗ (M(y0)J)]Fk02 = −Pk02, (2.23)

where ⊗ denote the Kronecker product of two matrices. The above linear systems are

solvable if the coefficient matrices are nonsingular. Let D1 and D2 be the coefficient matrices

of (2.22) and (2.23), respectively. Consider the following set:

O+ ={y0 ∈ O : |〈k, ω(y0)〉| >
γ

|k|τ ,

|detD1| >
( γ

|k|τ
)2m

, |detD2| >
( γ

|k|τ
)4m2

, k ∈ Zn, 0 < |k| ≤ K+}.

Obviously, (2.17)–(2.21) are solvable on O+, and the solutions are unique and real analytic.

And by (2.17)–(2.21) we have found the generalized Hamiltonian F and by the argument

above we know that F is real analytic for all y0 ∈ O+, (y, x) ∈ D.
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Let Φ+ = Φ1
F be the time−1 map of the equation of motion associated to F , i.e.,






ẏ

ẋ

ż




 = I(y + y0)∇(F (y, x, z). (2.24)

According to the theory of generalized Hamiltonian, Φ+ is a generalized canonical transfor-

mation, and moreover

H+ = H ◦ φ+

= H ◦ φ1
F

= (N + R) ◦ φ1
F + (P − R) ◦ φ1

F

= N + R + {N, F} +

∫ 1

0

{Rt, F} ◦ φt
F dt + (P − R) ◦ φ1

F

= (N + [R] − 〈P001, z〉) + ({N, F} + R − [R] + 〈P001, z〉 − Q)

+

∫ 1

0

{Rt, F} ◦ φt
F dt + (P − R) ◦ φ1

F + Q

= N + [R] − 〈P001, z〉 +

∫ 1

0

{Rt, F} ◦ φt
F dt + (P − R) ◦ φ1

F + Q, (2.25)

where

Rt = {(1 − t)N, F} + R.

Let

h+ = h + P000, (2.26)

Ω+ = Ω + P010, P010 ≤ δγ4m2

µ, (2.27)

ω+ = − BT Ω+, (2.28)

M+ = M +
2

δ
P002, P002 ≤ δγ4m2

µ, (2.29)

N+ = N + [R] − 〈P001, z〉 = h+(y0) + 〈Ω+(y0), y〉 +
δ

2
〈z, M+(y0)z〉, (2.30)

P+ =

∫ 1

0

{Rt, F} ◦ φt
F dt + (P − R) ◦ φ1

F + Q = P1 + P2 + P3. (2.31)

Then

H+ = N+ + P+

is the new generalized Hamiltonian with normal form N+.

2.3 Estimate on the New Hamiltonian

We now give some estimates on F and its derivatives, which are vital in proving the conver-

gence of the transformation sequence and in estimating the new perturbation.

Lemma 2.2 There are constants c2 > 0, c3 > 0 such that
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1) on O+,

|Fk00| ≤ c2|k|τδs2µe−|k|r,

|Fk10| ≤ c2|k|τδµe−|k|r,

|Fk01| ≤ c2|k|τδsµe−|k|r,

|Fk02| ≤ c2|k|τδµe−|k|r,

|F001| ≤ c2δsµ;

2) on D∗∗ ×O+, D̃(β+) ×O+,

|F |, (r − r+)|Fx|, s2|Fy|, s|Fz|, s2|Fzz | ≤ c3δs
2µΓ(r − r+) + c3δs

2µ.

Proof. According to (2.17)–(2.21) and Cauchy’s estimate, we can get the conclusion.

Lemma 2.3 Assume that

H3)
c3δs

2µΓ (r − r+) + c3δs
2µ

r − r+
< 7α2s2;

H4)
c3δs

2µΓ (r − r+) + c3δs
2µ

r − r+
+ c3δµΓ (r − r+) + c3δµ) <

r − r+

8
;

H5) c3δsµΓ (r − r+) + c3δsµ < αs;

H6) c3δµΓ (r − r+) + c3δµ < β − β+.

Then the following hold:

1) Let φt
F be the flow generated by equation (2.26). Then

φt
F : D3 → D4, 0 ≤ t ≤ 1;

2) Φ+ : D+ → D(s, r), D̃(β − β+) → D̃(β);

3) There is a constant c4 such that

|φt
F − id|D̃+×O+

≤ c4δµΓ (r − r+) + c4δµ,

|Dφt
F − Id|D̃+×O+

≤ c4δµΓ (r − r+) + c4δµ,

where 0 ≤ |t| ≤ 1;

4)

|Φ+ − id|D̃+×O+
≤ c4δµΓ (r − r+),

|DΦ+ − Id|D̃+×O+
≤ c4δµΓ (r − r+).

To save space, we omitted the proof of the Lemma.

2.4 Estimation on the New Perturbation

Lemma 2.4 There is a constant c5 > 0, such that when ε is sufficiently small the follow-

ing hold:

|h+ − h|O+ ≤ c5δγ
4m2

s2µ,

|Ω+ − Ω |O+ ≤ c5δγ
4m2

µ,

|ω+ − ω|O+ ≤ c5δγ
4m2

µ,

|M+ − M |O+ ≤ c5γ
4m2

µ.
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Proof. The above inequalities obviously come from (2.26)–(2.29).

Lemma 2.5 Assume that

H7) c5γ
4m2

0 δµ <
γ − γ+

Kτ+1
+

.

Then for any y0 ∈ O+, 0 < |k| ≤ K+,

|〈k, ω+(y0)〉| ≥
γ+

|k|τ , |detD1
ν+1| ≥

( γ+

|k|τ
)2m

, |detD2
ν+1| ≥

( γ+

|k|τ
)4m2

.

Proof. By H7) and Lemma 2.4 we have

|〈k, ω+(y0)〉| ≥ |〈k, ω(y0)〉| − c5δγ
4m2

0 µK+ ≥ γ+

|k|τ .

Similarly we can get the other two inequalities.

By the definition of P+, we have

|P+|D+×O+ ≤
3∑

i=1

|Pi|D+×O+ .

Lemma 2.6 Assume that

H8)
3∑

i=1

|Pi|D+×O+ ≤ δγ4m2

+ s2
+µ+.

Then |P+|D+×O+ ≤ δγ4m2

+ s2
+µ+.

3 Iteration Lemma

In this section, we shall prove an iteration Lemma which guarantees the inductive construc-

tion of all the transformation in all KAM steps. Let r0, s0, µ0, O0, H0, N0, e0, Ω0, M0, P0

be given as at the beginning of Section 2, D0 = D(s0, r0), K0 = 0, and Φ0 = id. We define

the following sequences as in Section 2 inductively for all ν = 1, 2, · · · :

rν , sν , µν , Kν , Oν , Dν , D̃ν , Hν , Nν , eν , Ων , Mν , Pν , Φν , ν = 1, 2, · · · ,

where (y, x, z) ∈ Dν , y0 ∈ Oν , ων(y0) = −BT (y0)Ων(y0), eν(y0), Ων(y0), M(y0) are real

analytic functions defined on Oν respectively, and Pν(y, y0, x, z) is a real analytic function

defined on Dν ×Oν .

Lemma 3.1(Iteration Lemma) Let

µ̃ = µ1−σ
0 , σ ≪ 1.

If µ0(ε0) is sufficiently small, then for all ν = 0, 1, · · · the following hold:

1)

|hν − h0|Oν
≤ 2δγ0µ̃, |hν+1 − hν |Oν+1 ≤ δγ0µ̃

2v+1
,

|Ων − Ω0|Oν
≤ 2δγ0µ̃, |Ων+1 − Ων |Oν+1 ≤ δγ0µ̃

2ν+1
,

|ων − ω0|Oν
≤ 2δγ0µ̃, |ων+1 − ων |Oν+1 ≤ δγ0µ̃

2ν+1
,

|Mν − M0|Oν
≤ 2γ0µ̃, |Mν+1 − Mν|Oν

≤ γ0µ̃

2ν+1
,

|Pν |Dν×Oν
≤ δγ4m2

ν s2
νµν .
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2) Φν+1 : D̃ν+1 × Oν+1 → D̃ν is a generalized canonical transformation, and is real

analytic with respect to (y, x, z) ∈ D̃ν+1, y0 ∈ Oν+1; moreover,

Hν+1 = Hν ◦ Φν+1,

and on D̃ν+1 ×Oν+1, we have

|Φν+1 − id|, |DΦν+1 − Id| ≤ µ̃

2ν+1
. (3.1)

3)

Oν+1 ={y0 ∈ Oν : |〈k, ων(y0)〉| >
γν

|k|τ ,

|detD1
ν | >

( γν

|k|τ
)2m

, |detD2
ν | >

( γν

|k|τ
)4m2

, Kν < |k| ≤ Kν+1}.

Proof. To prove parts 1), 2) of Lemma 3.1 we only need to verify the conditions H1)–H8)

in Section 2 for all ν = 0, 1, · · · . By the definition of µν , sν , we have

rν − rν+1 =
1

8

(7

8

)2(7

8

)ν

,

sν+1 = ανsν = µ
1
3
ν sν = (s0)

( 7
6 )ν

,

µν+1 = (µ0)
( 7
6 )ν

.

Notice that

Γν(rν − rν+1) =
∑

0<|k|≤Kν+1

|k|τ+2e−
rν−rν+1

16

≤
∫ ∞

1

λτ+2+ne−
rν−rν+1

16 dλ

≤ ([τ ] + 3 + n)!
[

16 · 8
(8

7

)2(8

7

)ν]([τ ]+3+n)

≤ c∗1 · (c∗2)ν , (3.2)

where

c∗1 = ([τ ] + 3 + n)!
[

16 · 8
(8

7

)2]([τ ]+3+n)

, c∗2 =
(8

7

)([τ ]+3+n)

.

For any a > 0, choose λ ≫ 1, such that

µ0 <
1

λ6 1
a

≪ 1.

Then

µ1 = µ
1
6
0 µ0 <

1

λ
1
a

µ0,

µ2 = µ
1
6
1 µ1 < µ

1
6
0 µ1 <

1

λ
1
a

1

λ
1
a

µ0,

...

µν = µ
1
6
ν−1µν−1 < µ

1
6
0 µν−1 < · · · <

1

λ
ν

a

µ0,

and moreover

µa
ν <

1

λν
µa

0 , ν = 1, 2, · · · (3.3)

By the definition of αν , H1) is obvious as ε is sufficiently small.

By the definition of rν , sν , µν , Kν+1, when ε is sufficiently small we have
(rν − rν+1)

16
log

1

µν
= − 1

16

(7

8

)2(7

8

)ν(7

6

)ν

log µ0 ≥ 1,
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log(n + 1)! + 3n log[log
1

µν
+ 1] − rν − rν+1

16
[log

1

µν
+ 1]3

≤ log(n + 1)! + 3n log[log
1

µν
+ 1] − 3

(

log
1

µν

)

≤ − log
1

µν
,

so ∫ ∞

Kν+1

λne−λ(rν−rν+1)/16dλ ≤ (n + 1)!Kn
ν+1e

−Kν+1(rν−rν+1)/16 ≤ µν ,

i.e., H6) and H2) hold.

Similarly H3), H4), H5), H7) and H8) can be verified.

It is obvious that 3) holds for ν = 0. Now we suppose that for some ν > 0 3) holds.

Then by Lemma 2.5,

Oν ={y0 ∈ Oν : |〈k, ων(y0)〉| >
γν

|k|τ ,

|detD1
ν | ≥

( γν

|k|τ
)2m

, |detD2
ν | ≥

( γν

|k|τ
)4m2

, 0 < |k| ≤ Kν}.
So

Oν+1 ={y0 ∈ Oν : |〈k, ων(y0)〉| >
γν

|k|τ ,

|detD1
ν | ≥

( γν

|k|τ
)2m

, |detD2
ν | ≥

( γν

|k|τ
)4m2

, 0 < |k| ≤ Kν+1}

={y0 ∈ Oν : |〈k, ων(y0)〉| >
γν

|k|τ ,

|detD1
ν | ≥

( γν

|k|τ
)2m

, |detD2
ν | ≥

( γν

|k|τ
)4m2

, Kν < |k| ≤ Kν+1},
which completes the proof of the Lemma.

4 Proof of the Main Result

Let µ̃ = µ1−σ
0 and σ ≪ 1 sufficiently small. Then Lemma 3.1 holds for all ν = 0, 1, 2, · · · .

Denote

Ψν = Φ1 ◦ Φ2 ◦ · · ·Φν , ν = 1, 2, · · · .

By Lemma 3.1 we have

Dν+1 ×Oν+1 ⊂ Dν ×Oν , Ψν : D̃ν ×Ov+1 → D0,

H ◦ Ψν = Hν = Nν + Pν , Nν = eν(y0) + 〈Ων(y0), y〉 + 〈z, Mν(y0)z〉.
Let

O∗ =

∞⋂

ν=0

Oν , D0 = D
(β0

2
,
15

64
r0

)

, G∗ = D
(β0

2

)

.

By Lemma 3.1, it clear that eν , Ων , Mν converge uniformly on O∗, say, to e∞, Ω∞, M∞
respectively. Hence Nν converges uniformly on D0 ×O∗ to

N∞ = e∞(y0) + 〈Ω∞(y0), y〉 + 〈z, M∞(y)z〉,
which implies the uniform convergence of Ψν . Let Ψν → Ψ∞. Then

Ψ∞ = id +

∞∑

i=1

(Ψν − Ψν−1), |Ψ∞ − id|D0 = O(µ̃) = O(µ1−σ
0 ).
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Thus Ψν is uniformly close to the identify and is real analytic on D
(β0

2
,
35

64
r0

)

. Similarly,

one can show the uniform convergence of DΨ∞. By a standard argument using the Whitney

extension theorem, one can further show that Ψ∞ is Whitney smooth with respect to y0 ∈
O∗.

By Lemma 3.1, 2) we have

|Φν − id|D0×O∗
≤ µ̃

2ν
.

By the definition of Ψν , we have

Ψν = id +

ν∑

i=1

(Ψν − Ψν−1),Ψ1 − Ψ0 = Φ1 − id,

|Ψν − Ψν−1|D0×O∗
= |Φ1 ◦Φ2 · · ·Φν − Φ1 ◦ Φ2 · · ·Φν−1|D0×O∗

=
∣
∣
∣

∫ 1

0

D(Φ1 ◦ Φ2 · · ·Φν−1)(id + θ(Φν − id))dθ(Φν − id)
∣
∣
∣
D0×O∗

≤ |DΦ1(Φ2 ◦ · · · ◦ Φν−1)(id + θ(Φν − id))|D0×O∗
· · ·

|DΦν−1(id + θ(Φν − id))|D0×O∗
|Φν − id|D0×O∗

≤
(

1 +
µ̃

2

)

· · ·
(

1 +
µ̃

2ν−1

) µ̃

2ν

≤ eµ̃ µ̃

2ν
,

so Ψν converge uniformly on D0 ×O∗. Let Ψν → Ψ∞. Then

Ψ∞ = id +

∞∑

i=1

(Ψν − Ψν−1), |Ψ∞ − id|D0×O∗
= O(µ̃) = O(µ

(1−σ)
0 ).

This indicates that Ψν are uniformly close to the identity, and real analytic on D0. In

the same way we can prove the uniform convergence of DΨν . By the standard Whitney

extension theorem, we can prove that, for all y0 ∈ O∗, Ψ∞ are Whitney smooth. Hence

Pν = H ◦ Ψν − Nν

converges uniformly on D0 ×O∗, say, to

P∞ = H ◦ Ψ∞ − N∞.

By Lemma 3.1, we have

|Pν |Dν
≤ δγ4m2

ν s2
νµν .

Thus

|∂p
z∂l

yP∞|D(0,
15r0
64 ) = 0, |p| + 2|l| ≤ 2.

So for any y0 ∈ O∗, the generalized Hamiltonian

H∞ = N∞ + P∞

admits an analytic, quasi-periodic, invariant torus

Ty0 = {0} × {0} × T n

with Diophantine frequency

ω∞(y0) = −BT (y0)Ω∞(y0).

Moreover, these invariant tori form a Whitney smooth family.

For the measure estimate 3), it has been proved in detail in [22], and therefore we state

it without proof here.
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This completes the proof of Theorem A.

Below, we list three technical Lemmas which have been used in the previous sections.

5 Technical Lemmas

Lemma 5.1
[24] Let Λ ⊂ R

d (d > 1) be a bounded closed region and suppose that g :

Λ → R
d satisfies

rank
{∂αg

∂λα
: |α| ≤ d − 1

}

= d.

Then for a fixed τ > d(d − 1) − 1,
∣
∣
∣

{

λ ∈ Λ : | < g(λ), k > | ≤ γ

|k|τ
}∣
∣
∣ ≤ c(Λ, d, τ)

( γ

|k|τ+1

) 1
d−1

, k ∈ Z
d \ {0}, γ > 0.

Lemma 5.2 Let G ⊂ Rn, ω(y) : G → Rn is real analytic and for all y ∈ G

rank
{∂iω(y)

∂yi
: |i| ≤ n − 1

}

= n, where i ∈ Zn
+, |i| =

n∑

j=1

|ij |. (5.1)

Denote

Gk =
{

y : |〈k, ω(y)〉 + g(y)| ≤ γ

|k|τ
}

, k ∈ Zn\{0}.

Then there exist constants c > 0 and η > 0, such that if

|g(y)|Cn−1 ≤ η,

then

|Gk| ≤ c
( γ

|k|τ+1

) 1
n−1

.

Proof. According to the proof of Lemma 2.4 of [24], Lemma 5.2 can be easily proved.

Lemma 5.3 Let λ1(y), · · · , λ2m(y) be eigenvalues of M(y)J . Then the following hold:

for all k ∈ Zn

det(
√
−1〈k, ω(y)〉I2m − M(y)J) =

2m∏

i=1

(
√
−1〈k, ω(y)〉 − λi(y)),

det[
√
−1〈k, ω(y)〉I4m2 − (M(y)J) ⊗ I2m − I2m ⊗ (M(y)J)]

=

2m∏

i,j=1

(
√
−1〈k, ω(y)〉 − λi(y) − λj(y)).

Proof. Since, for any square matrices A, B, C, D of the same dimension, we have

(A ⊗ B)(C ⊗ D) = (AC ⊗ BD).

It follows that

(T−1 ⊗ T−1)((MJ) ⊗ I2m + I2m ⊗ (MJ))(T ⊗ T ) = Ê ⊗ I2m + I2m ⊗ Ê.

So

det[
√
−1〈k, ω(y)〉I4m2 − (M(y)J) ⊗ I2m − I2m ⊗ (M(y)J)]

= det[
√
−1〈k, ω(y)〉I4m2 − Ê ⊗ I2m − I2m ⊗ Ê]

=

2m∏

i,j=1

(
√
−1〈k, ω(y)〉 − λi(y) − λj(y)).

The other equality can be proved similarly.
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