$\sup \times \inf$ Inequalities for the Scalar Curvature
 Equation in Dimensions 4 and 5

Samy Skander Bahoura*
Department de Mathematiques, Universite Pierre et Marie Curie, 2 place Jussieu, 75005, Paris, France
Received 25 September 2017; Accepted (in revised version) 22 November 2018

Abstract. We consider the following problem on bounded open set Ω of \mathbb{R}^{n} :

$$
\begin{cases}-\Delta u=V u^{\frac{n+2}{n-2}} & \text { in } \Omega \subset \mathbb{R}^{n}, \quad n=4,5 \\ u>0 & \text { in } \Omega\end{cases}
$$

We assume that :

$$
\begin{array}{ll}
V \in C^{1, \beta}(\Omega), & 0<\beta \leq 1 \\
0<a \leq V \leq b<+\infty, & \text { in } \Omega .
\end{array}
$$

Then, we have a sup \times inf inequality for the solutions of the previous equation, namely:

$$
\begin{array}{ll}
\left(\sup _{K} u\right)^{\beta} \times \inf _{\Omega} u \leq c=c(a, b, A, B, \beta, K, \Omega) & \text { for } n=4 \\
\left(\sup _{K} u\right)^{1 / 3} \times \inf _{\Omega} u \leq c=c(a, b, A, B, K, \Omega) & \text { for } n=5 \quad \text { and } \beta=1 .
\end{array}
$$

Key Words: sup \times inf, dimension 4 and 5, blow-up, moving-plane method.
AMS Subject Classifications: 35J61, 35B44, 35B45, 35B50

1 Introduction and main result

We work on $\Omega \subset \subset \mathbb{R}^{4}$ and we consider the following equation:

$$
\begin{cases}-\Delta u=V u^{\frac{n+2}{n-2}} & \text { in } \Omega \subset \mathbb{R}^{n}, \quad n=4,5 \tag{E}\\ u>0 & \text { in } \Omega\end{cases}
$$

[^0]with
\[

$$
\begin{cases}V \in C^{1, \beta}(\Omega), & \\ 0<a \leq V \leq b<+\infty & \text { in } \Omega, \\ |\nabla V| \leq A & \text { in } \Omega, \\ \left|\nabla^{1+\beta} V\right| \leq B & \text { in } \Omega .\end{cases}
$$
\]

Without loss of generality, we suppose $\Omega=B_{1}(0)$ the unit ball of \mathbb{R}^{n}.
The corresponding equation in two dimensions on open set Ω of \mathbb{R}^{2} is:

$$
-\Delta u=V(x) e^{u} .
$$

Eq. (E^{\prime}) was studied by many authors and we can find very important result about a priori estimates in $[8,9,12,16,19]$. In particular in [9] we have the following interior estimate:

$$
\sup _{K} u \leq c=c\left(\inf _{\Omega} V,\|V\|_{L^{\infty}(\Omega)}, \inf _{\Omega} u, K, \Omega\right) .
$$

And, precisely, in [8,12,16,19], we have:

$$
\begin{aligned}
& C \sup _{K} u+\inf _{\Omega} u \leq c=c\left(\inf _{\Omega} V,\|V\|_{L^{\infty}(\Omega)}, K, \Omega\right), \\
& \sup _{K} u+\inf _{\Omega} u \leq c=c\left(\inf _{\Omega} V,\|V\|_{C^{\alpha}(\Omega)}, K, \Omega\right),
\end{aligned}
$$

where K is a compact subset of Ω, C is a positive constant which depends on $\frac{\inf _{\Omega} V}{\sup _{\Omega} V}$, and, $\alpha \in(0,1]$.

For $n \geq 3$ we have the following general equation on a Riemannian manifold:

$$
-\Delta u+h u=V(x) u^{\frac{n+2}{n-2}}, \quad u>0, \quad\left(E_{n}\right)
$$

where h, V are two continuous functions. In the case $c_{n} h=R_{g}$ the scalar curvature, we call V the prescribed scalar curvature. Here c_{n} is a universal constant.

Eq. $\left(E_{n}\right)$ was studied a lot, when $M=\Omega \subset \mathbb{R}^{n}$ or $M=S_{n}$ see for example, [2-4,11,15]. In this case we have a sup $\times \inf$ inequality.

In the case $V \equiv 1$ and M compact, Eq. $\left(E_{n}\right)$ is Yamabe equation. T. Aubin and R. Schoen proved the existence of solution in this case, see for example [1,14] for a complete and detailed summary.

When M is a compact Riemannian manifold, there exist some compactness result for Eq. $\left(E_{n}\right)$ see [18]. Li and Zhu see [18], proved that the energy is bounded and if we suppose M not diffeormorfic to the three sphere, the solutions are uniformly bounded. To have this result they use the positive mass theorem.

Now, if we suppose M Riemannian manifold (not necessarily compact) and $V \equiv 1, \mathrm{Li}$ and Zhang [17] proved that the product sup \times inf is bounded. Also, see [3,5,6] for other

Harnack type inequalities, and, see $[3,7]$ about some caracterization of the solutions of this equation $\left(E_{n}\right)$ in this case $(V \equiv 1)$.

Here we extend a result of [11] on an open set of $\mathbb{R}^{n}, n=4,5$. In fact we consider the prescribed scalar curvature equation on an open set of $\mathbb{R}^{n}, n=4,5$, and, we prove a $\sup \times \inf$ inequality on compact set of the domain when the derivative of the prescribed scalar curvature is β-holderian, $\beta>0$.

Our proof is an extension of Chen-Lin result in dimension 4 and 5 , see [11], and the moving-plane method is used to have this estimate. We refer to Gidas-Ni-Nirenberg for the moving-plane method, see [13]. Also, we can see in [10], one of the application of this method.

We have the following result in dimension 4, which is the consequence of the work of Chen-Lin.

Theorem 1.1. For all $a, b, A, B>0$, and for all compact K of Ω, there exists a positive constant $c=c(a, b, A, B, K, \Omega)$ such that:

$$
\sup _{K} u \times \inf _{\Omega} \leq c,
$$

where u is solution of (E) with V, C^{2} satisfying $\left(C_{\beta}\right)$ for $\beta=1$.
Here, we give an inequality of type sup \times inf for Eq. (E) in dimension 4 and with general conditions on the prescribed scalar curvature, exactly we take a $C^{1, \beta}$ condition. In fact we extend the result of Chen-Lin in dimension 4.

Here we prove:
Theorem 1.2. For all $a, b, A, B>0,1 \geq \beta>0$, and for all compact K of Ω, there exists a positive constant $c=c(a, b, A, B, \beta, K, \Omega)$ such that:

$$
\left(\sup _{K} u\right)^{\beta} \times \inf _{\Omega} u \leq c,
$$

where u is solution of (E) with V satisfying $\left(C_{\beta}\right)$.
We have the following result in dimension 5, which is the consequence of the work of Chen-Lin.

Theorem 1.3. For all $a, b, m, A, B>0$, and for all compact K of Ω, there exists a positive constant $c=c(a, b, m, A, B, K, \Omega)$ such that:

$$
\sup _{K} u \leq c, \quad \text { if } \inf _{\Omega} u \geq m,
$$

where u is solution of $E q$. (E) with V satisfying $\left(C_{\beta}\right)=\left(C_{1}\right)$ for $\beta=1$.
Here, we give an inequality of type sup \times inf for Eq. (E) in dimension 5 and with general conditions on the prescribed scalar curvature, exactly we take a C^{2} condition ($\beta=1$ in $\left(C_{\beta}\right)$). In fact we extend the result of Chen-Lin in dimension 5 .

Here we prove:

Theorem 1.4. For all $a, b, A, B>0$, and for all compact K of Ω, there exists a positive constant $c=c(a, b, A, B, K, \Omega)$ such that:

$$
\left(\sup _{K} u\right)^{1 / 3} \times \inf _{\Omega} u \leq c
$$

where u is solution of (E) with V satisfying $\left(C_{\beta}\right)$ for $\beta=1$.

2 The method of moving-plane

In this section we will formulate a modified version of the method of moving-plane for use later. Let Ω an open set and Ω^{c} the complement of Ω. We consider a solution u of the following equation:

$$
\left\{\begin{array}{l}
\Delta u+f(x, u)=0 \\
u>0
\end{array}\right.
$$

where $f(x, u)$ is nonegative, Holder continuous in x, C^{1} in u, and defined on $\bar{\Omega} \times(0,+\infty)$. Let e be a unit vector in \mathbb{R}^{n}. For $\lambda<0$, we let $T_{\lambda}=\left\{x \in \mathbb{R}^{n},\langle x, e\rangle=\lambda\right\}, \Sigma_{\lambda}=\{x \in$ $\left.\mathbb{R}^{n},\langle x, e\rangle>\lambda\right\}$, and $x^{\lambda}=x+(2 \lambda-2\langle x, e\rangle) e$ to denote the reflexion point of x with respect to T_{λ}, where $\langle\cdot, \cdot\rangle$ is the standard inner product of \mathbb{R}^{n}. Define:

$$
\lambda_{1} \equiv \sup \left\{\lambda<0, \Omega^{c} \subset \Sigma_{\lambda}\right\}
$$

$\Sigma_{\lambda}^{\prime}=\Sigma_{\lambda}-\Omega^{c}$ for $\lambda \leq \lambda_{1}$, and $\bar{\Sigma}_{\lambda}^{\prime}$ the closure of $\Sigma_{\lambda}^{\prime}$. Let $u^{\lambda}(x)=u\left(x^{\lambda}\right)$ and $w_{\lambda}(x)=$ $u(x)-u^{\lambda}(x)$ for $x \in \Sigma_{\lambda}^{\prime}$. Then we have, for any arbitrary function $b_{\lambda}(x)$,

$$
\Delta w_{\lambda}(x)+b_{\lambda}(x) w_{\lambda}(x)=Q\left(x, b_{\lambda}(x)\right)
$$

where

$$
Q\left(x, b_{\lambda}(x)\right)=f\left(x^{\lambda}, u^{\lambda}\right)-f(x, u)+b_{\lambda}(x) w_{\lambda}(x)
$$

The hypothesis $(*)$ is said to be satisfied if there are two families of functions $b_{\lambda}(x)$ and $h^{\lambda}(x)$ defined in $\Sigma_{\lambda}^{\prime}$, for $\lambda \in\left(-\infty, \lambda_{1}\right)$ such that, the following assertions holds:

$$
0 \leq b_{\lambda}(x) \leq c(x)|x|^{-2}
$$

where $c(x)$ is independent of λ and tends to zero as $|x|$ tends to $+\infty$,

$$
h^{\lambda}(x) \in C^{1}\left(\Sigma_{\lambda} \cap \Omega\right),
$$

and satisfies:

$$
\begin{cases}\Delta h^{\lambda}(x) \geq Q\left(x, b_{\lambda}(x)\right) & \text { in } \Sigma_{\lambda} \cap \Omega \\ h^{\lambda}(x)>0 & \text { in } \Sigma_{\lambda} \cap \Omega\end{cases}
$$

in the distributional sense and,

$$
h^{\lambda}(x)=0 \quad \text { on } T_{\lambda} \quad \text { and } \quad h^{\lambda}(x)=\mathcal{O}\left(|x|^{-t_{1}}\right),
$$

as $|x| \rightarrow+\infty$ for some constant $t_{1}>0$,

$$
h^{\lambda}(x)+\epsilon<w_{\lambda}(x),
$$

in a neighborhood of $\partial \Omega$, where ϵ is a positive constant independent of x.

$$
\left\{\begin{array}{l}
h^{\lambda}(x) \text { and } \nabla_{x} h^{\lambda} \text { are continuous with respect to both variables, } \\
x \text { and } \lambda, \text { and for any compact set of } \Omega, \quad w_{\lambda}(x)>h^{\lambda}(x), \\
\text { holds when }-\lambda \text { is sufficiently large. }
\end{array}\right.
$$

We have the following lemma:
Lemma 2.1. Let u be a solution of $\left(E^{\prime \prime}\right)$. Suppose that $u(x) \geq C>0$ in a neighborhood of $\partial \Omega$ and $u(x)=\mathcal{O}\left(|x|^{-t_{2}}\right)$ at $+\infty$ for some positive t_{2}. Assume there exist $b_{\lambda}(x)$ and $h^{\lambda}(x)$ such that the hypothesis $(*)$ is satisfied for $\lambda \leq \lambda_{1}$. Then $w_{\lambda}(x)>0$ in $\Sigma_{\lambda}^{\prime}$, and $\langle\nabla u, e\rangle>0$ on T_{λ} for $\lambda \in\left(-\infty, \lambda_{1}\right)$.

For the proof see Chen and Lin, [11].
Remark 2.1. If we know that $w_{\lambda}-h^{\lambda}>0$ for some $\lambda=\lambda_{0}<\lambda_{1}$ and b_{λ} and h^{λ} satisfy the hypothesis $(*)$ for $\lambda_{0} \leq \lambda \leq \lambda_{1}$, then the conclusion of the Lemma 2.1 holds.

3 Proof of the result

Proof of the Theorem 1.2. When $n=4$: to prove the theorem, we argue by contradiction and we assume that the $(\sup)^{\beta} \times$ inf tends to infinity.
Step 1: blow-up analysis. We want to prove that:

$$
\tilde{R}^{2}\left(\sup _{B_{\bar{R}}(0)} u\right)^{\beta} \times \inf _{B_{3 \bar{R}}(0)} u \leq c=c(a, b, A, B, \beta) .
$$

If it is not the case, we have:

$$
\tilde{R}_{i}^{2}\left(\sup _{B_{\tilde{R}_{i}}(0)} u_{i}\right)^{\beta} \times \inf _{B_{3 \tilde{R}_{i}}(0)} u_{i}=i^{6} \rightarrow+\infty,
$$

for positive solutions $u_{i}>0$ of Eq. (E) and $\tilde{R}_{i} \rightarrow 0$. Thus,

$$
\frac{1}{i} \tilde{R}_{i}\left(\sup _{B_{R_{i}}(0)} u_{i}\right)^{(1+\beta) / 2} \rightarrow+\infty .
$$

Let a_{i} such that:

$$
u_{i}\left(a_{i}\right)=\max _{B_{\bar{R}_{i}}(0)} u_{i} .
$$

We set

$$
s_{i}(x)=\left(\tilde{R}_{i}-\left|x-a_{i}\right|\right)^{2 /(1+\beta)} u_{i}(x),
$$

we have

$$
s_{i}\left(\bar{x}_{i}\right)=\max _{B_{\bar{R}_{i}}\left(a_{i}\right)} s_{i} \geq s_{i}\left(a_{i}\right)=\tilde{R}_{i}^{2 /(1+\beta)} \sup _{B_{\bar{k}_{i}}(0)} u_{i} \rightarrow+\infty,
$$

we set

$$
R_{i}=\frac{1}{2}\left(\tilde{R}_{i}-\left|\bar{x}_{i}-a_{i}\right|\right) .
$$

We have, for $\left|x-\bar{x}_{i}\right| \leq \frac{R_{i}}{i}$,

$$
\tilde{R}_{i}-\left|x-a_{i}\right| \geq \tilde{R}_{i}-\left|\bar{x}_{i}-a_{i}\right|-\left|x-\bar{x}_{i}\right| \geq 2 R_{i}-R_{i}=R_{i} .
$$

Thus

$$
\frac{u_{i}(x)}{u_{i}\left(\overline{x_{i}}\right)} \leq \beta_{i} \leq 2^{2 /(1+\beta)}
$$

with $\beta_{i} \rightarrow 1$. We set

$$
\begin{array}{ll}
M_{i}=u_{i}\left(\bar{x}_{i}\right), & v_{i}^{*}(y)=\frac{u_{i}\left(\bar{x}_{i}+M_{i}^{-1} y\right)}{u_{i}\left(\bar{x}_{i}\right)}, \\
|y| \leq \frac{1}{i} R_{i} M_{i}^{(1+\beta) / 2}=2 \tilde{L}_{i}, & \frac{1}{i^{2}} \tilde{R}_{i}^{2} M_{i}^{\beta} \times \inf _{B_{3 \bar{K}_{i}}(0)} u_{i} \rightarrow+\infty .
\end{array}
$$

Without loss of generality, we can assume \bar{x}_{i} a local maximum of u_{i}.
By the elliptic estimates, v_{i}^{*} converge on each compact set of \mathbb{R}^{4} to a function $U_{0}^{*}>0$ solution of :

$$
\left\{\begin{array}{l}
-\Delta U_{0}^{*}=V(0) U_{0}^{* 3} \quad \text { in } \mathbb{R}^{4}, \\
U_{0}^{*}(0)=1=\max _{\mathbb{R}^{4}} U_{0}^{*} .
\end{array}\right.
$$

For simplicity, we assume that $0<V(0)=n(n-2)=8$. By a result of Caffarelli-GidasSpruck, see [10], we have:

$$
U_{0}^{*}(y)=\left(1+|y|^{2}\right)^{-1} .
$$

We set

$$
v_{i}(y)=v_{i}^{*}(y+e),
$$

where v_{i}^{*} is the blow-up function. Then, v_{i} has a local maximum near $-e$

$$
U_{0}(y)=U_{0}^{*}(y+e) .
$$

We want to prove that:

$$
\min _{\{0 \leq|y| \leq r\}} v_{i}^{*} \leq(1+\epsilon) U_{0}^{*}(r)
$$

for $0 \leq r \leq L_{i}$, with $L_{i}=\frac{1}{2 i} \tilde{R}_{i} M_{i}^{(1+\beta) / 2}$.
We assume that it is not true, then, there is a sequence of number $r_{i} \in\left(0, L_{i}\right)$ and $\epsilon>0$, such that:

$$
\min _{\left\{0 \leq|y| \leq r_{i}\right\}} v_{i}^{*} \geq(1+\epsilon) U_{0}^{*}\left(r_{i}\right) .
$$

We have:

$$
r_{i} \rightarrow+\infty .
$$

Thus, we have for $r_{i} \in\left(0, L_{i}\right)$:

$$
\min _{\left\{0 \leq|y| \leq r_{i}\right\}} v_{i} \geq(1+\epsilon) U_{0}\left(r_{i}\right) .
$$

Also, we can find a sequence of number $l_{i} \rightarrow+\infty$ such that:

$$
l_{i}^{n-2}\left\|v_{i}^{*}-U_{0}\right\|_{C^{2}\left(B_{l_{i}}(0)\right)} \rightarrow 0 .
$$

Thus,

$$
\min _{\left\{0 \leq|y| \leq l_{i}\right\}} v_{i} \geq(1-\epsilon / 2) U_{0}\left(l_{i}\right) .
$$

Step 2 : The Kelvin transform and the Moving-plane method.

1. a linear equation perturbed by a term, and, the auxiliary function $D_{i}=\left|\nabla V_{i}\left(x_{i}\right)\right| \rightarrow$ 0 . We have the same estimate as in the paper of Chen-Lin. We argue by contradiction. We consider $r_{i} \in\left(0, L_{i}\right)$ where L_{i} is the number of the blow-up analysis

$$
L_{i}=\frac{1}{2 i} \tilde{R}_{i} M_{i}^{(1+\beta) / 2} .
$$

We use the assumption that the sup times inf is not bounded to prove $w_{\lambda}>h_{\lambda}$ in $\Sigma_{\lambda}=\left\{y, y_{1}>\lambda\right\}$, and on the boundary.
The function v_{i} has a local maximum near $-e$ and converge to $U_{0}(y)=U_{0}^{*}(y+e)$ on each compact set of \mathbb{R}^{5}. U_{0} has a maximum at $-e$. We argue by contradiction and we suppose that:

$$
D_{i}=\left|\nabla V_{i}\left(x_{i}\right)\right| \nrightarrow 0 .
$$

Then, without loss of generality we can assume that:

$$
\nabla V_{i}\left(x_{i}\right) \rightarrow e=(1,0, \cdots, 0) .
$$

Where x_{i} is :

$$
x_{i}=\bar{x}_{i}+M_{i}^{-1} e,
$$

with \bar{x}_{i} is the local maximum in the blow-up analysis.
As in the paper of Chen-Lin, we use the Kelvin transform twice and we set (we take the same notations):

$$
\begin{array}{ll}
I_{\delta}(y)=\frac{\frac{|y|}{|y|^{2}}-\delta e}{\left(\left|\frac{y \mid}{|y|^{2}}-\delta e\right|\right)^{2}}, & v_{i}^{\delta}(y)=\frac{v_{i}\left(I_{\delta}(y)\right)}{|y|^{n-2}|y-e / \delta|^{n-2}} \\
V_{\delta}(y)=V_{i}\left(x_{i}+M_{i}^{-1} I_{\delta}(y)\right), & U_{\delta}(y)=\frac{U_{0}\left(I_{\delta}(y)\right)}{|y|^{n-2}|y-e / \delta|^{n-2}} .
\end{array}
$$

Then, U_{δ} has a local maximum near $e_{\delta} \rightarrow-e$ when $\delta \rightarrow 0$. The function v_{i}^{δ} has a local maximum near $-e$.
We want to prove by the application of the maximum principle and the Hopf lemma that near e_{δ} we have not a local maximum, which is a contradiction.

We set on

$$
\begin{aligned}
& \Sigma_{\lambda}^{\prime}=\Sigma_{\lambda}-\left\{y,\left|y-\frac{e}{\delta}\right| \leq \frac{c_{0}}{r_{i}}\right\} \simeq \Sigma_{\lambda}-\left\{y,\left|I_{\delta}(y)\right| \geq r_{i}\right\}, \\
& h_{\lambda}(y)=-\int_{\Sigma_{\lambda}} G_{\lambda}(y, \eta) Q_{\lambda}(\eta) d \eta
\end{aligned}
$$

with

$$
Q_{\lambda}(\eta)=\left(V_{\delta}(\eta)-V_{\delta}\left(\eta^{\lambda}\right)\right)\left(v_{i}^{\delta}\left(\eta^{\lambda}\right)\right)^{3} .
$$

And, by the same estimates, we have for $\eta \in A_{1}=\left\{\eta,|\eta| \leq R=\epsilon_{0} / \delta\right\}$,

$$
V_{\delta}(\eta)-V_{\delta}\left(\eta^{\lambda}\right) \geq M_{i}^{-1}\left(\eta_{1}-\lambda\right)+o(1) M_{i}^{-1}\left|\eta^{\lambda}\right|,
$$

and we have for $\eta \in A_{2}=\Sigma_{\lambda}-A_{1}$:

$$
\left|V_{\delta}(\eta)-V_{\delta}\left(\eta^{\lambda}\right)\right| \leq C M_{i}^{-1}\left(\left|I_{\delta}(\eta)\right|+\left|I_{\delta}\left(\eta^{\lambda}\right)\right|\right) .
$$

And we have for some $\lambda_{0} \leq-2$ and $C_{0}>0$:

$$
w_{\lambda}(y)=v_{i}^{\delta}(y)-v_{i}^{\delta}\left(y^{\lambda_{0}}\right) \geq C_{0} \frac{y_{1}-\lambda_{0}}{(1+|y|)^{n}}
$$

for $y_{1}>\lambda_{0}$.
Because, by the maximum principle:

$$
\begin{aligned}
\min _{\left\{l_{i} \leq\left|I_{\delta}(y)\right| \leq r_{i}\right\}} v_{i} & =\min \left\{\min _{\left\{\left|I_{\delta}(y)\right|=l_{i}\right\}^{\prime}} v_{i} \min _{\left\{\left|I_{\delta}(y)\right|=r_{i}\right\}} v_{i}\right\} \geq(1-\epsilon) U_{\delta}\left(\frac{e}{\delta}\right) \\
& \geq\left(1+c_{1} \delta-\epsilon\right) U_{\delta}\left(\left(\frac{e}{\delta}\right)^{\lambda}\right) \geq\left(1+c_{1} \delta-2 \epsilon\right) v_{i}^{\delta}\left(y^{\lambda}\right),
\end{aligned}
$$

and for $\left|I_{\delta}(y)\right| \leq l_{i}$ we use the C^{2} convergence of v_{i}^{δ} to U_{δ}.
Thus,

$$
w_{\lambda}(y)>2 \epsilon>0
$$

By the same estimates as in Chen-Lin paper (we apply the Lemma 2.1 of the second section), and by our hypothesis on v_{i}, we have:

$$
0<h_{\lambda}(y)=\mathcal{O}(1) M_{i}^{-2 / 3}\left(y_{1}-\lambda\right)(1+|y|)^{-n}<2 e<w_{\lambda}(y),
$$

also, we have the same estimate on the boundary, $\left|I_{\delta}(\eta)\right|=r_{i}$ or $|y-e / \delta|=c_{2} r_{i}^{-1}$. For

$$
\left|\nabla V_{i}\left(x_{i}\right)\right|^{1 / \beta}\left[u_{i}\left(x_{i}\right)\right] \leq C .
$$

Here, also, we argue by contradiction. We use the same computation as in ChenLin paper, we choose the same h_{λ}, except the fact that here we use the computation with $M_{i}^{-(1+\beta)}$ in front the regular part of h_{λ}. Here also, we consider $r_{i} \in\left(0, L_{i}\right)$, where L_{i} is the number of the blow-up analysis.

$$
L_{i}=\frac{1}{2 i} \tilde{R}_{i} M_{i}^{(1+\beta) / 2}
$$

We argue by contradiction and we suppose that:

$$
M_{i}^{\beta} D_{i} \rightarrow+\infty .
$$

Then, without loss of generality we can assume that:

$$
\frac{\nabla V_{i}\left(x_{i}\right)}{\left|\nabla V_{i}\left(x_{i}\right)\right|} \rightarrow e=(1,0, \cdots, 0) .
$$

We use the Kelvin transform twice and around this point and around 0 .

$$
h_{\lambda}(y)=\epsilon r_{i}^{-2} G_{\lambda}\left(y, \frac{e}{\delta}\right)-\int_{\Sigma_{\lambda}} G_{\lambda}(y, \eta) Q_{\lambda}(\eta) d \eta
$$

with

$$
Q_{\lambda}(\eta)=\left(V_{\delta}(\eta)-V_{\delta}\left(\eta^{\lambda}\right)\right)\left(v_{i}^{\delta}\left(\eta^{\lambda}\right)\right)^{3} .
$$

And, by the same estimates, we have for $\eta \in A_{1}$

$$
V_{\delta}(\eta)-V_{\delta}\left(\eta^{\lambda}\right) \geq M_{i}^{-1} D_{i}\left(\left(\eta_{1}-\lambda\right)+o(1)\left|\eta^{\lambda}\right|\right)
$$

and, we have for $\eta \in A_{2},\left|I_{\delta}(\eta)\right| \leq c_{2} M_{i} D_{i}^{1 / \beta}$,

$$
\left|V_{\delta}(\eta)-V_{\delta}\left(\eta^{\lambda}\right)\right| \leq C M_{i}^{-1} D_{i}\left(\left|I_{\delta}(\eta)\right|+\left|I_{\delta}\left(\eta^{\lambda}\right)\right|\right),
$$

and for $M_{i} D_{i}^{1 / \beta} \leq\left|I_{\delta}(\eta)\right| \leq r_{i}$,

$$
\left|V_{\delta}(\eta)-V_{\delta}\left(\eta^{\lambda}\right)\right| \leq M_{i}^{-1} D_{i}\left|I_{\delta}(\eta)\right|+M_{i}^{-(1+\beta)}\left|I_{\delta}(\eta)\right|^{(1+\beta)} .
$$

By the same estimates, we have for $\left|I_{\delta}(\eta)\right| \leq r_{i}$ or $|y-e / \delta| \geq c_{3} r_{i}^{-1}$:

$$
\begin{aligned}
& h_{\lambda}(y) \simeq \epsilon r_{i}^{-2} G_{\lambda}\left(y, \frac{e}{\delta}\right)+c_{4} M_{i}^{-1} D_{i} \frac{\left(y_{1}-\lambda\right)}{|y|^{n}}+o(1) M_{i}^{-1} D_{i} \frac{\left(y_{1}-\lambda\right)}{|y|^{n}} \\
&+o(1) M_{i}^{-(1+\beta)} G_{\lambda}\left(y, \frac{e}{\delta}\right)
\end{aligned}
$$

with $c_{4}>0$.
And, we have for some $\lambda_{0} \leq-2$ and $C_{0}>0$:

$$
v_{i}^{\delta}(y)-v_{i}^{\delta}\left(y^{\lambda_{0}}\right) \geq C_{0} \frac{y_{1}-\lambda_{0}}{(1+|y|)^{n}}
$$

for $y_{1}>\lambda_{0}$.
By the same estimates as in Chen-Lin paper (we apply the Lemma 2.1 of the second section), and by our hypothesis on v_{i}, we have:

$$
0<h_{\lambda}(y)<2 \epsilon<w_{\lambda}(y),
$$

also, we have the same etimate on the boundary, $\left|I_{\delta}(\eta)\right|=r_{i}$ or $|y-e / \delta|=c_{5} r_{i}^{-1}$
2. Conclusions : a linear equation perturbed by a term, and, the auxiliary function. Here also, we use the computations of Chen-Lin, and, we take the same auxiliary function h_{λ} (which correspond to this step), except the fact that here in front the regular part of this function we have $M_{i}^{-(1+\beta)}$. Here also, we consider $r_{i} \in\left(0, L_{i}\right)$ where L_{i} is the number of the blow-up analysis.

$$
L_{i}=\frac{1}{2 i} \tilde{R}_{i} M_{i}^{(1+\beta) / 2} .
$$

We set

$$
v_{i}(z)=v_{i}^{*}(z+e),
$$

where v_{i}^{*} is the blow-up function. Then, v_{i} has a local maximum near $-e$

$$
U_{0}(z)=U_{0}^{*}(z+e) .
$$

We have, for $|y| \geq L_{i}^{\prime-1}, L_{i}^{\prime}=\frac{1}{2} \tilde{R}_{i} M_{i}^{(1+\beta) / 2}$,

$$
\begin{aligned}
& \bar{v}_{i}(y)=\frac{1}{|y|^{n-2}} v_{i}\left(\frac{y}{|y|^{2}}\right), \\
& \left|V_{i}\left(\bar{x}_{i}+M_{i}^{-1} \frac{y}{|y|^{2}}\right)-V_{i}\left(\bar{x}_{i}\right)\right| \leq M_{i}^{-(1+\beta)}\left(1+|y|^{-1}\right) \\
& x_{i}=\bar{x}_{i}+M_{i}^{-1} e
\end{aligned}
$$

Then, for simplicity, we can assume that, \bar{v}_{i} has a local maximum near $e^{*}=\left(-\frac{1}{2}, 0\right.$, $\cdots, 0)$. Also, we have:

$$
\begin{aligned}
& \left|V_{i}\left(x_{i}+M_{i}^{-1} \frac{y}{|y|^{2}}\right)-V_{i}\left(x_{i}+M_{i}^{-1} \frac{y^{\lambda}}{\left|y^{\lambda}\right|^{2}}\right)\right| \leq M_{i}^{-(1+\beta)}\left(1+|y|^{-1}\right), \\
& h_{\lambda}(y) \simeq \epsilon r_{i}^{-2} G_{\lambda}(y, 0)-\int_{\Sigma_{\lambda}^{\prime}} G_{\lambda}(y, \eta) Q_{\lambda}(\eta) d \eta,
\end{aligned}
$$

where, $\Sigma_{\lambda}^{\prime}=\Sigma_{\lambda}-\left\{\eta,|\eta| \leq r_{i}^{-1}\right\}$, and

$$
Q_{\lambda}(\eta)=\left(V_{i}\left(x_{i}+M_{i}^{-1} \frac{y}{|y|^{2}}\right)-V_{i}\left(x_{i}+M_{i}^{-1} \frac{y^{\lambda}}{\left|y^{\lambda}\right|^{2}}\right)\right)\left(v_{i}\left(y^{\lambda}\right)\right)^{3},
$$

we have by the same computations that:

$$
\int_{\Sigma_{\lambda}^{\prime}} G_{\lambda}(y, \eta) Q_{\lambda}(\eta) d \eta \leq C M_{i}^{-(1+\beta)} G_{\lambda}(y, 0) \ll \epsilon r_{i}^{-2} G_{\lambda}(y, 0) .
$$

By the same estimates as in Chen-Lin paper (we apply the Lemma 2.1 of the second section), and by our hypothesis on v_{i}, we have:

$$
0<h_{\lambda}(y)<2 \epsilon<w_{\lambda}(y)
$$

also, we have the same estimate on the boundary, $|y|=\frac{1}{r_{i}}$.
Proof of the Theorem 1.4. When $n=5$: to prove the theorem, we argue by contradiction and we assume that the (sup) ${ }^{1 / 3} \times$ inf tends to infinity.
Step 1: blow-up analysis. We want to prove that:

$$
\tilde{R}^{3}\left(\sup _{B_{\bar{R}}(0)} u\right)^{1 / 3} \times \inf _{B_{3 \bar{R}}(0)} u \leq c=c(a, b, A, B) .
$$

If it is not the case, we have:

$$
\tilde{R}_{i}^{3}\left(\sup _{B_{\tilde{R}_{i}}(0)} u_{i}\right)^{1 / 3} \times \inf _{B_{3 \bar{R}_{i}}(0)} u_{i}=i^{6} \rightarrow+\infty .
$$

For positive solutions $u_{i}>0$ of Eq. (E) and $\tilde{R}_{i} \rightarrow 0$. Thus,

$$
\frac{1}{i} \tilde{R}_{i}\left(\sup _{B_{\bar{R}_{i}}(0)} u_{i}\right)^{2 / 3} \rightarrow+\infty .
$$

Let a_{i} such that:

$$
u_{i}\left(a_{i}\right)=\max _{B_{\mathcal{R}_{i}}(0)} u_{i} .
$$

We set

$$
s_{i}(x)=\left(\tilde{R}_{i}-\left|x-a_{i}\right|\right)^{9 / 4} u_{i}(x),
$$

we have

$$
s_{i}\left(\bar{x}_{i}\right)=\max _{B_{\bar{R}_{i}}\left(a_{i}\right)} s_{i} \geq s_{i}\left(a_{i}\right)=\tilde{R}_{i}^{9 / 4} \sup _{B_{\bar{R}_{i}}(0)} u_{i} \rightarrow+\infty,
$$

we set

$$
R_{i}=\frac{1}{2}\left(\tilde{R}_{i}-\left|\bar{x}_{i}-a_{i}\right|\right) .
$$

We have, for $\left|x-\bar{x}_{i}\right| \leq \frac{R_{i}}{i}$,

$$
\tilde{R}_{i}-\left|x-a_{i}\right| \geq \tilde{R}_{i}-\left|\bar{x}_{i}-a_{i}\right|-\left|x-\bar{x}_{i}\right| \geq 2 R_{i}-R_{i}=R_{i} .
$$

Thus

$$
\frac{u_{i}(x)}{u_{i}\left(\bar{x}_{i}\right)} \leq \beta_{i} \leq 2^{9 / 4}
$$

with $\beta_{i} \rightarrow 1$. We set

$$
M_{i}=u_{i}\left(\bar{x}_{i}\right), \quad v_{i}^{*}(y)=\frac{u_{i}\left(\bar{x}_{i}+M_{i}^{-2 / 3} y\right)}{u_{i}\left(\bar{x}_{i}\right)}, \quad|y| \leq \frac{1}{i} R_{i} M_{i}^{4 / 9}=2 \tilde{L}_{i} .
$$

And

$$
\frac{1}{i^{3}} \tilde{R}_{i}^{3} M_{i}^{1 / 3} \times \inf _{B_{33 \tilde{R}_{i}}(0)} u_{i} \rightarrow+\infty .
$$

Without loss of generality one can assume \bar{x}_{i} a local maximum of u_{i}.
By the elliptic estimates, v_{i}^{*} converge on each compact set of \mathbb{R}^{5} to a function $U_{0}^{*}>0$ solution of :

$$
\left\{\begin{array}{l}
-\Delta U_{0}^{*}=V(0) U_{0}^{* 7 / 3} \\
U_{0}^{*}(0)=1=\max _{\mathbb{R}^{5}} U_{0}^{*} .
\end{array} \quad \text { in } \mathbb{R}^{5},\right.
$$

For simplicity, we assume that $0<V(0)=n(n-2)=15$. By a result of Caffarelli-GidasSpruck, see [10], we have:

$$
U_{0}^{*}(y)=\left(1+|y|^{2}\right)^{-3 / 2} .
$$

We set

$$
v_{i}(y)=v_{i}^{*}(y+e),
$$

where v_{i}^{*} is the blow-up function. Then, v_{i} has a local maximum near $-e$

$$
U_{0}(y)=U_{0}^{*}(y+e) .
$$

We want to prove that:

$$
\min _{\{0 \leq|y| \leq r\}} v_{i}^{*} \leq(1+\epsilon) U_{0}^{*}(r)
$$

for $0 \leq r \leq L_{i}$, with $L_{i}=\frac{1}{2 i} \tilde{R}_{i} M_{i}^{4 / 9}$.
We assume that it is not true, then, there is a sequence of number $r_{i} \in\left(0, L_{i}\right)$ and $\epsilon>0$, such that:

$$
\min _{\left\{0 \leq|y| \leq r_{i}\right\}} v_{i}^{*} \geq(1+\epsilon) U_{0}^{*}\left(r_{i}\right) .
$$

We have:

$$
r_{i} \rightarrow+\infty
$$

Thus, we have for $r_{i} \in\left(0, L_{i}\right)$

$$
\min _{\left\{0 \leq|y| \leq r_{i}\right\}} v_{i} \geq(1+\epsilon) U_{0}\left(r_{i}\right) .
$$

Also, we can find a sequence of number $l_{i} \rightarrow+\infty$ such that:

$$
l_{i}^{n-2}\left\|v_{i}^{*}-U_{0}\right\|_{C^{2}\left(B_{i}(0)\right)} \rightarrow 0
$$

Thus,

$$
\min _{\left\{0 \leq|y| \leq l_{i}\right\}} v_{i} \geq(1-\epsilon / 2) U_{0}\left(l_{i}\right)
$$

Step 2 : The Kelvin transform and the Moving-plane method.

1. A linear equation perturbed by a term, and the auxiliary function: $D_{i}=\left|\nabla V_{i}\left(x_{i}\right)\right| \rightarrow 0$.

We have the same estimate as in the paper of Chen-Lin. We argue by contradiction. We consider $r_{i} \in\left(0, L_{i}\right)$, where L_{i} is the number of the blow-up analysis

$$
L_{i}=\frac{1}{2 i} \tilde{R}_{i} M_{i}^{4 / 9}
$$

We use the assumption that the sup times inf is not bounded to prove $w_{\lambda}>h_{\lambda}$ in $\Sigma_{\lambda}=$ $\left\{y, y_{1}>\lambda\right\}$, and on the boundary.

The function v_{i} has a local maximum near $-e$ and converge to $U_{0}(y)=U_{0}^{*}(y+e)$ on each compact set of \mathbb{R}^{5}. U_{0} has a maximum at $-e$.

We argue by contradiction and we suppose that:

$$
D_{i}=\left|\nabla V_{i}\left(x_{i}\right)\right| \nrightarrow 0 .
$$

Then, without loss of generality we can assume that:

$$
\nabla V_{i}\left(x_{i}\right) \rightarrow e=(1,0, \cdots, 0) .
$$

Where x_{i} is :

$$
x_{i}=\bar{x}_{i}+M_{i}^{-2 / 3} e,
$$

with \bar{x}_{i} is the local maximum in the blow-up analysis.

As in the paper of Chen-Lin, we use the Kelvin transform twice and we set (we take the same notations):

$$
\begin{array}{ll}
I_{\delta}(y)=\frac{\frac{|y|}{|y|^{2}}-\delta e}{\left(\left|\frac{y \mid}{|y|^{2}}-\delta e\right|\right)^{2}}, & v_{i}^{\delta}(y)=\frac{v_{i}\left(I_{\delta}(y)\right)}{|y|^{n-2}|y-e / \delta|^{n-2}} \\
V_{\delta}(y)=V_{i}\left(x_{i}+M_{i}^{-2 / 3} I_{\delta}(y)\right), & U_{\delta}(y)=\frac{U_{0}\left(I_{\delta}(y)\right)}{|y|^{n-2}|y-e / \delta|^{n-2}} .
\end{array}
$$

Then, U_{δ} has a local maximum near $e_{\delta} \rightarrow-e$ when $\delta \rightarrow 0$. The function v_{i}^{δ} has a local maximum near $-e$.

We want to prove by the application of the maximum principle and the Hopf lemma that near e_{δ} we have not a local maximum, which is a contradiction.

We set on

$$
\begin{aligned}
& \Sigma_{\lambda}^{\prime}=\Sigma_{\lambda}-\left\{y,\left|y-\frac{e}{\delta}\right| \leq \frac{c_{0}}{r_{i}}\right\} \simeq \Sigma_{\lambda}-\left\{y,\left|I_{\delta}(y)\right| \geq r_{i}\right\} \\
& h_{\lambda}(y)=-\int_{\Sigma_{\lambda}} G_{\lambda}(y, \eta) Q_{\lambda}(\eta) d \eta
\end{aligned}
$$

with

$$
Q_{\lambda}(\eta)=\left(V_{\delta}(\eta)-V_{\delta}\left(\eta^{\lambda}\right)\right)\left(v_{i}^{\delta}\left(\eta^{\lambda}\right)\right)^{(n+2) /(n-2)} .
$$

And, by the same estimates, we have for $\eta \in A_{1}=\left\{\eta,|\eta| \leq R=\epsilon_{0} / \delta\right\}$,

$$
V_{\delta}(\eta)-V_{\delta}\left(\eta^{\lambda}\right) \geq M_{i}^{-2 / 3}\left(\eta_{1}-\lambda\right)+o(1) M_{i}^{-2 / 3}\left|\eta^{\lambda}\right|
$$

and we have for $\eta \in A_{2}=\Sigma_{\lambda}-A_{1}$:

$$
\left|V_{\delta}(\eta)-V_{\delta}\left(\eta^{\lambda}\right)\right| \leq C M_{i}^{-2 / 3}\left(\left|I_{\delta}(\eta)\right|+\left|I_{\delta}\left(\eta^{\lambda}\right)\right|\right) .
$$

And we have for some $\lambda_{0} \leq-2$ and $C_{0}>0$:

$$
v_{i}^{\delta}(y)-v_{i}^{\delta}\left(y^{\lambda_{0}}\right) \geq C_{0} \frac{y_{1}-\lambda_{0}}{(1+|y|)^{n}}
$$

for $y_{1}>\lambda_{0}$.
By the same estimates, and by our hypothesis on v_{i}, we have, for $c_{1}>0$:

$$
0<h_{\lambda}(y)<2 \epsilon<w_{\lambda}(y),
$$

also, we have the same estimate on the boundary, $\left|I_{\delta}(\eta)\right|=r_{i}$ or $|y-e / \delta|=c_{2} r_{i}^{-1}$.
For $\left|\nabla V_{i}\left(x_{i}\right)\right|\left[u_{i}\left(x_{i}\right)\right]^{2 / 3} \leq C$. Here, also, we argue by contradiction. We use the same computation as in Chen-Lin paper, we take $\alpha=2$ and we choose the same h_{λ}, except the fact that here we use the computation with $M_{i}^{-4 / 3}$ in front the regular part of h_{λ}.

Here also, we consider $r_{i} \in\left(0, L_{i}\right)$ where L_{i} is the number of the blow-up analysis

$$
L_{i}=\frac{1}{2 i} \tilde{R}_{i} M_{i}^{4 / 9}
$$

We argue by contradiction and we suppose that:

$$
M_{i}^{2 / 3} D_{i} \rightarrow+\infty .
$$

Then, without loss of generality we can assume that:

$$
\frac{\nabla V_{i}\left(x_{i}\right)}{\left|\nabla V_{i}\left(x_{i}\right)\right|} \rightarrow e=(1,0, \cdots, 0) .
$$

We use the Kelvin transform twice and around this point and around 0

$$
h_{\lambda}(y)=\epsilon r_{i}^{-3} G_{\lambda}\left(y, \frac{e}{\delta}\right)-\int_{\Sigma_{\lambda}} G_{\lambda}(y, \eta) Q_{\lambda}(\eta) d \eta
$$

with

$$
Q_{\lambda}(\eta)=\left(V_{\delta}(\eta)-V_{\delta}\left(\eta^{\lambda}\right)\right)\left(v_{i}^{\delta}\left(\eta^{\lambda}\right)\right)^{(n+2) /(n-2)} .
$$

And by the same estimates, we have for $\eta \in A_{1}$

$$
V_{\delta}(\eta)-V_{\delta}\left(\eta^{\lambda}\right) \geq M_{i}^{-2 / 3} D_{i}\left((\eta-\lambda)+o(1)\left|\eta^{\lambda}\right|\right),
$$

and, we have for $\eta \in A_{2},\left|I_{\delta}(\eta)\right| \leq c_{2} M_{i}^{2 / 3} D_{i}$

$$
\left|V_{\delta}(\eta)-V_{\delta}\left(\eta^{\lambda}\right)\right| \leq C M_{i}^{-2 / 3} D_{i}\left(\left|I_{\delta}(\eta)\right|+\left|I_{\delta}\left(\eta^{\lambda}\right)\right|\right)
$$

and for $M_{i}^{2 / 3} D_{i} \leq\left|I_{\delta}(\eta)\right| \leq r_{i}$,

$$
\left|V_{\delta}(\eta)-V_{\delta}\left(\eta^{\lambda}\right)\right| \leq M_{i}^{-2 / 3} D_{i}\left|I_{\delta}(\eta)\right|+M_{i}^{-4 / 3}\left|I_{\delta}(\eta)\right|^{2}
$$

By the same estimates, we have for $\left|I_{\delta}(\eta)\right| \leq r_{i}$ or $|y-e / \delta| \geq c_{3} r_{i}^{-1}$:

$$
\begin{aligned}
& h_{\lambda}(y) \simeq \epsilon r_{i}^{-3} G_{\lambda}\left(y, \frac{e}{\delta}\right)+c_{4} M_{i}^{-2 / 3} D_{i} \frac{\left(y_{1}-\lambda\right)}{|y|^{n}} \\
&+o(1) M_{i}^{-2 / 3} D_{i} \frac{\left(y_{1}-\lambda\right)}{|y|^{n}}+o(1) M_{i}^{-4 / 3} G_{\lambda}\left(y, \frac{e}{\delta}\right)
\end{aligned}
$$

with $c_{4}>0$.
And, we have for some $\lambda_{0} \leq-2$ and $C_{0}>0$:

$$
v_{i}^{\delta}(y)-v_{i}^{\delta}\left(y^{\lambda_{0}}\right) \geq C_{0} \frac{y_{1}-\lambda_{0}}{(1+|y|)^{n}}
$$

for $y_{1}>\lambda_{0}$.
By the same estimates as in Chen-Lin paper (we apply the Lemma 2.1 of the second section), and by our hypothesis on v_{i}, we have:

$$
0<h_{\lambda}(y)<2 \epsilon<w_{\lambda}(y)
$$

also, we have the same estimate on the boundary, $\left|I_{\delta}(\eta)\right|=r_{i}$ or $|y-e / \delta|=c_{5} r_{i}^{-1}$:
Step 2. conclusions : a linear equation perturbed by a term, and, the auxiliary function. Here also, we use the computations of Chen-Lin, and, we take the same auxiliary function h_{λ} (which correspond to this step), except the fact that here in front the regular part of this function we have $M_{i}^{-4 / 3}$.

Here also, we consider $r_{i} \in\left(0, L_{i}\right)$ where L_{i} is the number of the blow-up analysis

$$
L_{i}=\frac{1}{2 i} \tilde{R}_{i} M_{i}^{4 / 9} .
$$

We set

$$
v_{i}(z)=v_{i}^{*}(z+e),
$$

where v_{i}^{*} is the blow-up function. Then, v_{i} has a local maximum near $-e$

$$
U_{0}(z)=U_{0}^{*}(z+e) .
$$

We have, for $|y| \geq L_{i}^{\prime-1}, L_{i}^{\prime}=\frac{1}{2} \tilde{R}_{i} M_{i}^{4 / 9}$,

$$
\begin{aligned}
& \bar{v}_{i}(y)=\frac{1}{|y|^{n-2}} v_{i}\left(\frac{y}{|y|^{2}}\right), \\
& \left|V_{i}\left(\bar{x}_{i}+M_{i}^{-2 / 3} \frac{y}{|y|^{2}}\right)-V_{i}\left(\bar{x}_{i}\right)\right| \leq M_{i}^{-4 / 3}\left(1+|y|^{-2}\right) \\
& x_{i}=\bar{x}_{i}+M_{i}^{-2 / 3} e
\end{aligned}
$$

Then, for simplicity, we can assume that, \bar{v}_{i} has a local maximum near $e^{*}=(-1 / 2,0, \cdots, 0)$.
Also, we have:

$$
\begin{aligned}
& \left|V_{i}\left(x_{i}+M_{i}^{-2 / 3} \frac{y}{|y|^{2}}\right)-V_{i}\left(x_{i}+M_{i}^{-2 / 3} \frac{y^{\lambda}}{\left|y^{\lambda}\right|^{2}}\right)\right| \leq M_{i}^{-4 / 3}\left(1+|y|^{-2}\right), \\
& h_{\lambda}(y) \simeq \epsilon r_{i}^{-3} G_{\lambda}(y, 0)-\int_{\Sigma_{\lambda}^{\prime}} G_{\lambda}(y, \eta) Q_{\lambda}(\eta) d \eta,
\end{aligned}
$$

where, $\Sigma_{\lambda}^{\prime}=\Sigma_{\lambda}-\left\{\eta,|\eta| \leq r_{i}^{-1}\right\}$, and

$$
Q_{\lambda}(\eta)=\left(V_{i}\left(x_{i}+M_{i}^{-2 / 3} \frac{y}{|y|^{2}}\right)-V_{i}\left(x_{i}+M_{i}^{-2 / 3} \frac{y^{\lambda}}{\left|y^{\lambda}\right|^{2}}\right)\right)\left(v_{i}\left(y^{\lambda}\right)\right)^{\frac{n+2}{n-2},}
$$

we have by the same computations that:

$$
\int_{\Sigma_{\lambda}^{\prime}} G_{\lambda}(y, \eta) Q_{\lambda}(\eta) d \eta \leq C M_{i}^{-4 / 3} G_{\lambda}(y, 0) \ll \epsilon r_{i}^{-3} G_{\lambda}(y, 0) .
$$

By the same estimates as in Chen-Lin paper (we apply the Lemma 2.1 of the second section), and by our hypothesis on v_{i}, we have:

$$
0<h_{\lambda}(y)<2 \epsilon<w_{\lambda}(y)
$$

also, we have the same estimate on the boundary, $|\eta|=\frac{1}{r_{i}}$.

References

[1] T. Aubin, Some Nonlinear Problems in Riemannian Geometry, Springer-Verlag, 1998.
[2] S. S Bahoura, Majorations du type $\sup u \times \inf u \leq c$ pour l'équation de la courbure scalaire sur un ouvert de $\mathbb{R}^{n}, n \geq 3$, J. Math. Pures. Appl., 83 (2004), 1109-1150.
[3] S. S. Bahoura, Harnack inequalities for Yamabe type equations, Bull. Sci. Math., 133 (2009), 875-892.
[4] S. S. Bahoura, Lower bounds for sup $+\inf$ and $\sup \times \inf$ and an extension of Chen-Lin result in dimension 3, Acta Math. Sci. Ser. B Engl. Ed., 28 (2008), 749-758.
[5] S. S. Bahoura, Estimations uniformes pour l'equation de Yamabe en dimensions 5 et 6, J. Funct. Anal., 242 (2007), 550-562.
[6] S. S. Bahoura, sup \times inf inequality on manifold of dimension 3, Math. Aeterna, 1(01) (2011), 13-26.
[7] H. Brezis, and Y. Y. Li, Some nonlinear elliptic equations have only constant solutions, J. Partial Differential Equations, 19 (2006), 208-217.
[8] H. Brezis, Y. Y. Li, and I. Shafrir, A sup + inf inequality for some nonlinear elliptic equations involving exponential nonlinearities, J. Funct. Anal., 115 (1993), 344-358.
[9] H. Brezis and F. Merle, Uniform estimates and blow-up bihavior for solutions of $-\Delta u=V e^{u}$ in two dimensions, Commun. Partial Differential Equations, 16 (1991), 1223-1253.
[10] L. Caffarelli, B. Gidas, and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Commun. Pure Appl. Math., 42 (1989), 271297.
[11] C.-C.Chen, and C.-S. Lin, Estimates of the conformal scalar curvature equation via the method of moving planes, Commun. Pure Appl. Math., (1997), 0971-1017.
[12] C.-C.Chen, and C.-S. Lin, A sharp sup + inf inequality for a nonlinear elliptic equation in \mathbb{R}^{2}, Commun. Anal. Geom., 6 (1998), 1-19.
[13] B. Gidas, W.-Y. Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle, Commun. Math. Phys., 68 (1979), 209-243.
[14] J. M. Lee, and T. H. Parker, The Yamabe problem, Bull. Amer. Math. Soc (N.S), 17 (1987), 37-91.
[15] Y. Y. Li, Prescribing scalar curvature on S_{n} and related problems, C.R. Acad. Sci. Paris, 317 (1993), 159-164. Part I: J. Differ. Equations, 120 (1995), 319-410. Part II: Existence and compactness, Commun. Pure Appl. Math., 49 (1996), 541-597.
[16] Y. Y. Li, Harnack type inequality: the method of moving planes, Commun. Math. Phys., 200 (1999), 421-444.
[17] Y. Y. Li, and L. Zhang, A Harnack type inequality for the Yamabe equation in low dimensions, Calc. Var. Partial Differential Equations, 20 (2004), 133-151.
[18] Y. Y. Li, and M. Zhu, Yamabe type equations on three dimensional Riemannian manifolds, Commun. Contem. Math., 1 (1999), 1-50.
[19] I. Shafrir, A sup + inf inequality for the equation $-\Delta u=V e^{u}, ~ C . ~ R . ~ A c a d . ~ S c i . ~ P a r i s ~ S e ́ r . ~ I ~$ Math., 315 (1992), 159-164.

[^0]: *Corresponding author. Email addresses: samybahoura@yahoo.fr, samybahoura@gmail.com (S. S. Bahoura)

