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Abstract: We discuss the quenching phenomena for a system of heat equations cou-

pled with nonlinear boundary flux. We determine a critical value for the exponents in

the boundary flux, such that only in the super critical case the simultaneous quench-

ing can happen for any solution.
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1 Introduction

This paper is devoted to discussing the quenching phenomena for the following parabolic

system with the nonlinear boundary flux of negative exponents






















∂u

∂t
= ∆u,

∂v

∂t
= ∆v, for (x, t) ∈ B × (0, T ),

∂u

∂η
= −v−p,

∂v

∂η
= −u−q, for (x, t) ∈ ∂B × (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x), for x ∈ B,

(1.1)

where B is the unit ball in R
n, η is the unit outward normal to ∂B, p, q > 0, and u0(x), v0(x)

are radially symmetric, positive, smooth and satisfy some suitable compatibility conditions

on the boundary.

Quenching phenomena has been studied by many authors for a variety of problems (see

for instance [1]–[10] and the references therein). In [1]–[3], for the one-dimensional case, the

quenching phenomena for the system of heat equations with coupled nonlinear boundary

sources and nonlinear inner sources have been studied respectively. Many works are devoted

to investigating the quenching phenomena for a single equation (see [4]–[10]). In terms of a

system of equations, simultaneous or non-simultaneous quenching phenomena, as far as we

know, has been referred by only a few authors.
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The purpose of the present paper is to study the critical quenching exponents of the

problem (1.1). This is motivated by the recent work [1], in which the authors investigated

quite an interesting simultaneous and non-simultaneous quenching phenomena under some

convexity assumptions on the initial data. Roughly speaking, for the simultaneous quenching

phenomenon, we mean that for some time T > 0, each component of the solution (u, v)

vanishes as t → T−, while the time derivatives blow-up at the same time. For the non-

simultaneous quenching phenomenon, we mean that only one component vanishes. What

we want to know is that, for fixed exponents p and q, whether the simultaneous quenching

happens for all solutions with any initial datum. Precisely speaking, we are interested in

seeking a subset Q ⊂ R+×R+, such that for any fixed (p, q) ∈ Q, the simultaneous quenching

phenomenon happens for any solution (u, v), while for any fixed (p, q) ∈ R+ ×R+ \Q, non-

simultaneous quenching phenomenon happens for at least one solution (u, v). In fact, it

shows that

Q = {(p, q); p ≥ 1, q ≥ 1}.

In other words, unconditionally simultaneous quenching phenomenon happens for all solu-

tions if and only if p ≥ 1 and q ≥ 1, namely, pc = 1, qc = 1 are the critical values of the

exponents p and q. It should be noticed that, to establish such a result, the method used in

the previous works could not be directly applied to our problem, since we must remove the

convexity assumptions on the initial data.

This paper is organized as follows. In Section 2, we present our main result and give

some auxiliary lemmas. The proof will be divided into several propositions in the subsequent

section.

2 The Main Result and Auxiliary Lemmas

Let u0, v0 be radially symmetric. Then the corresponding radial problem for the original

problem (1.1) can be given by the following form:






































∂u

∂t
=

∂2u

∂r2
+

n − 1

r

∂u

∂r
,

∂v

∂t
=

∂2v

∂r2
+

n − 1

r

∂v

∂r
, for (r, t) ∈ (0, 1) × (0, T ),

∂u

∂r
(1, t) = −v−p(1, t),

∂v

∂r
(1, t) = −u−q(1, t), for t ∈ (0, T ),

∂u

∂r
(0, t) = 0,

∂v

∂r
(0, t) = 0, for t ∈ (0, T ),

u(r, 0) = u0(r), v(r, 0) = v0(r), for r ∈ (0, 1).

(2.1)

Here, for the sake of the simplicity of notations, we still use (u(r, t), v(r, t)) to denote a

solution, although it is a function with two variables while a solution of (1.1) is a function

with n + 1 variables.

The main result of this paper is the following theorem.

Theorem 2.1 If p, q ≥ 1, then simultaneous quenching must happen for any solution of

the problem (2.1). Otherwise, if min{p, q} < 1, then for every such (p, q), there exists at
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least one initial datum such that non-simultaneous quenching happens for the corresponding

solution.

The result in the theorem will be shown by combining several propositions. On the one

hand, the result follows from these propositions immediately. On the other hand, there are

still some independent interests included in these propositions. For this reason, we will only

present some auxiliary lemmas and then prove these propositions in the subsequent section.

Firstly, we denote by

U(t) = min
r∈[0,1]

u(r, t), V (t) = min
r∈[0,1]

v(r, t).

Using the maximum principle, we have

u ≤ ‖u0‖∞ ≡ M, v ≤ ‖v0‖∞ ≡ N.

Multiplying the first equation of (2.1) by rn−1, integrating over (0, 1), and then combining

with the initial and boundary value conditions, we obtain that
∫ 1

0

rn−1ut(r, t)dr = −v−p(1, t), (2.2)

∫ 1

0

rn−1vt(r, t)dr = −u−q(1, t), (2.3)

moreover,

1

n
U(t) ≤

∫ 1

0

rn−1u(r, t)dr ≤ M/n − N−pt, (2.4)

1

n
V (t) ≤

∫ 1

0

rn−1v(r, t)dr ≤ N/n − M−qt. (2.5)

Hence, for any initial datum of the system (1.1), quenching always happens.

Firstly, because of the absorbing-type condition on the boundary, it is intuitive that for

any initial datum, the solution may decrease near the boundary. We have the following

result.

Lemma 2.1 Let (u, v) be a pair of radial solution of the problem (2.1). Then there exist

r0 ∈ [0, 1) and C > 0 such that

ur(r, t) ≤ −C, vr(r, t) ≤ −C, ∀(r, t) ∈ [r0, 1] × [0, T ). (2.6)

Proof. Noticing that
∂u

∂r
(1, t) = −v−p(1, t) ≤ −N−p,

and using the continuity of ur, we see that there exist r(t) < 1 and ε(t) > 0 such that

ur(r, s) ≤ −1

2
N−p, ∀(r, s) ∈ [r(t), 1] × (t − ε(t), t + ε(t)).

Note that the above inequality also holds as t → T−, and here we take the open neighborhood

by (T − ε(T ), T ). By using the finite covering theorem on [0, T − 1

2
ε(T )], we can choose

such finite neighborhoods such that

[0, T ) =
⋃

i=1,··· ,K

{(ti − εi(t), ti + εi(t))}.
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Let

r0 = max
i=1,··· ,K

{r(ti)} < 1.

Then we have

ur(r, t) ≤ −1

2
N−p, ∀(r, t) ∈ [r0, 1] × [0, T ).

The proof is complete.

Consequently, we have the following lemma without any hypotheses of convexity or

monotonicity on initial data.

Lemma 2.2 Let (u0, v0) be the pair of initial datum which is smooth enough and satisfy

some suitable compatibility conditions. Then there exists a sufficiently large m0 > 0 such

that for any m ≥ m0

rm ≤ −u′

0(r)v
p
0 (r), r ∈ [r0, 1], (2.7)

rm ≤ −v′0(r)u
p
0(r), r ∈ [r0, 1], (2.8)

where r0 is defined as Lemma 2.1.

Proof. Let

f(r) = −u′

0(r)v
p
0 .

Clearly f(r) is smooth enough. Denote

lim
r→1−

f ′(r) = C < ∞.

Note that

lim
r→1−

1 − f(r)

1 − rm
= lim

r→1−

f ′(r)

mrm−1
=

C

m
.

Then there exists a constant m1 > 0 which is sufficiently large such that
C

m
< 1.

Then there exist 0 < δ < 1 such that

rm1 < f(r), r ∈ (δ, 1).

If δ < r0, then the proof is complete. Otherwise, we note that

lim
m→∞

rm = 0

uniformly for any r ∈ [r0, δ]. Moreover, recalling Lemma 2.1, we see that

u′

0(r) < −C, r ∈ [r0, 1].

Then we can choose a sufficiently large m > m1 such that

rm ≤ −u′

0(r)v
p
0 (r), r ∈ [r0, 1].

The inequality (2.8) can be obtained by using a parallel process of arguments, and so we

omit it here.

Lemma 2.3 Let (u, v) be the pair of radial solution of the problem (2.1). Then there

exists a constant C > 0 such that
ut(1, t) ≥ −Cv−p−1(1, t)u−q(1, t),

vt(1, t) ≥ −Cu−q−1(1, t)v−p(1, t).
(2.9)

In addition, the quenching can only happen on the boundary ∂B.
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Proof. Define the following auxiliary functions W and Q:

W (r, t) = rn−1ur + rmv−p, Q(r, t) = rn−1vr + rmu−q.

Then we have that for m > n

Wt − Wrr +
n − 1

r
Wr = m(n − m)v−p − p(1 + p)rmv−p−2(vr)

2

+ 2p(m − n + 1)rm−1v−p−1vr

≤ 0 for r ∈ [r0, 1].

Moreover, for a sufficiently large m > 0, combining with Lemma 2.2, we also have

W (r0, t) ≤ 0, W (1, t) = 0,

W (r, 0) = rn−1u′

0(r) + rmv−p
0 (r) ≤ 0 for r ∈ [r0, 1].

Recalling the maximum principle, we conclude that

W (r, t) ≤ 0 for r ∈ [r0, 1].

Noticing that W (1, t) = 0, then we have Wr(1, t) ≥ 0, namely

Wr(1, t) = (n − 1)ur + urr + mv−p + pv−p−1u−q ≥ 0,

which implies that

ut(1, t) = (n − 1)ur + urr

≥ −mv−p − pv−p−1u−q

= −(muqv + p)v−p−1u−q

≥ −Cv−p−1(1, t)u−q(1, t).

Similar to the proof above, employing a similar analysis for Q, we shall get the second

inequality in (2.9). Since W (r, t) ≤ 0, it is not difficult to check that

ur ≤ −rm−n+1v−p.

Integrating from r to 1 gives

u(r, t) ≥ u(1, t) +

∫ 1

r

sm−n+1v−pds

≥ u(1, t) +
C

m + 2 − n
(1 − rm+2−n),

and the same thing is true for v, which implies that the quenching only happens on the

boundary. The proof is complete.

Lemma 2.4 Assume that

u′′

0(r) +
n − 1

r
u′

0(r) < 0, v′′0 (r) +
n − 1

r
v′0(r) < 0,

and

c0v
−(1+p)/2
0 (1)

(

v′′0 (r) +
n − 1

r
v′0(r)

)

≤ u
−(1+q)/2
0 (1)

(

u′′

0(r) +
n − 1

r
u′

0(r)
)

.

If 0 < p ≤ q < 1, v1−p
0 (r) ≤ Cu1−q

0 (r), then

v1−p(r, t) ≤ Cu1−q(r, t), ∀(r, t) ∈ [0, 1]× [0, T ) (2.10)

and

u−(1+q)/2(1, t)ut(r, t) ≥ c0v
−(1+p)/2(1, t)vt(r, t), (2.11)
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where

0 < C ≤ (1 − p)/(1 − q)

and
√

p/q < c0 < (1 + p)/(
√

C(1 + q)).

While if 0 < p < 1 ≤ q, then the inequality (2.11) is valid too, provided that

c0 =
p

q
and

Np−1 ≥
(

p(q + 1)

q(p + 1)

)2

M q−1.

Proof. According to these assumptions, together with the comparison principle, it is easy

to see that u, v are decreasing in t, namely

ut(r, t) ≤ 0, vt(r, t) ≤ 0.

We only show the first conclusion, and the second one can be proved similarly. Let

Φ(r, t) = v1−p(r, t) − Cu1−q(r, t).

Then we have

Φt − Φrr −
(n − 1

r
+ pv−1vr + qu−1ur

)

Φr + q(1 − p)u−1v−1urvrΦ

=C(p − q)v−1u−qurvr ≤ 0, ∀(r, t) ∈ (0, 1) × (0, T ),

and

Φr(0, t) = 0, ∀t ∈ (0, T ),

Φr(1, t) = (C(1 − q) − (1 − p))u−q(1, t)v−p(1, t) ≤ 0, ∀t ∈ (0, T ),

Φ(r, 0) = v1−p
0 (r) − Cu1−q

0 (r) ≤ 0, ∀r ∈ [0, 1].

By the maximum principle, we arrive at Φ(r, t) ≤ 0, that is

v1−p(r, t) ≤ Cu1−q(r, t), ∀(r, t) ∈ [0, 1] × [0, T ).

Let

J(r, t) = u−(1+q)/2(1, t)ut(r, t) − c0v
−(1+p)/2(1, t)vt(r, t).

Then it is clearly that

J(r, 0) = u
−(1+q)/2
0 (1)

(

u′′

0(r) +
n − 1

r
u′

0(r)
)

− c0v
−(1+p)/2
0 (1)

(

v′′0 (r) +
n − 1

r
v′0(r)

)

≥ 0.

Moreover, by virtue of p ≤ c2
0q, we also see that for any t ∈ (0, T ),

Jr(0, t) = u−(1+q)/2(1, t)(ur(0, t))t − c0v
−(1+p)/2(1, t)(vr(0, t))t

= 0

and

Jr(1, t) + c0qv
−(1+p)/2(1, t)u−(1+q)/2(1, t)J(1, t)

= (p − c2
0q)v

−(1+p)(1, t)u−(1+q)/2(1, t)vt(1, t)

≥ 0.
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Moreover, noticing that c0 < (1 + p)/(
√

C(1 + q)), we have

Jt − Jrr −
n − 1

r
Jr +

1 + q

2
u−1(1, t)ut(r, t)J(1, t)

+
c0(1 + q)

2
u(q−1)/2(1, t)v−(p+1)/2(1, t)vt(1, t)J(r, t)

=
c0

2
v−(1+p)(1, t)vt(1, t)vt(r, t)

·
(

(1 + p)v(p−1)/2(1, t) − c0(1 + q)u(q−1)/2(1, t)
)

≥0, ∀(r, t) ∈ (0, 1) × (0, T ).

By the maximum principle (see, e.g., Lemma 2.1 of [12]), one has J(r, t) ≥ 0.

3 The Proof of the Main Result

We are now in a position to show the proof of the main result, which is given by the following

propositions.

Proposition 3.1 If p, q ≥ 1, then simultaneous quenching must happen for any solution

of the problem (2.1).

Proof. Using the reduction to absurdity method, we prove that the non-simultaneous

quenching happens for some solution (u, v). Without loss of generality, we assume that v

does not quench, then there exists a constant c0 > 0 such that v(1, t) ≥ c0. According to

Lemma 2.3, we have

ut(1, t) ≥ −Cu−q(1, t).

A direct integrating from t to T yields

u(1, t) ≤ C(T − t)1/(q+1).

Let G(x, t) be the fundamental solution of the heat equation, namely

G(x, t) =
1

(4πt)n/2
exp

{

− |x|2
4t

}

.

From Green’s second identity we obtain

v(x, t) =

∫

B

G(x − y, t)v0(y)dy

−
∫ t

0

∫

∂B

u−q(1, τ)G(x − y, t − τ)dsydτ

−
∫ t

0

∫

∂B

v(1, τ)
∂G

∂ηy
(x − y, t − τ)dsydτ.

Letting x tend to the point of the boundary ∂B, according to the jump relation (see [11]),

and noticing that u > 0, v > 0 are radial, we arrive at

1

2
v(1, t) ≤−

∫ t

0

u−q(1, τ)dτ

∫

∂B

G(x − y, t − τ)dsy + N

∫

B

G(x − y, t)dy

−
∫ t

0

v(1, τ)

∫

∂B

∂G

∂ηy
(x − y, t − τ)dsydτ.
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Since ∂B is smooth enough, for any fixed 0 < θ < 1, we choose µ such that

1 − θ/2 < µ < 1.

From the property of fundamental solution, we have (see [11])
∣

∣

∣

∣

∂G

∂ηy
(x − y, t − τ)

∣

∣

∣

∣

≤ C
1

|t − τ |µ · 1

|x − y|n+1−2µ−θ
. (3.1)

Moreover, a direct calculation yields that for any x ∈ ∂B, there exist C∗

1 , C1 (0 < C∗

1 ≤ C1),

such that
C∗

1

|t − τ |1/2
≤

∫

∂B

G(x − y, t − τ)dsy ≤ C1

|t − τ |1/2
. (3.2)

Therefore, we have

1

2
v(1, t) ≤ C0 − C1

∫ t

0

(T − τ)−q/(q+1)(t − τ)−1/2dτ.

Clearly, as t → T , the right hand side goes to −∞ if q ≥ 1, which is a contradiction since v

is bounded from below. The proof is complete.

Proposition 3.2 If min{p, q} < 1, then there exists an initial datum (u0, v0) such that

for the corresponding solution (u, v), the quenching is non-simultaneous.

Proof. We divide the proof into two steps. In the first step, we consider the cases of

min{p, q} < 1 and max{p, q} ≥ 1, and in the second step is devoted to considering the case

of max{p, q} < 1.

Step 1. Without loss of generality, we might as well assume that 0 < p < 1 ≤ q.

Suppose to the contrary, by Lemma 2.4, we have

u−(1+q)/2(1, t)ut(1, t) ≥ c0v
−(1+p)/2(1, t)vt(1, t). (3.3)

Integrating (3.3) from 0 to t for q > 1 yields

u(1−q)/2(1, t) ≤ u
(1−q)/2
0 (1) − c0(q − 1)

1 − p
v(1−p)/2(1, t) +

c0(q − 1)

1 − p
v
(1−p)/2
0 (1).

Letting t → T , the right hand side is bounded from above, while the left hand side goes to

+∞, which is a contradiction.

Furthermore, if q = 1, then integrating (3.3) from 0 to t we have

lnu(1, t) ≥ lnu0(1) +
2c0

1 − p

(

v(1−p)/2(1, t) − v
(1−p)/2
0 (1)

)

Letting t → T , the right hand side is bounded from below, while the left hand side goes to

−∞, which is a contradiction. To sum up the above arguments, we infer that quenching is

non-simultaneous.

Step 2. In fact, according to (2.10), we see that v quenches since quenching happens

for at least one component. Then integrating (2.11) from 0 to t yields

u(1−q)/2(1, t) ≥ u
(1−q)/2
0 (1) +

c0(1 − q)

1 − p
v(1−p)/2(1, t) − c0(1 − q)

1 − p
v
(1−p)/2
0 (1).

Letting t → T , we obtain

lim
t→T−

u(1−q)/2(1, t) ≥ u
(1−q)/2
0 (1) − c0(1 − q)

1 − p
v
(1−p)/2
0 (1).

Clearly, u does not quench if u0 is appropriately large and v0 is appropriately small. The

proof is complete.
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In the end of this paper, we now present

The proof of Theorem 2.1. If p ≥ 1 and q ≥ 1, then from Proposition 3.1, we see that

for any initial datum (u0, v0), the simultaneous quenching must happen for the corresponding

solution. While if p ≥ 1 or q ≥ 1 is not valid, namely min{p, q} < 1, the conclusion follows

from Proposition 3.2.

Remark 3.1 The conclusion of Theorem 2.1 does not imply that in the case of min{p, q} <

1 all solutions have the non-simultaneous quenching property. In fact, at least in the special

case p = q < 1, if u0(x) ≡ v0(x), then simultaneous quenching happens for the correspond-

ing solution. Of course, if u0(x) 6≡ v0(x), and u0(x), v0(x) satisfy some conditions, the

corresponding solution might still have the non-simultaneous quenching property.
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