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Abstract. An impulsive integrated pest management system with diffusion is inves-
tigated within this paper. The conditions for pest eradication of the impulsive sys-
tem without natural enemies are established based on the Krein-Rutman theorem and
the comparison principle for parabolic equations. Integrated pest management can be
achieved at an exponential rate, when the principal eigenvalues of the auxiliary system
is large enough. Numerical simulations are presented to demonstrate the theoretical
results. A discussion is given at the end.
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1 Introduction

The concept of integrated pest management (IPM) was introduced in the late 1950s and
was widely practised during the 1970s and 1980s [1–4]. It is defined as a process con-
sisting of the balanced use of all the pest controls that are environmentally compatible,
economically feasible, and socially acceptable to reduce pest populations to tolerable lev-
els. And pest control often involves biological, cultural, and chemical control [1–6].

Biological control, which is defined as the suppression or the elimination of pest pop-
ulations by natural enemies, has been an important aspect in an IPM strategy [6]. Natural
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enemies used for biological control can be divided into three categories: Predatory ene-
mies, including lacewings, ladybugs and many insectivorous birds; Parasitic enemies,
including parasitic wasps, parasitic flies, etc; The pathogenic microorganism, including
the bacterium, bacillus thuringiensis, and so on. This control strategy is usually used by
releasing natural enemies at a critical time to reduce a pest’s population [5, 7, 8]. Biolog-
ical control has been applied to greenhouse culture, the use of Encarsia formosa against
Trialeurodes vaporariorum on tomatoes and cucumbers is one of the first successful cases
of biological control in greenhouses [3, 4, 9]. Another important method for pest control
is chemical control. In most cropping systems, pesticide are still the principal means of
controlling pests. They can be cheap and are easy to apply, act fast [5], but chemical
control also has certain harmfulness, pesticide can not only environmental pollution, but
also cause plant phytotoxicity and waste of resources, and if incorrectly used, also easily
lead to human and animal poisoning.

In mid 80s, there has been renewed interest in modelling IPM. Many IPM strategies
such as releases of natural enemies at critical times and killing pests instantly by spray-
ing pesticides have been proposed by mathematical models [6–16]. In [7], Liang et al.
developed two novel pest-natural enemy interaction models incorporating the evolution
of pesticide resistance, they investigated the number of natural enemies to be released
when threshold conditions for the extinction of the pest population in two different con-
trol tactics are reached. In [16], Tang et al. modelled IPM including residual effects of
pesticides in terms of fixed pulse-type actions.

However, the aforementioned above studies ignore the effect of space. The questions
that arise are: in the case of uneven distribution of space, if we aim to eradicate the pest,
how do we release the natural enemies? what proportion do we need to kill the pests
by pesticide? To address these questions, we present an impulsive differential equation
with diffusion. In the established model, (a) insect and natural enemies are all dealt with
control in space; (b) distributed control of pest are considered by a combination of the
action of natural enemies and impulsive control which include pesticide spraying and
natural enemies releasing; (c) because of the pesticide’s impact on the natural enemies, a
proportion of the natural enemies could be killed at the time the pesticide is sprayed to
kill the pests [17–19]. When we ignore the effect of space, the established model can be
found in many domain of the applied sciences [20–22].

The aim of this work is to determine the conditions for pest eradication by pesticide
spray-ing at critical times and the role of natural enemies releasing in enhancing the con-
trol. In order to show the conditions of pest extinction, Firstly, we discuss the model
without natural enemies and get the sufficient and necessary conditions of pest extinc-
tion. Secondly we analyze the model without pest and we find the positive periodic
solution of natural enemies. By using the conclusion of Section 3 and Section 4, we final-
ly get the conditions for the extinction of the pests. Examples and numerical simulations
are presented in Section 6 to illustrate the feasibility of our results. Section 7 involves
some concluding remarks and discussions.
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2 Two Species Model

The densities of pests and natural enemies are denoted by u(x,t) and v(x,t), respectively.
The habitat is denoted by Ω. u and v are described by the following dynamical model :

∂u
∂t
−d1

∂2u
∂x2 = ru(1− u

K
)− βuv

1+βhu
, x∈Ω, t∈R+\nτ, n∈N,

∂v
∂t
−d2

∂2v
∂x2 =−αv+

ηβuv
1+βhu

, x∈Ω, t∈R+\nτ, n∈N,

u(x,nτ+)=ρ(x)u(x,nτ), x∈Ω, n∈N,
v(x,nτ+)=ρ0(x)v(x,nτ)+ I(x), x∈Ω, n∈N,
u(x,0)=u0(x),v(x,0)=v0(x), x∈Ω,
ux =vx =0, x∈∂Ω,

(2.1)

where d1, d2 denote diffusion rate of pests and natural enemies, respectively; r represents
growth rate of pests; α is mortality rate of natural enemies; K is carrying capacity of pests;
β is encounter rate; h represents handing time; η denotes conversion rate; τ is the period
of the integrated control.

Let u0(x), v0(x) denote the initial density of pest population and natural enemies,
respectively. The Neumann boundary condition holds for the two populations. At every
period, pesticide is used to control pest population, the effectiveness of pesticides is dif-
ferent at different locations, and the pesticide will also affect natural enemies. ρ(x), ρ0(x)
denote the survival rate of the pest and natural enemies after the nth pesticide, respec-
tively. I(x) represents the release function of the natural enemies at nτ. We assume
u(x,nτ+), v(x,nτ+) are the density of pests and natural enemies at the beginning of the
(n+1)th period, u(x,nτ), v(x,nτ) are the density of pests and natural enemies at the end
of the nth period. So, the pests and natural enemies at the beginning of the new period
are denoted as follow

u(x,nτ+)=ρ(x)u(x,nτ),

v(x,nτ+)=ρ0(x)v(x,nτ)+ I(x).

Before the research start, the following hypotheses are postulated:
(H1) Ω⊂R is a bounded domain of length l and

l, r, K, βh, α, η, τ∈ (0,+∞), d1, d2, h∈ [0,+∞).

(H2) ρ, ρ0, I, u0, v0∈L∞(Ω),

c≤ρ(x)≤1, c0≤ρ0(x)≤ρ∗0≤1, x∈Ω,

Imin≤ I(x)≤ Imax, x∈Ω,

0≤u0(x), 0≤v0(x), x∈Ω,
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where c, c0, ρ∗0∈ (0,1), Imin, Imax∈ (0,+∞).
We mention that the permanence and the existence of the unique periodic solution

to (2.1) without the release function of the natural enemies are derived as in [23]. Please
prepare your tex file. Thank you for your cooperation.

3 Single species pest model

The model without natural enemies population, but with a pesticide at the end of the
period is represented as

∂u
∂t
−d1

∂2u
∂x2 = ru(1− u

K
), x∈Ω, t∈R+\nτ,

u(x,nτ+)=ρ(x)u(x,nτ), x∈Ω, n∈N,
u(x,0)=u0(x), x∈Ω,
ux =0, x∈∂Ω.

(3.1)

In order to give a necessary condition and sufficient condition for the eradication of
population u. we need some basic properties of the following subsystems:

∂ϕ

∂t
−d1

∂2ϕ

∂x2 −rϕ=λϕ, x∈Ω, t∈ (0,τ),

ϕ(x,0+)=ρ(x)ϕ(x,τ), x∈Ω,
ϕx =0, x∈∂Ω, t∈ (0,τ),

(3.2)


−∂Ψ

∂t
−d1

∂2Ψ
∂x2 −rΨ=λΨ, x∈Ω, t∈ (0,τ),

Ψ(x,τ)=ρ(x)Ψ(x,0+), x∈Ω,
Ψx =0, x∈∂Ω, t∈ (0,τ).

(3.3)

The next Lemma states the existence of the principal eigenvalue and properties related to
the eigenvalue problems (see [24]).

Lemma 3.1. (i) System (3.2) exists a principal eigenvalue λ1, which is also the principal eigen-
value to the adjoined system (3.3);

(ii) there exist eigenvectors ϕ1 to (3.2) and Ψ1 to (3.3), corresponding to λ1 and satisfying

ϕ1(x,t), Ψ1(x,t)≥ c1>0, (x,t)∈Ω×(0,τ).

Without loss of generality, we also represent the extension by T-periodicity of ϕ1 and Ψ1 by ϕ1
and Ψ1, respectively.

Theorem 3.1. Suppose u0 satisfies condition (H2), (i) if the solution of (3.1) satisfies

u(t)→0, in L∞(Ω) as t→+∞,
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then λ1≥0.
(ii) if λ1>0, then the solution u to (3.1) satisfies u(t)→0, in L∞(Ω) as t→+∞.

Proof. (i) Assume λ1<0. Then, for any 0< ε<−λ1, there exists N(ε)∈N such that

0≤ r
K

u(x,t)< ε,

in Ω×(nτ,(n+1)τ), and for any n∈N, n≥N(ε). Thanks to the comparison result for
parabolic equations [25], for any n≥N(ε), we deduce

0≤u(x,t)≤u(x,t)

in Ω×(nτ,(n+1)τ), and for any n∈N, n≥N(ε), where u is the solution to

∂u
∂t
−d1

∂2u
∂x2 = ru−εu, x∈Ω, t∈R+\nτ, t>N(ε)τ,

u(x,nτ+)=ρ(x)u(x,nτ), x∈Ω, t∈R+\nτ, t>N(ε)τ,
ux =0, x∈∂Ω, t∈R+\nτ, t>N(ε)τ,
u(x,N(ε)τ+)=u(x,N(ε)τ+), x∈Ω.

(3.4)

Since lim
t→∞

u(t)=0 in L∞(Ω), we have

u(t)→0, in L∞(Ω), as t→+∞.

Multiply the first equation in (3.4) by Ψ1, integrate over Ω×(nτ,(n+1)τ), and recall
(3.3) to discover∫

Ω
u(x,(n+1)τ)Ψ1(x,(n+1)τ)dx−

∫
Ω

u(x,nτ+)Ψ1(x,nτ+)dx

=
∫ (n+1)τ

nτ

∫
Ω

u
[

∂Ψ1

∂t
+d1

∂2Ψ1

∂x2 +rΨ1−εΨ1

]
dxdt.

According to (3.3) and (3.4), we deduce∫
Ω

u(x,(n+1)τ+)Ψ1(x,0+)dx−
∫

Ω
u(x,nτ+)Ψ1(x,0+)dx

=−(λ1+ε)
∫ (n+1)τ

nτ

∫
Ω

u(x,t)Ψ1dxdt>0.

This implies that (
∫

Ω u(x,nτ+)Ψ1(x,0+)dx)n is an increasing sequence for n≥N(ε). There-
fore, it is not converge to 0. Thus, we get a contradiction, and the conclusion is that λ1≥0.

(ii) Assume λ1 > 0. Thanks to the comparison result for parabolic equations [25, 26],
we have

0≤u(x,t)≤u(x,t)
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in Ω×[0,+∞), where u is the solution to

∂u
∂t
−d1

∂2u
∂x2 = ru, x∈Ω, t∈R+\nτ,

u(x,nτ+)=ρ(x)u(x,nτ), x∈Ω, n∈N,
ux =0, x∈∂Ω, t∈R+\nτ,
u(x,0)=u(x,0), x∈Ω.

(3.5)

Multiply the first equation in (3.5) by Ψ1 and integrate over Ω×(nτ,(n+1)τ), we
deduce that ∫

Ω
u(x,(n+1)τ+)Ψ1(x,0+)dx−

∫
Ω

u(x,nτ+)Ψ1(x,0+)dx

=−λ1

∫ (n+1)τ

nτ

∫
Ω

u(x,t)Ψ1(x,t)dxdt<0.

It implies that (
∫

Ω u(x,nτ+)Ψ1(x,0+)dx)n is a decreasing and non-negative sequence.
Consequently, it is convergent. Moreover, we may deduce that

∫ (n+1)τ

nτ

∫
Ω

u(x,t)Ψ1(x,t)dxdt→0.

Thus,
u(t)→0 in L1(Ω),

as t→+∞. The rate of convergence is that of e−λ1t.
Since u is the solution to (3.5), we conclude that u(t)→0 in L∞(Ω), as t→+∞, and so,

the same conclusion follows for u.

Remark 3.1. If we consider the space independent case, by direct calculation it follows
that condition λ1>0 is equivalent to ρerτ<1 and condition λ1≥0 is equivalent to ρerτ≤1,
which is same as the Corollary 3.1 of [24].

Theorem 3.2. Suppose u0 satisfies (H2), if λ1<0, the solution û to (3.1) satisfies

û(t)→u∗(t), in L∞(Ω) as t→+∞,

where u∗(x,t) is the extension by τ-periodicity of the unique non-negative solution to
∂u
∂t
−d1

∂2u
∂x2 = ru(1− u

K
), x∈Ω, t∈ (0,τ),

u(x,0+)=ρ(x)u(x,τ), x∈Ω,
ux =0, x∈∂Ω, t∈ (0,τ).

(3.6)
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Proof. If λ1 < 0, we can deduce that ϕ̄ := εϕ1 is subsolution of (3.6) for all 0< ε≤−λ1K
rc1

,
where ϕ1(x,t) is the principal eigenvector of (3.2), and satisfies

ϕ1(x,t)≥ c1>0, (x,t)∈Ω×(0,τ).

On the other hand, since ρ(x)≤1, we can see that $K is the supersolution of (3.6) for all
$>1. Thanks to comparison principle, we can get a unique non-negative solution u∗(x,t).
Moreover we can choose εϕ1(x,0) as small and $K as large as we please, Applying the
iteration scheme argument, we can get the global attractiveness of u∗(with respect to
positive initial conditions u0(x)).

4 Single species natural enemies model

Firstly, let us consider the following auxiliary problem:

∂v
∂t

=d2
∂2v
∂x2−αv, x∈Ω, t∈R+\nτ,

v(x,nτ+)=ρ0(x)v(x,nτ)+ I(x), x∈Ω, n∈N,
vx =0, x∈∂Ω, t∈R+\nτ,
v(x,0)=v0(x), x∈∂Ω,

(4.1)

where vn(x,t) represents the density of the natural enemies population during period n,
vn,τ(x) denotes the density of the natural enemies population at time nτ, and v0=v0,τ(x).
By calculation, the solution of the auxiliary problem (4.1) is expressed as

v̂n(x,t)=
∫

Ω
G(ξ,x,t−(n−1)τ)(ρ0vn−1,τ+ I)(ξ)dξ,

for all t∈ ((n−1)τ,nτ], where

G(ξ,x,t)=
2
l

∞

∑
k=1

e−[d2(
kπ
l )2+α]tcos

kπ

l
xcos

kπ

l
ξ.

We assume v0(x), I(x)∈L∞(Ω), then

‖v1,τ(x)‖∞≤
1

eατ
√

d2πτ

∥∥∥∥∫Ω
(ρ0v0+ I)(ξ)dξ

∥∥∥∥
∞
≤ l

eατ
√

d2πτ
(‖ρ0v0 ‖∞ +‖ I ‖∞),

so v1,τ(x)∈L∞(Ω), and so on vn,τ(x)∈L∞(Ω), n∈N.
For any m>n∈N,

‖vm,τ−vn,τ ‖∞≤
l

eατ
√

d2πτ
‖ρ0(vm−1,τ−vn−1,τ)‖∞
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≤ lρ∗0
eατ
√

d2πτ
‖vm−1,τ−vn−1,τ ‖∞

≤···

≤
(

lρ∗0
eατ
√

d2πτ

)n

‖vm−n,τ−v0 ‖∞ .

Consequently, if lρ∗0
eατ
√

d2πτ
<1, we can get {vn,τ} is Cauchy sequence in L∞(Ω). Using the

complete of L∞(Ω), there is a unique v∗(x)∈L∞(Ω) satisfying

vn,τ→v∗(x), in L∞(Ω)

as n→∞, and
v∗(x)=

∫
Ω

G(ξ,x,τ)(ρ0v∗+ I)(ξ)dξ.

Now, we construct equation

∂v
∂t

=d2
∂2v
∂x2−αv, x∈Ω, t∈R+\nτ,

v(x,nτ+)=ρ0(x)v(x,nτ)+ I(x), x∈Ω, n∈N,
vx =0, x∈∂Ω, t∈R+\nτ,
v(x,0)=v∗(x), x∈∂Ω.

(4.2)

Thus, there is a unique non-negative τ-periodicity solution v̄(x,t), and

v̄(x,t)=
∫

Ω
G
(

ξ,x,t−
[

t
τ

]
τ

)
(ρ0v∗+ I)(ξ)dξ, t∈ ([t/τ]τ,([t/τ]+1)τ].

Then we get below Lemma.

Lemma 4.1. If
lρ∗0

eατ
√

d2πτ
<1, then the solution v̂n(x,t) to (4.1) satisfies

v̂n(t)− v̄(t)→0 in L∞(Ω)

as t→+∞.

Remark 4.1. If we consider the space independent case, then problem (4.1) becomes
dv
dt

=−αv, t∈R+\nτ,

v(nτ+)=ρ0v(nτ)+ I, n∈N,
v(0)=v0.

(4.3)

We can get the following result by direct calculation,

v̂(t)= e−αt
{

v0ρn
0 e−ατ(n−1)+ I

1−(ρ0e−ατ)n

1−ρ0e−ατ

}
, t∈ ((n−1)τ,nτ], n∈N,

where v̂(t) is the solution to problem (4.3).
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Corollary 4.1. If ρ0e−ατ <1, the solution v̂(t) to (4.3) satisfies

v̂(t)− v̄(t)→0

as t→+∞, where v̄(t)= I
1−ρ0e−ατ e−αt.

On the other hand, If ρ0e−ατ≥1, the solution v̂(t) to (4.3) satisfies

v̂(t)→+∞, as t→+∞.

5 The boundary periodicity solution of the two species model

Firstly, the two eigenvalue problems are considered as follow
∂ϕ

∂t
−d1

∂2ϕ

∂x2 −rϕ+βv̄(x,t)ϕ=λϕ, x∈Ω, t∈ (0,τ),

ϕ(x,0)=ρ(x)ϕ(x,τ), x∈Ω,

ϕx =0, x∈∂Ω, t∈ (0,τ).

(5.1)


∂ϕ

∂t
−d1

∂2ϕ

∂x2 −rϕ+
βv̄(x,t)

1+βhu∗(x,t)
ϕ=λϕ, x∈Ω, t∈ (0,τ),

ϕ(x,0)=ρ(x)ϕ(x,τ), x∈Ω,

ϕx =0, x∈∂Ω, t∈ (0,τ),

(5.2)

where u∗(x,t) is the extension by τ-periodicity of the unique non-negative solution to
∂u
∂t
−d1

∂2u
∂x2 = ru(1− u

K
), x∈Ω, t∈ (0,τ),

u(x,0+)=ρ(x)u(x,τ), x∈Ω,

ux =0, x∈∂Ω, t∈ (0,τ).

(5.3)

Suppose µ1,κ1 be the principal eigenvalue to (5.1) and (5.2),respectively. It can be
concluded that κ1<µ1. we can deduce the following result.

Theorem 5.1. Suppose u0 and v0 satisfying (H2) and
lρ∗0

eατ
√

d2πτ
< 1, λ1 < 0, (i) the solution

(u,v) to (2.1) satisfies:
lim

t→+∞
u(t)=0, in L∞(Ω),

then µ1≥0.
(ii) if κ1>0, then (u(t),v(t))→ (0,v̄(t)) in L∞(Ω), as t→+∞.
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Proof. (i) Suppose u(t)→0 in L∞(Ω), as t→+∞. Then, for any small ε>0, we can get

lρ∗0
e(α−ε)τ

√
d2πτ

<1

and also there exists N(ε)∈N, such that

r
K

u(x,t)< ε, and η
βu(x,t)

1+βhu(x,t)
< ε, a.e. x∈Ω, ∀t≥N(ε)τ.

If
lρ∗0

e(α−ε)τ
√

d2πτ
<1, we can get v̄ε(x,t)+ε≥ ṽε(x,t)≥v(x,t)≥0, in Ω×[N(ε)τ,+∞), where

v̄ε is the solution to

∂v̄(x,t)
∂t

=d2
∂2v̄(x,t)

∂x2 −αv̄(x,t)+εv̄(x,t), x∈Ω, t≥N(ε)τ,

v̄(x,nτ+)= v̄(x,nτ)+ I(x), x∈Ω, n≥N(ε),
v̄x =0, x∈∂Ω, t≥N(ε)τ,
v̄(x,N(ε))=v∗(x),

(5.4)

and ṽε is the solution to

∂ṽ(x,t)
∂t

=d2
∂2ṽ(x,t)

∂x2 −αṽ(x,t)+εṽ(x,t), x∈Ω, t≥N(ε)τ,

ṽ(x,nτ+)= ṽ(x,nτ)+ I(x), x∈Ω, n≥N(ε),
ṽx =0, x∈∂Ω, t≥N(ε)τ,
ṽ(x,N(ε))=v(x,N(ε)).

(5.5)

We get that
v̄ε(x,t)− v̄(x,t)→0 as ε→0.

We may infer that for t≥N(ε)τ:

− βv(x,t)
1+βhu(x,t)

>−βv(x,t)>−β(v̄ε(x,t)+ε), a.e. x∈Ω.

In conclusion,
0≤~u(x,t)≤u(x,t), a.e. x∈Ω, ∀t≥N(ε),

where ~u(x,t) is the solution to

∂~u(x,t)
∂t

=d1
∂2~u(x,t)

∂x2 +(r−ε)~u(x,t)−r
~u2(x,t)

K
−β(v̄ε(x,t)+ε)~u(x,t), x∈Ω, t≥N(ε)τ,

~u(x,nτ+)=ρ(x)~u(x,nτ), x∈Ω, n≥N(ε),
~ux =0, x∈∂Ω, t≥N(ε)τ,
~u(x,N(ε)τ+)=u(x,N(ε)τ+), x∈∂Ω.

(5.6)
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Since u(t)→0 in L∞(Ω), as t→+∞, we conclude that ~u(t)→0 in L∞(Ω), as t→+∞
and in the same manner as in Theorem 3.1 we get that

µ1ε >0,

where µ1ε > 0 is the principal eigenvalue to (4.3), corresponding to r := r−ε, v̄(x,t) :=
v̄ε(x,t)+ε, µ1 :=µ1ε. Since lim

ε→0
µ1ε =µ1, then µ1≥0.

(ii) Suppose that κ1 > 0. If λ1 < 0, Using a comparison result (see [27]), we get that
there exists N1(ε)∈N, such that

u∗(x,t)≥u(x,t), v̄(x,t)−ε≤ v̂(x,t)≤v(x,t), (x,t)∈Ω×[N1(ε)τ,+∞)

for arbitrary ε > 0, where u∗(x,t) is the extension by τ-periodicity of the unique non-
negative solution to (5.3), v̂(x,t) is the solution of (3.6), v̄(x,t) is the solution of (4.1). then

− β(v̄(x,t)−ε)

1+βhu∗(x,t)
≥− βv(x,t)

1+βhu(x,t)
,

and so
U(x,t)≥u(x,t), (x,t)∈Ω×[0,+∞),

where U(x,t) is the solution of

∂u
∂t
−d1

∂2u
∂x2 = ru(1− u

K
)− β(v̄(x,t)−ε)

1+βhu∗(x,t)
u, x∈Ω, t∈R+\nτ,

u(x,nτ+)=ρ(x)u(x,nτ), x∈Ω,
ux =0, x∈∂Ω, t∈R+\nτ,
u(x,0)=u0, x∈∂Ω.

(5.7)

We can get
lim
ε→0

κ1ε =κ1,

where κ1ε is the the principal eigenvalue to
∂ϕ

∂t
−d1

∂2ϕ

∂x2 −rϕ+
β(v̄(x,t)−ε)

1+βhu∗(x,t)
ϕ=λϕ, x∈Ω, t∈ (0,τ),

ϕ(x,0)=ρ(x)ϕ(x,τ), x∈Ω,
ϕx =0, x∈∂Ω, t∈ (0,τ).

(5.8)

Since κ1>0, there exists very small ε such that

κ1ε >0.

In the same manner as in Theorem 3.1, we get that

U(t)→0 in L∞(Ω) as t→+∞,
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and consequently
u(t)→0 in L∞(Ω) as t→+∞.

Then,
v(t)→ v̄(t) in L∞(Ω) as t→+∞.

Remark 5.1. Let M is the maximum of v̄(x,t), (x,t)∈Ω×(0,+∞), then M=‖ρ0v∗+I‖∞ . If
we assumed ρ(x)=ρ is a constant, we consider the following two eigenvalue problems:

∂ϕ

∂t
−d1

∂2ϕ

∂x2 −rϕ+βMϕ=λϕ, x∈Ω, t∈ (0,τ),

ϕ(x,0)=ρϕ(x,τ), x∈Ω,

ϕx =0, x∈∂Ω, t∈ (0,τ),

(5.9)


∂ϕ

∂t
−d1

∂2ϕ

∂x2 −rϕ=λϕ, x∈Ω, t∈ (0,τ),

ϕ(x,0)=ρϕ(x,τ), x∈Ω,

ϕx =0, x∈∂Ω, t∈ (0,τ).

(5.10)

We can get ζ1 > κ1 >µ1 > ν1. Let ζ1 be the principal eigenvalue to (5.9) and ν1 be the
principal eigenvalue to (5.10).

We can get the following corollary.

Corollary 5.1. The eigenvalue to (5.9) and (5.10) satisfies

ρeτ(ζk+r−βM−( kπ
l )2d1)=1, ρeτ(νk+r−( kπ

l )2d1)=1.

Proof. Let ϕ= e(λ+r−βM)tw, then problem (5.9) becomes
∂w
∂t
−d1

∂2w
∂x2 =0, x∈Ω, t∈ (0,τ),

w(x,0)=ρe(λ+r−βM)τw(x,τ), x∈Ω,

wx =0, x∈∂Ω, t∈ (0,τ).

(5.11)

Using the method of separation of variables, we can get

w(x,t)=
+∞

∑
k=1

Ake−(
kπ
l )2d1tsin

kπ

l
x, x∈Ω, t∈ (0,τ).

Use the condition w(x,0)=ρe(λ+r−βM)τw(x,τ), we can get

+∞

∑
k=1

Ak(1−ρeτ(λ+r−βM−( kπ
l )2d1))sin

kπ

l
x=0.
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Multiply both sides with sin kπ
l x, and integral on (0,l), we can get

1−ρeτ(λ+r−βM−( kπ
l )2d1)=0

for all k∈N. So, ζk satisfies 1−ρeτ(ζk+r−βM−( kπ
l )2d1)=0. Also, we can get 1−ρeτ(νk+r−( kπ

l )2d1)=
0 for the same methods.

According to Theorem 4.1, we can get the following corollary.

Corollary 5.2. Assume that
lρ∗0

eατ
√

d2πτ
< 1. If ρ(x) = ρ is a constant and for any u0 and v0

satisfying (H2), the solution (u,v) to (2.1) satisfies:

lim
t→+∞

u(t)=0

in L∞(Ω), then

ρeτ(r−βM− π2

l2
d1)<1.

On the other hand, if

ρeτ(r− π2

l2
d1)<1,

then for any u0 and v0 satisfying (H2), u(t)→0 in L∞(Ω), as t→+∞.

Remark 5.2. If we consider the space independent case, then system (2.1) becomes

du
dt

= ru(1− u
K
)− βuv

1+βhu
, t∈R+\nτ,

dv
dt

=−αv+
ηβuv

1+βhu
, t∈R+\nτ,

u(nτ+)=ρu(nτ), n∈N,

v(nτ+)=ρ0v(nτ)+ I, n∈N,

u(0)=u0, v(0)=v0.

(5.12)

Finally, we obtain the following corollary.

Corollary 5.3. If ρ0e−ατ < 1, for any u0 and v0 satisfying (H2), the solution (u,v) to (5.12)
satisfies:

lim
t→+∞

u(t)=0,

then
ρerτ−β

∫ τ
0 v̄(t)dt≤1.

Since v̄(t)=
I

1−ρ0e−ατ
e−αt, this condition is equivalent to ρerτ−β 1−e−ατ

α(1−ρ0eατ )
I≤1.
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On the other hand, if

ρerτ− β
1+βhK

∫ τ
0 v̄(t)dt <1

or
ρerτ− β

1+βhK
1−e−ατ

α(1−ρ0eατ )
I
<1,

then for any u0 and v0 satisfying (H2), we have that u(t)→ 0 , as t→+∞, where (u,v) is the
solution to (5.12).

6 Simulations for the models

In order to verify the validity of the results, we consider system (2.1) with d1=d2=r=K=
1,τ=2,β=h=α=η=1. Choose ρ=0.12,ρ0=0.8, obviously, we have that the parameters
satisfy the condition of Corollary 5.2,

lρ0

eατ
√

d2πτ
=0.8889<1,

and
ρeτ(r− π2

l2
d1)=0.844<1.

See Fig. 1. Here we choose x∈Ω=(0,20) and the initial condition u0(x)=v0(x)=e−(x−10)2
,

the natural enemy release function I(x)= 0.1 for all x∈Ω. In this case, pests are extinct
and natural enemies have a positive periodic solution.

If we choose ρ=0.12, ρ0=0.95, we have that the parameters satisfy the condition:

lρ0

eατ
√

d2πτ
=1.0258>1,

and
ρeτ(r− π2

l2
d1)=0.844<1.

By numerical simulation, we can get the similar figure with Fig. 1. Here we give Fig.
2. From Fig. 2, pests also are extinct and natural enemies also have a positive periodic
solution. This means that the conditions in 5.2 are sufficient conditions, not necessary.

If we choose ρ=0.5,ρ0=0.8, we have that the parameters satisfy the condition:

lρ0

eατ
√

d2πτ
=0.8889<1,

and
ρeτ(r− π2

l2
d1)=3.5166>1.

Form Fig. 3, pests and predators can coexist, all have positive periodic solutions.
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Figure 1: A numerical approximation to u and v with ρ=0.12,ρ0 =0.8.

Figure 2: A numerical approximation to u and v at x=0 with ρ=0.12,ρ0 =0.95.

7 Conclusion and discussion

In this article, we assume that the released natural enemies have less ability to adapt to
new environment (intrinsic growth rate is less than zero) and uneven distribution of s-
pace (for convenience, assuming one dimensional space). Moreover, based on the control
strategy of pest removal, the control strategy of natural enemies is added. At this point,
the model is more reasonable and more applicable. It is found that the existence of the
positive periodic solution of the single population pulse of natural enemy system is de-
pendent of the release function I(x), it is found that the increase of the release function
I(x) will cause the increase of the positive periodic solution. Meanwhile, the increase of
I(x) will indirectly make the condition of pest extinction easier to reach, which is straight-
forward to observe when the spatial distribution is uniform (Corollary 5.3). In addition,
due to the complexity of partial differential equations, we do not find the explicit condi-
tions for the extinction of pests, but when the survival rate of pests is constant, we get the
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Figure 3: A numerical approximation to u and v with ρ=0.5,ρ0 =0.8.

explicit sufficient condition and necessary conditions for the extinction of pests, which
makes our conclusions more practical (Corollary5.2).

Functional response of natural enemies and boundary condition
We use Holling II type functional response to describe the interaction between pest

and natural enemies, when the handing time equals zero, the functional response is the
simplest form. Moreover, the functional response can also be changed to Holling III and
IV, and the conclusions are similar.

We assume that the second type of boundary condition holds for the pest and natural
enemy population, model with the third types of boundary can also be discussed with
the same methods.

The direction of later research
In the model, pulse control occurs which involves release of natural enemies and

spraying pesticides in a fixed time. In fact, it can be improved to other two forms:
(a) spraying pesticides more(less) frequently than releasing natural enemies;
(b) releasing natural enemies and spraying pesticides only when pest densities reach

their economic threshold (ET) [16]. And all of these can be used as a direction for later
research.
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