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Abstract. A stabilizer-free weak Galerkin finite element method is proposed for the
Stokes equations in this paper. Here we omit the stabilizer term in the new method
by increasing the degree of polynomial approximating spaces for the weak gradient
operators. The new algorithm is simple in formulation and the computational com-
plexity is also reduced. The corresponding approximating spaces consist of piecewise
polynomials of degree k≥1 for the velocity and k−1 for the pressure, respectively. Op-
timal order error estimates have been derived for the velocity in both H1 and L2 norms
and for the pressure in L2 norm. Numerical examples are presented to illustrate the
accuracy and convergency of the method.
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1 Introduction

In this paper, we propose a stabilizer-free WG finite element method for the Stokes equa-
tions. For simplicity, we consider the Stokes equations with homogeneous Dirichlet
boundary condition which seeks unknown vector-valued function u and scalar function
p satisfying

−∆u+∇p= f in Ω, (1.1a)
∇·u=0 in Ω, (1.1b)
u=g on ∂Ω, (1.1c)
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where Ω is a polygonal domain in Rd and f∈ [L2(Ω)]d is the unit external volumetric
force acting on the fluid.

The variational formulation for the Stokes equations (1.1a)-(1.1c) is finding u ∈
[H1(Ω)]d and p∈L2

0(Ω) that satisfy u=g on ∂Ω such that

(∇u,∇v)−(∇·v,p)=(f,v), (1.2a)
(∇·u,q)=0, (1.2b)

for all v∈ [H1
0(Ω)]d and q∈ L2

0(Ω), where H1
0(Ω) is defined in (2.1) and L2

0(Ω) is defined
as follows:

L2
0(Ω) :=

{
q∈L2(Ω);

∫
Ω

qdx=0
}

. (1.3)

Various numerical methods have been developed for solving the Stokes equations, such
as the finite element methods (FEMs) [3,7,8], the finite volume methods (FVMs) [5,27,28],
and the finite difference methods [4, 16, 17]. Taking the classical conforming FEMs as an
example, they are based on the variational form (1.2a)-(1.2b) and finite dimensional ap-
proximating subspaces of [H1

0(Ω)]d×L2
0(Ω) consisting of piecewise polynomials. In those

methods, the inf−sup condition [1, 2] has to be satisfied, which causes some limitations
in constructing elements and generating meshes.

As a generalization of the classical conforming FEMs, the weak Galerkin (WG) finite
element method has been gradually studied by researchers. This method was first in-
troduced by Wang and Ye [12, 18, 19] for second order elliptic problems in 2013. Then
it was extended to other partial differential equations (PDEs), such as Stokes prob-
lems [20, 21], Brinkman problems [10, 24, 29], linear elasticity problems [22, 23], bihar-
monic problems [11, 13, 14], and parabolic problems [6, 31]. The WG method for the
Stokes problems would adopt the following form: find uh = {u0,ub} ∈Vh and ph ∈Wh
satisfying uh =Qbg on ∂Ω and

(∇duh,∇dvh)−(∇d ·vh,ph)+s(uh,vh)=(f,v0), (1.4a)
(∇d ·uh,qh)=0, (1.4b)

for all vh = {v0,vb} ∈ Vh and qh ∈Wh. Here Vh and Wh are the properly defined WG
finite element spaces for the scalar variables and vector-valued variables, respectively.
∇d is a weak gradient operator and ∇d· is a weak divergence operator to be detailed in
Section 2. As a parameter free stabilizer, the bilinear form s(·,·) enforces a certain weak
continuity for the approximating solutions across element boundaries. In 2016, a new
WG finite element method has been developed for solving the Stokes equations based
on two gradient operators in [21]. This method employs two parameter independent
stabilizers s(·,·) and c(·,·) for velocity functions and pressure functions, respectively. The
corresponding numerical scheme is: find uh∈ Ṽh and ph∈W̃h satisfying uh =Qbg on ∂Ω
such that

(∇duh,∇dv)+(v0,∇̃d ph)+s(uh,v)=(f,v0),

(u0,∇̃dq)−c(ph,q)=0,
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for all test functions

v={v0,vb}∈ Ṽ0
h and q∈W̃0

h ,

where Ṽh and W̃h are properly-defined finite element spaces.

The WG method has two key features: (1) the derivatives are taken as distributions or
approximations of distributions, and (2) the approximating functions are discontinuous.
But what comes with it is more degrees of freedom than the classical FEMs. In recent
years, to circumvent this limitation, several improved numerical methods based on WG
method have been developed to solve the Stokes equations. The modified weak Galerkin
(MWG) finite element method [15] uses the average of the inside function u0 to replace
ub on the boundary of the element to eliminate the unknowns associated with element
boundaries. The hybridized weak Galerkin (HWG) finite element method [30] uses a
Lagrange multiplier defined on the element boundaries to relax certain restrictions such
as continuity requirement. A Schur complement formulation of the HWG method elimi-
nates all the interior unknowns and the Lagrange multipliers. Then in 2019, a simplified
weak Galerkin (SWG) finite element method was proposed by Liu and Wang [9]. In this
method, the degrees of freedom involves only those on the element boundary; i.e., the
unknowns associated with the interior of each element in the original weak Galerkin are
not used in SWG.

In this paper, we are concerning about a new numerical method that has a simple
formulation without any stabilizer to solve the Stokes equations. To this end, we employ
higher degree polynomials to compute the weak gradient ∇d. It has a simple form close
to its original PDE weak form (1.2a)-(1.2b) for discontinuous polynomials. This method
has been applied to solve the second order elliptic problem [26] by Ye and Zhang in 2019.
Raising the degree of polynomials in the computation of weak gradients will not increase
the size of global stiffness matrix, but rather will reduce the computational complexity
of programming since it removes the stabilizer term. In addition, it does not reduce the
optimal-order of convergence, for both the second order elliptic equations and the Stokes
equations.

This paper is organized as follows. In Section 2, we do some preliminaries for the
stabilizer-free WG finite element method. The standard definition of Sobolev spaces and
its associated inner products, norms, and seminorms are given. In particular, we intro-
duce the weak function spaces, the weak gradient operator, and the weak divergence
operator. In Section 3, we define three local L2 projection operators. Then, we derive the
stabilizer-free WG finite element scheme for the Stokes equations. In Section 4, we prove
the existence and uniqueness of the solutions by establishing the usual inf−sup condi-
tion. Section 5 is devoted to derive the error equations for the numerical approximations.
Optimal-order error estimates for the stabilizer-free WG finite element approximations
are given in Section 6. Finally in Section 7, we present some numerical results to illus-
trate the accuracy and convergence derived in earlier sections.
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2 Preliminaries and notations

In this section, we present some preparations and notations for Sobolev spaces and par-
tition.

2.1 Sobolev spaces and partition

Throughout this paper, we adopt the standard definition of Sobolev spaces Hs(Ω). For
any given open bounded domain K⊆Ω, (·,·)s,K, ‖·‖s,K and |·|s,K are used to denote the
inner product, norm and semi-norm, respectively. The norm ‖·‖s,K and semi-norm |·|s,K
are defined as follows

‖ϕ‖s,K =

(
s

∑
j=0
|ϕ|2j,K

) 1
2

, |ϕ|s,K =

(
∑
|α|=s

∫
K
|∂α ϕ|2dK

) 1
2

,

with the usual notation

α=(α1,l ··· ,αd), |α|=α1+···+αd, ∂α =
d

∏
j=1

∂
αj
xj .

The space H0(K) coincides with L2(K), and the subscripts K in the inner product, norm,
and semi-norm is dropped in the case of K=Ω.

Let Th be a partition of the domain Ω consisting of polygons in 2D or polyhedra in
3D, and T be each element with ∂T as its boundary. Denote by Eh the set of all edges in
Th, and E0

h =Eh\∂Ω the set of all interior edges in Th. For each T∈Th, denote by hT and
he the diameter of T and e, respectively. h=maxT∈Th hT is the meshsize of Th.

In particular, the function space H1
0(Ω) is defined as

H1
0(Ω)={v∈H1(Ω) : v|∂Ω =0}, (2.1)

and the space H(div;Ω) is defined as the set of vector-valued functions, which together
with their divergence are square integrable, i.e.,

H(div;Ω)=
{

v∈ [L2(Ω)]d :∇·v∈L2(Ω)
}

.

The norm defined on H(div;Ω) is given by

‖v‖H(div;Ω)=
(
‖v‖2

0+‖∇·v‖2
0
) 1

2 .

2.2 Weak gradient operator and weak divergence operator

Since the central idea of the WG finite element method is to use the discrete differential
operators to approximate classical differential operators, we define the discrete weak gra-
dient operator and discrete weak divergence operator for the vector-valued function. To
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this end, we first introduce the corresponding weak Galerkin finite element space for the
vector-valued function v on the partition Th.

For a given integer k≥ 1, denote by Vh the WG finite element space for the vector-
valued functions defined as follows

Vh =
{

v={v0,vb} :v0∈ [Pk(T)]d, vb∈ [Pk(e)]d, e⊂∂T, T∈Th
}

. (2.2)

We specify that vb has only a single value on each edge e ∈ Eh. The subspace of Vh is
defined as

V0
h ={v :v∈Vh, vb =0 on ∂Ω}. (2.3)

For the pressure variable, we define the weak Galerkin finite element space as follows

Wh ={q∈L2
0(Ω) : q|T∈Pk−1(T)}. (2.4)

Then, we can derive the definition of the weak gradient operator and the weak diver-
gence operator.

Definition 2.1. For any finite element T ∈ Th and a vector-valued function v = {v0,vb} ∈
Vh+[H1(Ω)]d, denote by ∇dv the weak gradient of v and it is a unique polynomial function
in [Pj(T)]d×d (j> k) satisfying

(∇dv,τ)T =−(v0,∇·τ)T+〈vb,τ ·n〉∂T, ∀τ∈ [Pj(T)]d×d, (2.5)

where n is the outward normal direction to ∂T,

〈vb,τ ·n〉∂T =
∫

∂T
vbτ ·nds

is the inner product of vb and τ ·n in [Pj(T)]d×d.

Similarly, we can define the weak divergence operator as follows

Definition 2.2. For any T∈Th and a vector-valued function v∈Vh+[H1(Ω)]d, denote by∇d ·v
the weak divergence of v defined as the unique polynomial function in Pk−1(T) satisfying

(∇d ·v,q)T =−(v0,∇q)T+〈vb ·n,q〉∂T, ∀q∈Pk−1(T), (2.6)

where n is the outward normal direction to ∂T.

3 A stabilizer-free WG finite element method

In this section, we introduce the stabilizer-free WG finite element scheme and define three
L2 projection operators which will be used later in this paper. For simplicity of notation,
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we define

(v,w)=(v,w)Th = ∑
T∈Th

(v,w)T = ∑
T∈Th

∫
T

vwdT,

〈v,w〉= 〈v,w〉∂Th = ∑
T∈Th

〈v,w〉∂T = ∑
T∈Th

∫
∂T

vwds.

Then, we introduce two bilinear forms

a(v,w)=(∇dv,∇dw)= ∑
T∈Th

(∇dv,∇dw)T,

b(v,q)=(∇d ·v,q)= ∑
T∈Th

(∇d ·v,q)T.

The stabilizer-free weak Galerkin finite element scheme for the Stokes equations (1.1a)-
(1.1c) is as follows

Algorithm 3.1. Find uh∈Vh and ph∈Wh satisfying ub =Qhg on ∂Ω and

a(uh,vh)−b(vh,ph)=(f,v0), ∀vh∈V0
h +[H1

0(Ω)]d, (3.1a)
b(uh,qh)=0, ∀qh∈Wh. (3.1b)

For each element T∈Th, denote by Q0 the L2 projection operator from [L2(T)]d onto
[Pk(T)]d. Similarly, for each edge e∈ Eh, denote by Qb the L2 projection operator from
[L2(e)]d onto [Pk(e)]d. We shall combine Q0 and Qb by writing Qh = {Q0,Qb}. Next,
denote Qh and Qh the local L2 projections from [L2(T)]d×d and L2(T) onto [Pj(T)]d×d and
Pk−1(T), respectively.

4 Existence and uniqueness

In this section, we derive the existence and uniqueness of the solutions of Eqs. (3.1a)-
(3.1b). First, we give the definition of a semi-norm |||vh||| in Vh. Since the algorithm (3.1a)-
(3.1b) is a typical saddle-point problem, we should introduce the inf−sup condition for
the bilinear form b(·,·) later.

First, for any vh∈Vh+[H1(Ω)]d, we define the following tri-bar norm

|||vh|||2= ∑
T∈Th

(∇dvh,∇dvh)T, (4.1)

Lemma 4.1. For any v={v0,vb}∈Vh and T∈Th, the following inequality holds true

‖vb−v0‖2
∂T≤ChT‖∇dv‖2

T, (4.2)

where C is a positive constant.
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Proof. For any vh∈Vh and τ∈ [Pj(T)]d×d, it follows from the definition of weak gradient
∇d and integration by parts that

(∇dvh,τ)T =−(v0,∇·τ)T+〈vb,τ ·n〉∂T

=(∇v0,τ)T−〈v0−vb,τ ·n〉∂T. (4.3)

Let n be the number of the edges/faces on a polygon/polyhadron. We can find the com-
plete proof in [25] that there exists τ0∈ [Pj(T)]d×d, j=n+k−1, such that

(∇v0,τ0)T =0,
〈v0−vb,τ0 ·n〉∂T\e =0,

〈vb−v0,τ0 ·n〉e =‖vb−v0‖2
e ,

and

‖τ0‖T≤Ch1/2
T ‖vb−v0‖e. (4.4)

Let τ=τ0 in (4.3), we have

(∇dvh,τ0)T =‖vb−v0‖2
e . (4.5)

Using the Cauchy-Schwarz inequality and substituting (4.4) into it, we get

‖vb−v0‖2
e≤C‖∇dvh‖T‖τ0‖T≤Ch1/2

T ‖∇dvh‖T‖vb−v0‖T,

that is

‖v0−vb‖∂T≤Ch1/2
T ‖∇dvh‖T.

This completes the proof of the lemma.

Summing over all T∈Th, it gives the following inequality

∑
T∈Th

h−1
T ‖vb−v0‖2

∂T≤C|||vh|||2. (4.6)

Lemma 4.2. |||vh||| defined in (4.1) denotes a norm in V0
h .

Proof. For vh∈V0
h and |||vh|||=0, according to the definition of |||·||| and ∇d, we have

|||vh|||2= ∑
T∈Th

(∇dvh,∇dvh)T =0,

i.e.,

‖∇dvh‖2
T =(∇dvh,∇dvh)T =0, ∀T∈Th. (4.7)
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It follows from (4.2) and (4.7) that

‖v0−vb‖∂T =0. (4.8)

For any T∈Th and τ∈ [Pj(T)]d×d, it follows from the definition of ∇d and integration by
parts that

(∇dvh,τ)T =−(v0,∇·τ)T+〈vb,τ ·n〉∂T

=(∇v0,τ)T−〈v0−vb,τ ·n〉∂T,

i.e.,

(∇v0,τ)T =(∇dvh,τ)T+〈v0−vb,τ ·n〉∂T.

Using the triangle inequality, the trace inequality, the inverse inequality, and (4.2), we
obtain

(∇v0,τ)T≤‖∇dvh‖T‖τ‖T+‖v0−vb‖∂T‖τ‖∂T

≤‖∇dvh‖T‖τ‖T+Ch−1/2‖v0−vb‖∂T‖τ‖T

≤C‖∇dvh‖T‖τ‖T.

Let τ=∇v0, we have

‖∇v0‖T≤C‖∇dvh‖T =0,

which yields that v0= const on each T∈Th. Together with (4.8) and the fact vb=0 on ∂Ω,
we have v0=0 and vb =0. We have completed the proof.

The following lemma gives the boundedness and coercivity for the bilinear form
a(·,·).
Lemma 4.3. For any v, w∈V0

h , we have

|a(v,w)|≤ |||v||||||w|||, (4.9a)

a(v,v)= |||v|||2. (4.9b)

As to the bilinear form b(·,·), the following inf−sup condition holds true.

Lemma 4.4 ([20]). There exist a positive constant β independent of h such that

sup
v∈V0

h

b(v,q)
|||v||| ≥β‖q‖ (4.10)

for all q∈Wh.

The above two lemmas imply the well-posedness of the scheme (3.1a)-(3.1b). Thus,
we can prove the existence and uniqueness of the stabilizer-free WG method solution in
the Theorem 4.1.

Theorem 4.1. The stabilizer-free WG scheme (3.1a)-(3.1b) for Stokes equations has and only has
one solution.
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5 Error equations

In this section, we do some preparatory work for the error estimates in Section 6. To
this end, we derive the error equations for both the velocity variable and the pressure
variable. Denote by u, p the exact solution of the Stokes equations (1.1a)-(1.1c), and uh, ph
the weak Galerkin finite element approximations obtained with equations (3.1a)-(3.1b),
respectively. Let eh =u−uh and εh =Qh p−ph, we will derive the error equations for eh
and εh in the following.

First, we introduce some properties of the projection operators defined in Section 3.

Lemma 5.1. For the projection operators Qh, Qh, and Qh, the following communicative property
holds true

∇d ·(Qhv)=Qh(∇·v), ∀v∈ [H(div;Ω)]d. (5.1)

Moreover, on any T∈Th, we have

∇dv=Qh(∇v), ∀v∈ [H1(Ω)]d. (5.2)

Proof. From the definition of the weak divergence ∇d·, Qh and Qh, we have

(∇d ·(Qhv),q)T =−(Q0v,∇q)T+〈Qbv,qn〉∂T

=−(v,∇q)T+〈v,qn〉∂T

=(∇·v,q)T

=(Qh(∇·v),q)T, ∀q∈Pk−1(T),

which completes the proof of (5.1).
As to (5.2), we also use the definition of the weak gradient ∇d to get

(∇dv,τ)T =−(v,∇·τ)T+〈v,τ ·n〉∂T

=(∇v,τ)T

=(Qh∇v,τ)T, ∀τ∈ [Pj(T)]d×d.

Thus, we complete the proof.

Lemma 5.2. Denote eh and εh the errors of the stabilizer-free weak Galerkin finite element ap-
proximation arising from (3.1a)-(3.1b). For any vh ={v0, vb}∈V0

h and qh∈Wh, we have

a(eh,vh)−b(vh,εh)= l(u,vh)+θ(p,vh), (5.3a)
b(eh,qh)=0, (5.3b)

where

l(u,vh)= ∑
T∈Th

〈v0−vb,(∇u−Qh∇u)·n〉∂T,

θ(p,vh)= ∑
T∈Th

〈v0−vb,(p−Qh p)n〉∂T.
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Proof. Testing Eq. (1.1a) by v0, using integration by parts and the definition of projection
operators Qh and Qh, we get

−(∆u,v0)= ∑
T∈Th

(∇u,∇v0)T− ∑
T∈Th

〈v0,∇u·n〉∂T

= ∑
T∈Th

(∇v0,Qh∇u)T− ∑
T∈Th

〈v0−vb,∇u·n〉∂T

=− ∑
T∈Th

(v0,∇·(Qh∇u))T+ ∑
T∈Th

〈v0−vb,Qh∇u·n〉∂T

+ ∑
T∈Th

〈vb,Qh∇u·n〉∂T− ∑
T∈Th

〈v0−vb,∇u·n〉∂T,

(∇p,v0)=− ∑
T∈Th

(p,∇·v0)T+ ∑
T∈Th

〈v0,pn〉∂T

=− ∑
T∈Th

(Qh p,∇·v0)T+ ∑
T∈Th

〈v0−vb,pn〉∂T

= ∑
T∈Th

(∇(Qh p),v0)T− ∑
T∈Th

〈v0−vb,(Qh p)n〉∂T

− ∑
T∈Th

〈vb,(Qh p)n〉∂T+ ∑
T∈Th

〈v0−vb,pn〉∂T,

where we have used the fact that

∑
T∈Th

〈vb,∇u·n〉∂T =0,

∑
T∈Th

〈vb,pn〉∂T =0.

Using the definition of weak gradient ∇d and weak divergence ∇d·, we can easily arrive
at

−(∆u,v0)= ∑
T∈Th

(∇dvh,Qh∇u)T+ ∑
T∈Th

〈v0−vb,(Qh∇u−∇u)·n〉∂T, (5.4a)

(∇p,v0)=− ∑
T∈Th

(Qh p,∇d ·vh)T+ ∑
T∈Th

〈v0−vb,(Qh p−p)n〉∂T. (5.4b)

Combining (5.4a) and (5.4b), we obtain

(f,v0)= ∑
T∈Th

(∇dvh,Qh∇u)T− ∑
T∈Th

(Qh p,∇d ·vh)T−l(u,vh)−θ(p,vh). (5.5)

Since the numerical solution (uh,ph)∈Vh×Wh satisfies Eq. (3.1a) for any vh∈V0
h , applying

it to (5.5), we have

a(u,vh)−b(vh,Qh p)−l(u,vh)−θ(p,vh)= a(uh,vh)−b(vh,ph),
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which completes the proof of (5.3a).
As to Eq. (5.3b), testing (1.1b) by qh∈Wh, we arrive at

0=(∇·u,qh)=(∇d ·u,qh).

With (3.1b), we can finally prove Eq. (5.3b).

6 Error estimate

The goal of this section is to derive the detailed analysis of error estimates in H1 and L2

norms for the velocity variable uh and in L2 norm for the pressure variable ph.
Before deriving the optimal-order error estimates, we present some preparation work

and inequalities.

Lemma 6.1. For any w∈ [Hk+1(Ω)]d, q∈Hk(Ω), vh ={v0,vb}∈V0
h and qh∈Wh, we have

|l(w,vh)|≤Chk‖w‖k+1|||vh|||, (6.1a)

|θ(q,vh)|≤Chk‖q‖k|||vh|||, (6.1b)

where C is a positive constant independent with h.

Proof. It follows from the Cauchy-Schwarz inequality, the trace inequality, the projection
inequality, and (4.6) that

|l(w,vh)|=
∣∣∣∣∣ ∑
T∈Th

〈(∇w−Qh∇w)·n,v0−vb〉∂T

∣∣∣∣∣
≤C

(
∑

T∈Th

hT‖∇w−Qh∇w‖2
∂T

) 1
2
(

∑
T∈Th

h−1
T ‖v0−vb‖2

∂T

) 1
2

≤Chk‖w‖k+1|||vh|||,

which completes the proof of (6.1a).
Similarly, we can get the inequality related to θ(q,vh), that is

|θ(q,vh)|=
∣∣∣∣∣ ∑
T∈Th

〈(q−Qhq)n,v0−vb〉∂T

∣∣∣∣∣
≤C

(
∑

T∈Th

hT‖q−Qhq‖2
∂T

) 1
2
(

∑
T∈Th

h−1
T ‖v0−vb‖2

∂T

) 1
2

≤Chk‖q‖k|||vh|||.

Then, we complete the proof.
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Lemma 6.2. For any w∈ [Hk+1(Ω)]d, the following inequality holds true

|||w−Qhw|||≤Chk‖w‖k+1. (6.2)

Proof. For any τ∈ [Pj(T)]d×d, from the definition of weak gradient operator ∇d, integra-
tion by parts, the trace inequality, the projection inequality, and the definition of Qb, we
get

(∇d(w−Qhw),τ)T =−(w−Q0w,∇·τ)T+〈w−Qbw,τ ·n〉∂T

=(∇(w−Q0w),τ)T−〈Qbw−Q0w,τ ·n〉∂T

≤‖∇(w−Q0w)‖T‖τ‖T+‖Qbw−Q0w‖∂T‖τ‖∂T

≤‖∇(w−Q0w)‖T‖τ‖T+Ch−1/2‖w−Q0w‖∂T‖τ‖T

≤Chk‖w‖k+1‖τ‖T.

Setting τ=∇d(w−Qhw) and summing over all T∈Th, we have

|||w−Qhw|||≤Chk‖w‖k+1,

which gives a complete proof of the lemma.

Theorem 6.1. Assume (u;p)∈ [H1
0(Ω)∩Hk+1(Ω)]d×(L2

0(Ω)∩Hk(Ω)) with k≥1 is the exact
solution of the Stokes equations (1.1a)-(1.1c) and (uh;ph)∈Vh×Wh is the numerical solution of
(3.1a)-(3.1b), respectively. Let eh =u−uh and εh =Qh p−ph be the corresponding errors. Then
there exist a constant C independent of h such that

|||eh|||+‖εh‖≤Chk(‖u‖k+1+‖p‖k). (6.3)

Proof. Letting ρh =Qhu−uh and vh =ρh in (5.3a), we have

|||eh|||2=(∇deh,∇deh)Th

=(∇deh,∇d(u−Qhu))Th +(∇deh,∇dρh)Th

=(∇deh,∇d(u−Qhu))Th +a(eh,ρh)

=l(u,ρh)+θ(p,ρh)+b(ρh,εh)+(∇deh,∇d(u−Qhu))Th . (6.4)

Since we have the fact that

b(uh,εh)=(∇d ·uh)Th =0,
b(Qhu,εh)=(∇d ·Qhu,εh)Th =(Qh(∇·u),εh)Th =(∇·u,εh)Th =0,

which implies b(ρh,εh)=0. We can get

|||eh|||2= l(u,ρh)+θ(p,ρh)+(∇deh,∇d(u−Qhu))Th ,

where we have used the definition of |||·|||, l(·,·), and θ(·,·).
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We give the estimates of the last three terms as follows. For any τ ∈ [Pj(T)]d×d and
w∈Vh, from the Young’s inequality and (6.2), we have

(∇deh,∇d(u−Qhu))Th≤C|||eh||||||u−Qhu|||

≤1
4
|||eh|||2+C|||u−Qhu|||2≤ 1

4
|||eh|||2+Ch2k‖u‖2

k+1. (6.5)

As to l(u,ρh) and θ(p,ρh), we can derive the estimates from Lemma 6.1 and (6.2), that is

|l(u,ρh)+θ(p,ρh)|≤|l(u,ρh)|+|θ(p,ρh)|
≤Chk‖u‖k+1|||ρh|||+Chk‖p‖k|||ρh|||
≤Chk(‖u‖k+1+‖p‖k)|||ρh|||
≤Chk(‖u‖k+1+‖p‖k)(|||u−Qhu|||+|||eh|||)
≤Ch2k(‖u‖k+1+‖p‖k)

2+Chk(‖u‖k+1+‖p‖k)|||eh|||

≤Ch2k(‖u‖k+1+‖p‖k)
2+

1
4
|||eh|||2,

where we have used the Young’s inequality. Then, we have

|||eh|||2=l(u,ρh)+θ(p,ρh)+(∇deh,∇d(u−Qhu))Th

≤|l(u,ρh)+θ(p,ρh)|+|(∇deh,∇d(u−Qhu))Th |

≤Ch2k(‖u‖k+1+‖p‖k)
2+

1
2
|||eh|||2.

i.e.,

|||eh|||≤Chk(‖u‖k+1+‖p‖k). (6.6)

Then we consider ‖εh‖. It is easy to get from (5.3a) that

|b(vh,εh)|=|a(eh,vh)−l(u,vh)+θ(p,vh)|
≤|a(eh,vh)|+|l(u,vh)|+|θ(p,vh)|
≤C|||eh||||||vh|||+Chk(‖u‖k+1+‖p‖k)|||vh|||
≤Chk(‖u‖k+1+‖p‖k)|||vh|||.

From the inf−sup condition, we have

‖εh‖≤C
|b(vh,εh)|
|||vh|||

≤Chk(‖u‖k+1+‖p‖k), (6.7)

which completes the proof.
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Then we derive the optimal order error estimate in L2 norm for the velocity function.
To this end, we adopt the standard duality argument. Denote by ρh =Qhu−uh another
error related to u. Consider the dual problem that seeks ψ ∈ [H2(Ω)]d and φ ∈ H1(Ω)
satisfying

−∆ψ+∇φ=ρ0 in Ω, (6.8a)
∇·ψ=0 in Ω, (6.8b)
ψ=0 on ∂Ω. (6.8c)

Assume that the above dual problem satisfies the usual [H2(Ω)]d×H1(Ω)-regularity,
which means the following priori estimate holds true

‖ψ‖2+‖φ‖1≤C‖ρ0‖. (6.9)

Theorem 6.2. Assume (u;p)∈ [H1
0(Ω)∩Hk+1(Ω)]d×(L2

0(Ω)∩Hk(Ω)) with k≥1 is the exact
solution of the Stokes equations (1.1a)-(1.1c), and (uh;ph)∈Vh×Wh is the numerical solution of
(3.1a)-(3.1b), respectively. Moreover, assume the priori estimate (6.9) holds. Then, there exist a
constant C and the following estimate holds true

‖e0‖≤Chk+1(‖u‖k+1+‖p‖k). (6.10)

Proof. Testing (6.8a) by ρ0, we get

‖ρ0‖2=(ρ0,ρ0)=−(∆ψ,ρ0)+(∇φ,ρ0).

From (5.4a) and (5.4b), we have

‖ρ0‖2=(∇dρh,∇dψ)Th−(∇dρh,Qhφ)Th +l(ψ,ρh)−θ(φ,ρh)

=a(ρh,ψ)−b(ρh,Qhφ)+l(ψ,ρh)−θ(φ,ρh).

Since ∇·ψ=0 in Ω, it is easy to derive

b(Qhψ,εh)=(∇d ·Qhψ,Qh p−ph)Th =(Qh(∇·ψ),Qh p−ph)Th =0. (6.11)

It follows from (5.3b), (6.11), and (5.3a) that

‖ρ0‖2=a(eh,ψ)−b(Qhψ,εh)+l(ψ,ρh)−θ(φ,ρh)+a(Qhu−u,ψ)
=a(eh,Qhψ)−b(Qhψ,εh)+l(ψ,ρh)−θ(φ,ρh)+a(Qhu−u,ψ)+a(eh,ψ−Qhψ)

=l(u,Qhψ)−θ(p,Qhψ)+l(ψ,ρh)−θ(φ,ρh)+a(Qhu−u,ψ)+a(eh,ψ−Qhψ)

=I1+ I2+ I3+ I4+ I5+ I6.

With the definition of Qb and the fact that ψ=0 on ∂Ω, it is obvious that

∑
T∈Th

〈ψ−Qbψ,(p−Qh p)n〉∂T = ∑
T∈Th

〈ψ−Qbψ,pn〉∂T =0. (6.12)
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Now, we start to estimate all the 6 terms on the right-hand side. From the Cauchy-
Schwarz inequality, the trace inequality, and the projection inequality, we have

|I1|=|l(u,Qhψ)|=
∣∣∣∣∣ ∑
T∈Th

〈Q0ψ−Qbψ,(∇u−Qh∇u)·n〉∂T

∣∣∣∣∣
≤C

(
∑

T∈Th

h−1
T ‖Q0ψ−Qbψ‖2

∂T

)1/2(
∑

T∈Th

hT‖∇u−Qh∇u‖2
∂T

)1/2

≤C

(
∑

T∈Th

h−1
T ‖Q0ψ−ψ‖2

∂T

)1/2(
∑

T∈Th

hT‖∇u−Qh∇u‖2
∂T

)1/2

≤Chk+1‖ψ‖2‖u‖k+1.

Similarly, we can derive the estimate of I2 that

|I2|=|θ(p,Qhψ)|=
∣∣∣∣∣ ∑
T∈Th

〈Q0ψ−Qbψ,(p−Qh p)n〉∂T

∣∣∣∣∣
≤C

(
∑

T∈Th

h−1
T ‖Q0ψ−ψ‖2

∂T

)1/2(
∑

T∈Th

hT‖p−Qh p‖2
∂T

)1/2

≤Chk+1‖ψ‖2‖p‖k.

As to I3 and I4, it follows from (6.1a), (6.1b), (6.2), and (6.6) that

|I3|= |l(ψ,ρh)|≤Ch‖ψ‖2|||ρh|||
≤Ch‖ψ‖2(|||eh|||+|||Qhu−u|||)
≤Chk+1‖ψ‖2‖u‖k+1,

|I4|= |θ(φ,ρh)|≤Ch‖φ‖1|||ρh|||
≤Chk+1‖φ‖1‖u‖k+1.

Before we estimate I5, a new projection operator should be defined. Denote by Q̃h the L2

projection from [L2(T)]d×d onto [P1(T)]d×d. For any T∈Th, the following equation holds
true

(∇d(Qhu−u),Q̃h∇dψ)T =−(Q0u−u,∇·Q̃h∇dψ)+〈Qbu−u,Q̃h∇dψ·n〉∂T =0.

It follows from the equation above, the Cauchy-Schwarz inequality, the projection in-
equality, and (6.2) that

|I5|=|a(Qhu−u,ψ)|=
∣∣∣∣∣ ∑
T∈Th

(∇d(Qhu−u),∇dψ)T

∣∣∣∣∣
=

∣∣∣∣∣ ∑
T∈Th

(∇d(Qhu−u),∇dψ−Q̃h∇dψ)T

∣∣∣∣∣
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=

∣∣∣∣∣ ∑
T∈Th

(∇d(Qhu−u),∇ψ−Q̃h∇ψ)T

∣∣∣∣∣
≤
(

∑
T∈Th

‖∇d(Qhu−u)‖2
T

)1/2(
∑

T∈Th

‖∇ψ−Q̃h∇ψ‖2
T

)1/2

≤Chk+1‖u‖k+1‖ψ‖2.

Using (6.6) and (6.2), we have

|I6|=|a(eh,ψ−Qhψ)|=
∣∣∣∣∣ ∑
T∈Th

(∇deh,∇d(ψ−Qhψ))T

∣∣∣∣∣
≤C|||eh||||||ψ−Qhψ|||≤Chk+1‖u‖k+1‖ψ‖2.

By combining the estimates of all the terms, we obtain

‖ρ0‖2≤Chk+1(‖u‖k+1+‖p‖k)(‖ψ‖2+‖φ‖1).

The regularity assumption implies

‖ρ0‖≤Chk+1(‖u‖k+1+‖p‖k). (6.13)

With (6.13), the triangle inequality, and the projection inequality, we get

‖e0‖≤‖ρ0‖+‖u−Q0u‖≤Chk+1(‖u‖k+1+‖p‖k),

which completes the proof.

7 Numerical results

In this section, we will test the SF WG method for solving the Stokes equations (1.1a)-
(1.1c). The computation domain is the unit square Ω=(0,1)×(0,1), and the exact solution
is chosen as follows:

u=

(
sin2(πx)sin(2πy)
−sin(2πx)sin2(πy)

)
, p=(x−y)3. (7.1)

We first use triangular grids as shown in Fig. 1 for the computation. The resulting
linear systems are solved by the Matlab backslash sparse solver. In this computation on
triangular grids, the weak gradient is computed in the space of P2×2

k+1 polynomials, and
the weak divergence is defined in the Pk space. The errors and the convergence rates are
listed in Table 1. Optimal order of convergence is achieved in all cases.

To see why there is no superconvergence and possible superconvergence, we plot the
P2 solution (uh)1 and its error on the 4th level grid in Fig. 2. We know most P2 finite
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Figure 1: The level 1, 2, and 3 triangular grids for the computation of Table 1.

elements are superconvergent in L2 norm, for example, the P2 Taylor-Hood element. The
error of the P2 weak Galerkin velocity does cross the zero-plane on each element. This
indicates there are superconvergent points for the weak Galerkin elements. Thus the
weak Galerkin solution is superconvergent to some locally interpolated solution, which
needs further studies to be found.

Next, we use polygonal (pentagon and octagon) grids as shown in Fig. 3 to solve the
test case (7.1). The weak gradient polynomial degree j in (2.5) is chosen to be k+2, much
less than the theoretic proved lower bound k+8−1, for the computation on polygonal

Table 1: Error profile for eu=Qhu−uh and ep =Qh p−ph, for the SF WG on triangular grids (Fig. 1).

level ‖eu‖0 hr |||eu||| hr ‖ep‖0 hr

The P2
1 -P0 WG element on triangular mesh

4 0.4602E-01 2.0 0.2592E+01 0.9 0.1037E+01 1.5
5 0.1116E-01 2.0 0.1324E+01 1.0 0.3363E+00 1.6
6 0.2724E-02 2.0 0.6665E+00 1.0 0.1164E+00 1.5
7 0.6714E-03 2.0 0.3340E+00 1.0 0.4553E-01 1.4

The P2
2 -P1 element on triangular mesh

3 0.1893E-01 1.8 0.9486E+00 0.6 0.3487E+00 0.9
4 0.2543E-02 2.9 0.2486E+00 1.9 0.7217E-01 2.3
5 0.3219E-03 3.0 0.6266E-01 2.0 0.1396E-01 2.4
6 0.4031E-04 3.0 0.1567E-01 2.0 0.2756E-02 2.3

The P2
3 -P2 element on triangular mesh

3 0.1647E-02 4.4 0.1275E+00 3.3 0.2225E+00 3.6
4 0.1028E-03 4.0 0.1632E-01 3.0 0.1476E-01 3.9
5 0.6489E-05 4.0 0.2055E-02 3.0 0.9460E-03 4.0
6 0.4078E-06 4.0 0.2574E-03 3.0 0.6225E-04 3.9

The P2
4 -P3 element on triangular mesh

2 0.1310E-02 5.8 0.6342E-01 5.1 0.1284E-01 5.2
3 0.1476E-03 3.1 0.1357E-01 2.2 0.3084E-02 2.1
4 0.4868E-05 4.9 0.8664E-03 4.0 0.1632E-03 4.2
5 0.1526E-06 5.0 0.5428E-04 4.0 0.8082E-05 4.3
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Figure 2: The P2 WG solution of (u)1 on the level 4 triangular grid (top), the error (u)1−(uh)1 on the same
grid (middle), and the error (u)1−(uh)1 on the 4-th level polygonal grid shown as in Fig. 3 (bottom).

Figure 3: The level 1, 2, and 3 (pentagon and octagon) polygonal grids for the computation of Table 2.

(including octagon) grids. The weak divergence is still computed by Pk polynomials. It is
an advantage of the WG finite element method over the traditional finite element method,
in using arbitrary polygonal meshes. The numerical results are listed in Table 2. Optimal
orders of convergence are achieved in all cases of computation on polygonal grids (cf.



Y. Feng, Y. Liu, R. Wang and S. Zhang / Adv. Appl. Math. Mech., 14 (2022), pp. 181-201 199

Table 2: Error profile for eu=Qhu−uh and ep =Qh p−ph, for WG finite elements on pentagon/octagon grids
(Fig. 3).

level ‖eu‖0 hr |||eu||| hr ‖ep‖0 hr

The P2
1 -P0 WG element on pentagon/octagon grids

3 0.1544E+00 2.4 0.9334E+01 1.2 0.1580E+01 1.5
4 0.3526E-01 2.1 0.4853E+01 0.9 0.5593E+00 1.5
5 0.8665E-02 2.0 0.2456E+01 1.0 0.1782E+00 1.7
6 0.2159E-02 2.0 0.1233E+01 1.0 0.5998E-01 1.6

The P2
2 -P1 WG element on pentagon/octagon grids

3 0.2747E-01 1.7 0.2579E+01 0.9 0.2858E+00 0.9
4 0.3535E-02 3.0 0.6630E+00 2.0 0.6049E-01 2.2
5 0.4373E-03 3.0 0.1668E+00 2.0 0.1150E-01 2.4
6 0.5410E-04 3.0 0.4175E-01 2.0 0.2175E-02 2.4

The P2
3 -P2 WG element on pentagon/octagon grids

3 0.4808E-02 4.3 0.6643E+00 3.3 0.2735E-01 4.1
4 0.3062E-03 4.0 0.8466E-01 3.0 0.2018E-02 3.8
5 0.1925E-04 4.0 0.1063E-01 3.0 0.1580E-03 3.7
6 0.1205E-05 4.0 0.1331E-02 3.0 0.1461E-04 3.4

The P2
4 -P3 WG element on pentagon/octagon grids

2 0.9970E-02 5.8 0.9015E+00 5.0 0.4039E-01 5.2
3 0.7529E-03 3.7 0.1381E+00 2.7 0.3020E-02 3.7
4 0.2434E-04 5.0 0.8758E-02 4.0 0.1645E-03 4.2
5 0.7671E-06 5.0 0.5494E-03 4.0 0.1019E-04 4.0

Table 2), which are consistent with the theory developed previously. For a comparison,
we plot an error on the 4th polygonal grid (cf. Fig. 3) in Fig. 2.
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