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Abstract. A high-order, well-balanced, positivity-preserving quasi-Lagrange moving
mesh DG method is presented for the shallow water equations with non-flat bottom
topography. The well-balance property is crucial to the ability of a scheme to simu-
late perturbation waves over the lake-at-rest steady state such as waves on a lake or
tsunami waves in the deep ocean. The method combines a quasi-Lagrange moving
mesh DG method, a hydrostatic reconstruction technique, and a change of unknown
variables. The strategies in the use of slope limiting, positivity-preservation limiting,
and change of variables to ensure the well-balance and positivity-preserving proper-
ties are discussed. Compared to rezoning-type methods, the current method treats
mesh movement continuously in time and has the advantages that it does not need to
interpolate flow variables from the old mesh to the new one and places no constraint
for the choice of a update scheme for the bottom topography on the new mesh. A se-
lection of one- and two-dimensional examples are presented to demonstrate the well-
balance property, positivity preservation, and high-order accuracy of the method and
its ability to adapt the mesh according to features in the flow and bottom topography.
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1 Introduction

The shallow water equations (SWEs) model the water flow over a surface such as hy-
draulic jumps/shocks and open-channel flows in the ocean/hydraulic engineering. They
can be derived by integrating the Navier-Stokes equations in depth under the hydrostatic
assumption when the depth of the flow is small compared to its horizontal dimensions.
The two-dimensional SWEs can be cast in conservative form as

Vt+∇·F(V)=S(h,B), (1.1)

where h is the depth of water, V =(h,m,w)T denote the conservative variables, (m,w)=
(hu,hv) are the discharges, (u,v) are the velocities, B=B(x,y) is the bottom topography
assumed to be a given time-independent function, g is the gravitation acceleration, and
the flux F(V) and the source S(h,B) are given by

F(V)=







m w
m2

h + 1
2 gh2 mw

h
mw

h
w2

h + 1
2 gh2






, S(h,B)=





0
−hgBx

−hgBy



. (1.2)

An illustration of h, B, and the free water surface level η=h+B is given in Fig. 1.
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Figure 1: An illustration of the water depth h, the bottom topography B, and the free water surface level
η=h+B.

We are interested in the preservation of the “lake-at-rest” steady state solution

m=hu=0, w=hv=0, η=h+B=C, (1.3)

where C is a constant. Many physical phenomena can be described as small perturba-
tions of this steady-state solution, including waves on a lake or tsunami waves in the
deep ocean. They are difficult, if not impossible, to capture by a numerical method that
does not preserve (1.3), on an unrefined mesh. Thus, for the numerical simulation of
perturbation waves over the lake-at-rest steady state, it is important to develop schemes
that preserve (1.3). These schemes are said in literature to be well-balanced or have the
well-balance property or the C-property. Bermudez and Vazquez [3] first introduced
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a concept of the “exact C-property”. Since then, a number of well-balanced numerical
methods have been developed for the SWEs, e.g., finite volume methods [1, 3, 22, 44],
finite difference/volume WENO methods [24, 34–36], and discontinuous Galerkin (DG)
methods [9, 10, 12, 13, 23, 33, 35–38].

The SWEs exhibit interesting structures including hydraulic jumps/shocks, rarefac-
tion waves, and stationary state transitions. Resolving them in the numerical solution re-
quires fine spatial spacings and thus mesh adaptation becomes a useful tool in improving
the computational accuracy and efficiency. Studies have been made in this direction in the
past. For example, Tang [32] developed an adaptive moving structured mesh kinetic flux-
vector splitting (KFVS) scheme for the SWEs and showed that the method leads to more
accurate solutions than methods based on fixed meshes although the well-balance prop-
erty was not addressed specifically in the work. Lamby et al. [21] proposed an adaptive
multi-scale finite volume method for the SWEs with source terms, combining a B-spline
based quadtree grid generation strategy and a fully adaptive multi-resolution method.
Remacle et al. [28] studied an h-adaptive meshing procedure for the transient compu-
tation of the SWEs. Zhou et al. [43] proposed a well-balanced adaptive moving mesh
generalized Riemann problem (GRP)-based finite volume scheme for the SWEs with ir-
regular bottom topography. Donat et al. [11] developed a well-balanced shock capturing
adaptive mesh refinement (AMR) scheme for shallow water flows. Arpaia and Ricchi-
uto [2] considered several arbitrary Lagrangian-Eulerian (ALE) formulations of the SWEs
on moving meshes and provided a discrete analog in the well-balanced finite volume and
residual distribution framework. Most recently, a high-order, well-balanced, positivity-
preserving and rezoning-type adaptive moving mesh DG method was proposed in [41]
for the SWEs. A rezoning-type moving mesh method treats the mesh movement in an
intermittent manner and needs to update both the flow variables and the bottom topog-
raphy from the old mesh to the new one at each time step using a same interpolation
scheme. A positivity-preserving DG-interpolation scheme [40] has been used in [41] for
the purpose.

We consider here a quasi-Lagrange approach of adaptive moving mesh methods where
the mesh is considered to move continuously between time steps and interpolation of the
flow variables between the old mesh and the new one is unnecessary. The quasi-Lagrange
moving mesh DG (QLMM-DG) method has been used successfully for solving hyperbolic
conservation laws [25] and the radiative transfer equation [39]. Our focus here is on its
application to the SWEs and the well-balance property, and we shall use a change of un-
known variables. More specifically, we use the new variables (η=h+B,hu,hv) instead of
the original ones (h,hu,hv) and rewrite the flux (1.2) into a special form (cf. (2.2)) by re-
placing only some of h’s with η. In the construction of the DG numerical flux, we modify
the value of h using the hydrostatic reconstruction technique of [1, 36–38] but keep η un-
modified. We will show that the new QLMM-DG method, in both semi-discrete and fully
discrete forms, preserves (1.3) while maintaining the high-order accuracy of DG methods.
We will also show that a QLMM-DG scheme can be developed based on the SWEs in the
original variables but the resulting scheme is well-balanced only in semi-discrete form.
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We use a moving mesh PDE (MMPDE) method [15–17] to generate adaptive moving
meshes that are known free of tangling [18]. The MMPDE method uses a metric tensor
to control the size, shape, and orientation of the mesh elements throughout the physical
domain. Following [41], we compute the metric tensor based on the equilibrium variable
E= 1

2(u
2+v2)+g(h+B) and the water depth h so that the mesh adapts to the features in

the water flow and bottom topography.
It is worth pointing out that the bottom topography B needs to be updated on the new

mesh at each time step due to the mesh movement. Nevertheless, unlike the rezoning
moving mesh DG method in [41], it places no constraint on the choice of the scheme for
updating B to attain the well-balance property. We use L2-projection for this purpose in
our computation since it is straightforward and economic to implement.

Another challenge in the numerical solution of the SWEs is to preserve the nonnega-
tivity of the water depth in the computation. Following [37,38], we apply a linear scaling
positivity-preserving (PP) limiter [26, 45, 46] to the water depth. However, the PP lim-
iter destroys the well-balance property. To recover the property, we propose to make a
high-order correction to the approximation of the bottom topography according to the
modifications in the water depth due to the PP limiting. Numerical examples show that
this strategy works out well.

The paper is organized as follows. Section 2 is devoted to the description of the
QLMM-DG method based on the new variables (η,hu,hv) and its well-balance property.
For comparison purpose, a moving mesh method based on the formulation in the orig-
inal variables (h,hu,hv) is discussed in Section 3. In Section 4, a selection of one- and
two-dimensional examples are presented and analyzed. Finally, Section 5 contains the
conclusions.

2 The well-balanced QLMM-DG method

In this section we describe the high-order well-balanced positivity-preserving QLMM-
DG method for the numerical solution of the SWEs with non-flat bottom topography.
This method combines the QLMM-DG method of [25,39] with the hydrostatic reconstruc-
tion technique [1, 36, 38] and a change of unknown variables to attain the well-balance
property. The method is described here only in two dimensions. It has a similar form in
one dimension.

We use here the new variables U=(η,m,w)T instead of the original ones V=(h,m,w)T ,
where η=h+B. We rewrite the SWEs (1.1) and (1.2) into

Ut+∇·F(U,h)=S(η,B), (2.1)

where

F(U,h)=







m w
m2

h + 1
2 g(2hη−η2) mw

h
mw

h
w2

h + 1
2 g(2hη−η2)






, S(η,B)=





0
−gηBx

−gηBy



. (2.2)
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Here, the dependence of F on h is expressed explicitly although h is a linear function
of η. This is because the value of h will be modified but η is kept unmodified in the
computation of the numerical flux to attain the well-balance property. Moreover, not
all of h’s in the flux have been replaced by η−B, i.e., some are replaced with the new
variable η and some remain the same. Obviously, there are many of these combinations
and thus many forms of the flux; for instance, see (2.2) above and (2.23) later. These
forms are equal to each other mathematically but can be different numerically. Indeed,
we will show that the form (2.2) leads to a well-balanced QLMM-DG scheme in both
semi-discrete and fully discrete forms. We will also show in Section 3 that a QLMM-DG
scheme can be developed based on (1.1) and (1.2) using the original variables but the
resulting scheme is well-balanced only in semi-discrete form.

For the moment we assume that a sequence of simplicial meshes having the same
number of elements and vertices and the same connectivity, T 0

h ,T 1
h ,··· , have been ob-

tained for time instants t0, t1,··· . We use the MMPDE moving mesh method [15–17] to
generate these meshes; see the detail, e.g., in [41, Section 4]. Recall that we consider here
the quasi-Lagrange approach of moving mesh methods where the mesh is considered to
move continuously in time. To this end, for any n≥0, we define Th(t), t∈ (tn,tn+1], as a
mesh having the same number of elements and vertices and the same connectivity as T n

h

and T n+1
h and having the vertices and nodal velocities given by

xi(t)=
t−tn

∆tn
x

n
i +

tn+1−t

∆tn
x

n+1
i , i=1,··· ,Nv

ẋi =
x

n+1
i −x

n
i

∆tn
, ∆tn = tn+1−tn, i=1,··· ,Nv.

(2.3)

We also define the piecewise linear mesh velocity function Ẋ(x,t)=
(

Ẋ,Ẏ
)

as

Ẋ(x,t)=
Nv

∑
i=1

ẋiφi(x,t), (2.4)

where φi(x,t) is the linear basis function associated with the vertex xi. For any K∈Th(t),

let φ
j
K(x,t), j= 1,··· ,nb ≡ (k+1)(k+2)/2 be the basis functions of the set of polynomials

of degree at most k≥1 on K, Pk(K). The DG finite element space is defined as

V k
h(t)={q∈L2(Ω) : q|K ∈Pk(K), ∀K∈Th(t)}. (2.5)

2.1 The semi-discrete well-balanced QLMM-DG scheme

Multiplying (2.1) with a test function φ∈V k
h(t), integrating the resulting equation over K,

and using the Reynolds transport theorem, we get

d

dt

∫

K
Uφdx=

∫

K

(∂U

∂t
φ+U

∂φ

∂t

)

dx+ ∑
eK∈∂K

∫

eK

φUẊ ·nds, (2.6)
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where n= (nx,ny)T is the outward unit normal to the boundary ∂K. From [19] it is not
difficult to show that

∂φ

∂t
=−Ẋ ·∇φ. (2.7)

Substituting (2.1) and (2.7) into (2.6) gives

d

dt

∫

K
Uφdx=−

∫

K
∇·(φF(U,h))dx+

∫

K
F(U,h)·∇φdx−

∫

K
UẊ ·∇φdx

+ ∑
eK∈∂K

∫

eK

φUẊ ·nds+
∫

K
S(η,B)φdx. (2.8)

Recall that we have h=η−B. Denoting

H(U,h)=F(U,h)−UẊ (2.9)

and applying the divergence theorem to the first term on the right-hand side of (2.8), we
have

d

dt

∫

K
Uφdx−

∫

K
H(U,h)·∇φdx+ ∑

eK∈∂K

∫

eK

φH(U,h)·nds=
∫

K
S(η,B)φdx. (2.10)

The Jacobian matrix of the vector-valued function H·n with respect to U (with h being
considered as a linear function of η) reads as





−Ẋnx−Ẏny nx ny

(c2−u2)nx−uvny (2u−Ẋ)nx+(v−Ẏ)ny uny

(c2−v2)ny−uvnx vnx (u−Ẋ)nx+(2v−Ẏ)ny



,

where c=
√

gh is the sound speed. The eigenvalues of this matrix can be found as











λ1(U,h,Ẋ)=(u−Ẋ)nx+(v−Ẏ)ny−c,

λ2(U,h,Ẋ)=(u−Ẋ)nx+(v−Ẏ)ny,

λ3(U,h,Ẋ)=(u−Ẋ)nx+(v−Ẏ)ny+c.

(2.11)

For any variable qh on the boundary ∂K, we denote by qint
h,K and qext

h,K as the values of qh

on ∂K from the interior and exterior of K, respectively. We also note that the bottom
topography function B= B(x) needs to be projected into the finite element space V k

h(t)
and denote it by Bh. We use the global Lax-Friedrichs numerical flux to approximate
H(U,h)·ne

K for x∈ eK ⊂∂K, i.e.,

Ĥ|eK
= Ĥ(Uint

h,K,hint
h,K;Uext

h,K,hext
h,K;ne

K)

=
1

2

(

(

H(Uint
h,K,hint

h,K)+H(Uext
h,K,hext

h,K)
)

·ne
K−αh(U

ext
h,K−Uint

h,K)
)

, (2.12)
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where hint
h,K =ηint

h,K−Bint
h,K, hext

h,K =ηext
h,K−Bext

h,K, and

αh = max
K,eK,m

(

max
(

|λm(Uint
h,K,hint

h,K,Ẋ|eK
)|, |λm(Uext

h,K,hext
h,K,Ẋ |eK

)|
))

.

We can then define a semi-discrete DG approximation Uh∈V k
h(t) for (2.1) such that

d

dt

∫

K
Uhφdx−

∫

K
H(Uh,hh)·∇φdx+ ∑

eK∈∂K

∫

eK

φĤ|eK
ds

=
∫

K
S(ηh,Bh)φdx, ∀φ∈V k

h(t), ∀K∈Th(t), (2.13)

where hh=ηh−Bh. In actual computation, the area and line integrals in the above equation
are calculated using Gaussian quadrature rules. The above scheme can be written as

∫

K

∂Uh

∂t
φdx=Rh,K(t), ∀φ∈V k

h(t), ∀K∈Th(t),

where Rh,K(t) (the residual) is given by

Rh,K(t)=
∫

K
S(ηh,Bh)φdx+

∫

K
H(Uh,hh)·∇φdx

− ∑
eK∈∂K

∫

eK

φĤ|eK
ds−

∫

K
φ∇·(UhẊ)dx. (2.14)

From the above two equations we can see that the residual (2.14) should be zero to obtain
the well-balance property. Unfortunately, this does not hold in general and the scheme
(2.13) is not necessarily well-balanced. The main issue is that, in general, the numerical
flux Ĥ|eK

does not reduce to H
(

Uint
h,K,hint

h,K

)

·ne
K for the lake-at-rest steady state and the line

integrals cannot be converted back into an area integral involving H under the divergence
theorem.

To attain the well-balance property, we use the hydrostatic reconstruction technique
of [1, 36, 38] to construct a new numerical flux Ĥ∗|eK

from Ĥ|eK
. To this end, we first

compute










h∗,int
h,K |eK

=max
(

0,ηint
h,K|eK

−max
(

Bint
h,K|eK

,Bext
h,K|eK

)

)

,

h∗,ext
h,K |eK

=max
(

0,ηext
h,K|eK

−max
(

Bint
h,K|eK

,Bext
h,K|eK

)

)

.
(2.15)

Notice that the value of Bh on eK is taken as max
(

Bint
h,K|eK

,Bext
h,K|eK

)

. Moreover, h∗,int
h,K |eK

and

h∗,ext
h,K |eK

are chosen to guarantee h∗,int
h,K |eK

≥0 and h∗,ext
h,K |eK

≥0 while trying to satisfy

{

h∗,int
h,K |eK

+max
(

Bint
h,K|eK

,Bext
h,K|eK

)

=ηint
h,K|eK

,

h∗,ext
h,K |eK

+max
(

Bint
h,K|eK

,Bext
h,K|eK

)

=ηext
h,K|eK

.
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Then, the interior and exterior values of U=(η,m,w)T are modified as



































η∗,int
h,K |eK

=ηint
h,K|eK

, η∗,ext
h,K |eK

=ηext
h,K|eK

,

m∗,int
h,K |eK

=
(h∗,int

h,K

hint
h,K

mint
h,K

)
∣

∣

∣

eK

, m∗,ext
h,K |eK

=
(h∗,ext

h,K

hext
h,K

mext
h,K

)
∣

∣

∣

eK

,

w∗,int
h,K |eK

=
(h∗,int

h,K

hint
h,K

wint
h,K

)
∣

∣

∣

eK

, w∗,ext
h,K |eK

=
(h∗,ext

h,K

hext
h,K

wext
h,K

)
∣

∣

∣

eK

.

It is worth pointing out that the value of h has been modified but that of η remains unmodified.
Finally, the new numerical flux Ĥ∗ on the edge eK ∈∂K is given by

Ĥ∗|eK
= Ĥ(U∗,int

h,K ,h∗,int
h,K ;U∗,ext

h,K ,h∗,ext
h,K ;ne

K)+∆∗
eK
·ne

K, (2.16)

where

∆∗
eK
=







0 0

gηint
h,K |eK

(

hint
h,K|eK

−h∗,int
h,K |eK

)

0

0 gηint
h,K|eK

(

hint
h,K |eK

−h∗,int
h,K |eK

)






. (2.17)

The correction term is chosen to satisfy (2.18) below.

Lemma 2.1. For the lake-at-rest steady state, the numerical flux Ĥ∗|eK
defined in (2.16) and

(2.17) satisfies

Ĥ∗|eK
=H

(

Uint
h,K,hint

h,K

)

·ne
K. (2.18)

Proof. For the lake-at-rest steady state (ηh,mh,wh) = (C,0,0), where C is a constant, we
have

ηint
h,K|eK

=ηext
h,K|eK

=C, mint
h,K|eK

=mext
h,K|eK

=0, wint
h,K|eK

=wext
h,K|eK

=0.

From the definition (2.15) and (2.1), we have

h∗,int
h,K |eK

=h∗,ext
h,K |eK

, U∗,int
h,K |eK

=U∗,ext
h,K |eK

=(C,0,0).

Using these and the consistency of the numerical flux, from (2.2) and (2.16), and by cal-
culated we have

Ĥ∗|eK
= Ĥ(U∗,int

h,K ,h∗,int
h,K ;U∗,ext

h,K ,h∗,ext
h,K ;ne

K)+∆∗
eK
·ne

K

=H
(

U∗,int
h,K ,h∗,int

h,K

)

·ne
K+∆∗

eK
·ne

K

=H
(

Uint
h,K,hint

h,K

)

·ne
K.

This completes the proof.
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Replacing Ĥ|eK
by Ĥ∗|eK

in (2.13), we obtain the semi-discrete QLMM-DG scheme, i.e.,
to find Uh∈V k

h(t) such that

d

dt

∫

K
Uhφdx−

∫

K
H(Uh,hh)·∇φdx+ ∑

eK∈∂K

∫

eK

φĤ∗|eK
ds

=
∫

K
S(ηh,Bh)φdx, ∀φ∈V k

h(t), ∀K∈Th(t) (2.19)

where hh =ηh−Bh. Denote the residual for this scheme as

R∗
h,K(t)=

∫

K
S(ηh,Bh)φdx+

∫

K
H(Uh,hh)∇φdx

− ∑
eK∈∂K

∫

eK

φĤ∗|eK
ds−

∫

K
φ∇·(UhẊ)dx. (2.20)

Proposition 2.1. If all integrals in (2.20) are computed exactly (with suitable Gaussian
quadrature rules), the residual of the semi-discrete QLMM-DG scheme (2.19) with the
numerical flux (2.16) vanishes for the lake-at-rest steady state and thus the scheme (2.19)
is well-balanced.

Proof. For the lake-at-rest steady state (ηh,mh,wh) = (C,0,0), using the Lemma 2.1, the
divergence theorem, and the definition (2.9), we have, for any K∈Th(t) and any φ∈V k

h(t),

R∗
h,K(t)=

∫

K
S(ηh,Bh)φdx−

∫

K
φ∇·(UhẊ)dx

− ∑
eK∈∂K

∫

eK

φĤ∗|eK
ds+

∫

K
H(Uh,hh)·∇φdx

=
∫

K
S(ηh,Bh)φdx−

∫

K
φ∇·(UhẊ)dx

− ∑
eK∈∂K

∫

eK

φH
(

Uint
h,K,hint

h,K

)

·ne
Kds+

∫

K
H(Uh,hh)·∇φdx

=
∫

K
S(ηh,Bh)φdx−

∫

K
φ∇·

(

H(Uh,hh)+UhẊ
)

dx

=
∫

K

(

S(ηh,Bh)−∇·F(Uh,hh)
)

φdx=0.

This completes the proof.

To see the convergence order of the scheme, we rewrite (2.19) into

d

dt

∫

K
Uhφdx+ ∑

eK∈∂K

∫

eK

φĤ|eK
ds−

∫

K
H(Uh,hh)·∇φdx

=
∫

K
S(ηh,Bh)φdx+ ∑

eK∈∂K

∫

eK

φ
(

Ĥ−Ĥ∗
)

|eK
ds, ∀φ∈V k

h(t). (2.21)
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This is a standard DG scheme for (2.1) on a moving mesh with a correction term (the last
term). Notice that

∣

∣ηint
h,K|eK

(

hint
h,K|eK

−h∗,int
h,K |eK

)
∣

∣≤
∣

∣ηint
h,K|eK

∣

∣·
∣

∣

(

hint
h,K−h∗,int

h,K

)

|eK

∣

∣=O(ak+1
max),

where amax denotes the maximum element diameter of the mesh. This gives Ĥ−Ĥ∗ =
O(ak+1

max). Thus, the scheme (2.19) is (k+1)-th-order in space.

Remark 2.1. As mentioned earlier, we can replace all of h’s in the flux by η−B. This gives
the system [10, 20]

Ut+∇·F(U,B)=S(η,B), (2.22)

where

F(U,B)=







m w
m2

η−B+
1
2 g(η2−2ηB) mw

η−B
mw

η−B
w2

η−B+
1
2 g(η2−2ηB)






. (2.23)

Applying the above procedure to this system, we can obtain a QLMM-DG scheme. For
the lake-at-rest steady state, for this scheme we have

ηint
h,K|eK

=ηext
h,K|eK

=C, mint
h,K|eK

=mext
h,K|eK

=0, wint
h,K|eK

=wext
h,K|eK

=0,

and Uint
h,K|eK

=Uext
h,K|eK

. However, since F(U,B) involves B explicitly and since Bint
h,K|eK

is not

equal to Bext
h,K|eK

in general, (2.18) is not satisfied. In [10], Duran and March developed a
well-balanced DG scheme on fixed meshes based on form (2.22), where the value of B is
adjusted in the flux so that B∗,int

h,K |eK
=B∗,ext

h,K |eK
and thus (2.18) is satisfied.

2.2 The fully discrete well-balanced QLMM-DG scheme

Generally speaking, any total variation diminishing (TVD) Runge-Kutta (RK) scheme
[29] can be used for the discretization of (2.19) in time. We use a third-order explicit TVD
RK scheme in this work. For notational simplicity, we first rewrite (2.19) into a compact
form as

d

dt

∫

K
Uhφdx=Lh,K ≡L(Uh,hh,φ,Bh)|K, ∀φ∈V k

h(t), (2.24)

where

Lh,K =− ∑
eK∈∂K

∫

eK

φĤ∗|eK
ds+

∫

K
H(Uh,hh)·∇φdx+

∫

K
S(ηh,Bh)φdx. (2.25)
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Applying the explicit TVD RK3 scheme to the above equation, we obtain the fully-discrete
QLMM-DG scheme as



































∫

Kn,(1)
U

n,(1)
h φn,(1)dx=

∫

Kn
Un

h φndx+∆tnLh,Kn ,

∫

Kn,(2)
U

n,(2)
h φn,(2)dx=

3

4

∫

Kn
Un

h φndx+
1

4

∫

Kn,(1)
U

n,(1)
h φn,(1)dx+

∆tn

4
Lh,Kn,(1) ,

∫

Kn+1
Un+1

h φn+1dx=
1

3

∫

Kn
Un

h φndx+
2

3

∫

Kn,(2)
U

n,(2)
h φn,(2)dx+

2∆tn

3
Lh,Kn,(2) ,

(2.26)

where

{Lh,Kn ,Un
h ,hn

h ,φn,Bn
h}, {Lh,Kn,(1) ,U

n,(1)
h ,h

n,(1)
h ,φn,(1),B

n,(1)
h }, {Lh,Kn,(2) ,h

n,(2)
h ,φn,(2),B

n,(2)
h }

are the stage values of the corresponding variables at t= tn, t= tn+∆tn, and t= tn+
1
2 ∆tn,

respectively.

We now make a few remarks on the above scheme. We first note that hh is updated
by

h
n,(1)
h =η

n,(1)
h −B

n,(1)
h , h

n,(2)
h =η

n,(2)
h −B

n,(2)
h , hn+1

h =ηn+1
h −Bn+1

h .

Second, let K̂ be the reference element and φ̂= φ̂(ξ) be an arbitrary basis function. Then,
the test functions in (2.26) corresponding to this basis function are related by

φn(x)= φ̂(F−1
Kn (x)), φn,(1)(x)= φ̂(F−1

Kn,(1)(x)),

φn,(2)(x)= φ̂(F−1
Kn,(2)(x)), φn+1(x)= φ̂(F−1

Kn+1(x)),

where F−1
K is the inverse of the affine mapping FK : K̂→K with K being Kn, Kn,(1), Kn,(2),

or Kn+1.

Third, the area of Kn,(1), Kn,(2) and Kn+1 is needed in the computation of the integrals
in (2.26). It can be calculated using the coordinates of the vertices of the elements. But
this does not preserve the so-called geometric conservation law (GCL) that is a geometric
identity in the continuous setting. Using the Reynolds transport theorem and the diver-
gence theorem, we can find the GCL as

d

dt

∫

K
dx=

∫

∂K
Ẋ ·nds or

d

dt

∫

K
dx=

∫

K
∇·Ẋdx. (2.27)

Since Ẋ is a linear function in K and ∇·Ẋ is constant, we get

d

dt
|K|= |K|∇·Ẋ |K. (2.28)
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Applying the RK3 scheme to the above equation, we have



























|Kn,(1)|= |Kn|+∆tn|K
n|∇·Ẋn

Kn ,

|Kn,(2)|=
3

4
|Kn|+

1

4

(

|Kn,(1)|+∆tn |K
n,(1)|∇·Ẋ

n,(1)

Kn,(1)

)

,

|Kn+1|=
1

3
|Kn|+

2

3

(

|Kn,(2)|+∆tn |K
n,(2)|∇·Ẋ

n,(2)

Kn,(2)

)

.

(2.29)

Thus, the area of Kn,(1), Kn,(2) and Kn+1 can be updated using this equation. We note that

a factor involving the area of the element appears in the computation of ∇·Ẋ
n,(1)

Kn,(1) and

∇·Ẋ
n,(2)

Kn,(2) and this factor should be computed using |Kn,(1)| and |Kn,(2)| (i.e., the values
obtained through the above equation instead of those directly computed using the coor-
dinates of the element vertices), respectively. The preservation of GCL has been studied
extensively in the context of moving mesh computation; e.g., see Trulio and Trigger [31]
and Thomas and Lombard [30]. As will be seen in Proposition 2.2, updating the area of
elements using (2.29) is an important step for the QLMM-DG scheme (2.26) to be well-
balanced.

It is interesting to point out that |Kn+1| calculated through (2.29) is the same as that
directly computed using the vertex coordinates of Kn+1. (The other stage values |Kn,(1)|
and |Kn,(2)| are different from their counterparts in general.) Indeed, this property holds
for the RK3 scheme in one, two, and three dimensions. The validity of this property
depends on the time integration scheme used and the dimensionality of the space. For
example, it holds only in one dimension when the forward Euler scheme is used. In case
when |Kn+1| calculated through the GCL update is not equal to that computed using the
vertex coordinates, we suggest to start the GCL update with |Kn| calculated from the
vertex coordinates. This does not affect the satisfaction of GCL.

Fourth, we emphasize that the update of B does not affect the well-balance property
of the QLMM-DG scheme. For this reason, in our computation we use L2-projection to

compute B
n,(1)
h , B

n,(2)
h , and Bn+1

h . Since B is a given function, L2-projection is straightfor-
ward and economic to implement.

It is interesting to point out that the requirements for how B is updated are different in
the current QLMM-DG method and the rezoning-type moving mesh DG method of [41].
The latter requires that a same scheme be used to update both the bottom topography
and the flow variables. A DG-interpolation scheme has been employed in [41] for this
purpose.

Fifth, the DG solution of the SWEs may contain spurious oscillations and even non-
linear instability. We need to apply a nonlinear limiter after each RK stage to avoid
those spurious oscillations. However, caution must be taken since this limiting proce-
dure can destroy the well-balance property. Following [1, 36, 44], we use the TVB lim-
iter [5–7] for the local characteristic variables based on the variables

(

η,m,w
)

. This pro-
cedure is known to preserve the lake-at-rest steady state and conserve the cell averages.
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Other high-order and well-balance property preserving slope limiting techniques such as
WENO/HWENO limiters [47, 48] will be investigated in near further.

Sixth, another challenge in the numerical solution of the SWEs is to preserve the non-
negativity of the water depth h in the computation. Following [37,38], we can show that,
after each RK stage of the scheme (2.26), the cell averages of the current approximation
of h are nonnegative if the cell averages and the function values of the previous approx-
imation of h at a set of special quadrature points (Gauss-Lobatto quadrature points in
one dimension) [38] for each mesh element are nonnegative. Since the TVB limiter pre-
serves the cell averages, we can use the linear scaling PP limiter [26, 45, 46] to ensure the
nonnegativity of h after each application of the TVB limiter.

However, the PP limiter destroys the well-balance property. To restore the property,
we make a high-order correction to the current approximation of the bottom topography
according to the modifications in the water depth due to the PP limiting, i.e.,

B̂h=Bh−(ĥh−hh), (2.30)

where ĥh denotes the modification of hh by the PP limiter. It is known that [26, 45, 46]

this PP limiter maintains the cell averages and high-order accuracy, i.e., ĥK = hK, for all
elements K and ĥh−hh =O(ak+1

max), where amax is the maximum element diameter of the
mesh. Thus, B̂h has the same cell averages as Bh.

It is worth pointing out that the above trick has been used successfully in the rezoning-
type MM-DG method [41] to restore the well-balance property.

Finally, to ensure the stability of the method, the time step for (2.26) is chosen subject
to the Courant-Friedrichs-Lewy (CFL) condition [8]. For a fixed mesh, the time step is
taken as

∆tn,1≤
Cc f l an

min

max
K,e

(

max
m

(

|λ̃m(Uint,n
h,K ,hint,n

h,K )|,|λ̃m(Uext,n
h,K ,hext,n

h,K )|
)

) , (2.31)

where Cc f l is a constant typically chosen to be less than 1/(2k+1), an
min is the minimum

height of the elements of T n
h , and λ̃m(U,h), m=1,2,3 denote the eigenvalues of F′(U,h)·

n
e
K, i.e.,

λ̃1(U,h)=unx+vny−c, λ̃2(U,h)=unx+vny, λ̃3(U,h)=unx+vny+c.

For a moving mesh, we need to consider the extra convection term caused by mesh move-
ment and thus take the time step as

∆tn,2≤
Cc f l min

(

an
min,an+1

min )

max
K,e

(

max
m

(

|λm(Uint,n
h,K ,hint,n

h,K ,Ẋn
K)|,|λ

m(Uext,n
h,K ,hext,n

h,K ,Ẋn
K)|

)

) , (2.32)

where λm, m= 1,2,3 are defined in (2.11). Finally, we take ∆tn =min
(

∆tn,1,∆tn,2

)

. It is

remarked that the old and new meshes T n
h and T n+1

h are used in (2.32). The reason behind
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this is that RK3 we use for time integration has three stages that can be viewed roughly
as the explicit Euler scheme from tn to tn+1, tn+1 to tn+ 1

2
, and tn+ 1

2
to tn+1, respectively,

and the computation of the right-hand side of (2.26) involves both T n
h and T n+1

h . Thus,
we need to take the effects of these meshes in the computation of the time step size.
Moreover, in principle we should update λm during the RK stages. However, this can
cause changes in the time step size during the RK stepping, which requires to re-start the
stepping with a new time step size. To avoid this difficulty, we choose to freeze λm at
t= tn. Next, we show that the fully discrete QLMM-DG scheme (2.26) is well-balanced in
the following proposition.

Proposition 2.2. If the area of mesh elements is updated according to (2.29) and all in-
tegrals in (2.25) are computed exactly, then the fully discrete QLMM-DG scheme (2.26)
preserves the lake-at-rest steady-state solutions, i.e., ηn

h = C, mn
h = 0, and wn

h = 0 imply

ηn+1
h =C, mn+1

h =0, and wn+1
h =0, where C is a constant.

Proof. Comparing the expressions of Lh,K in (2.25) and R∗
h,K in (2.20), we have

Lh,K =R∗
h,K+

∫

K
φ∇·(UhẊ)dx.

Recall that R∗
h,K vanishes for the lake-at-rest steady state. Thus,

Lh,Kn =
∫

Kn
φn∇·

(

Un
h Ẋ

n
)

dx,

and the first equation of (2.26) becomes

∫

Kn,(1)
U

n,(1)
h φn,(1)dx=

∫

Kn
Un

h φndx+∆tn

∫

Kn
φn∇·

(

Un
h Ẋ

n
)

dx. (2.33)

It is not difficult to show from the above equation (the second and third components) that
mn+1

h =0 and wn+1
h =0 if mn

h =0 and wn
h =0. Taking ηn

h =C in the first component of (2.33),
changing independent variables, we get

|Kn,(1)|
∫

K̂
ηn,(1)φ̂dξ= |Kn|

∫

K̂
Cφ̂dξ+∆tn|K

n|∇·Ẋ |Kn

∫

K̂
Cφ̂dξ.

From the first equation of the discrete GCL (2.29), we have

|Kn,(1)|
∫

K̂

(

ηn,(1)−C
)

φ̂dξ=0 or
∫

Kn,(1)

(

ηn,(1)−C
)

φn,(1)dx=0.

From the arbitrariness of φ and Kn,(1), this implies ηn,(1)≡C.

Similarly, we can show η
n,(2)
h ≡C, m

n,(2)
h =0, w

n,(2)
h =0, and ηn+1

h ≡C, mn+1
h =0, mn+1

h =
0.
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To conclude this section, we summarize the procedure of the well-balanced QLMM-
DG method in Algorithm 1.

Algorithm 1 The well-balanced QLMM-DG method for SWEs on moving meshes.

0. Initialization. Project the initial physical variables and bottom topography into the

DG space V k,0
h to obtain U0

h =(η0
h,m0

h,w0
h)

T and B0
h. For n=0,1,··· , do

1. Mesh adaptation. Generate the new mesh T n+1
h using the MMPDE moving mesh

method (cf. [41, Section 4]).

2. Solution of the SWEs on the moving mesh. Integrate the SWEs from tn to tn+1

using the QLMM-DG scheme (2.26) to obtain Un+1
h =(ηn+1

h ,mn+1
h ,wn+1

h )T.

2(a). At each of the RK stage, we update B. Compute B
n,(1)
h , B

n,(2)
h , and Bn+1

h using
L2-projection on the corresponding meshes.

2(b). After each of the RK stage, we apply the TVB limiter for the local characteristic
variables based on the variables

(

η,m,w
)

.

2(c). After the TVB limiter, we apply the linear scaling PP limiter to hh, followed by
the correction (2.30) to Bh.

3 The well-balance property of the QLMM-DG scheme in the

original variables

For comparison purpose, in this section we discuss the well-balance property of the
QLMM-DG scheme developed based on the SWEs (1.1) in the original variables. The
same moving mesh DG procedure and hydrostatic reconstruction technique described in
the previous section can be applied to (1.1). This leads to a semi-discrete well-balanced
QLMM-DG scheme but unfortunately, its fully discrete version is not well-balanced.

Specifically, the semi-discrete QLMM-DG scheme based on (1.1) is to find the solution
Vh∈V k

h(t) such that, ∀φ∈V k
h(t), ∀K∈Th(t)

d

dt

∫

K
Vhφdx+ ∑

eK∈∂K

∫

eK

φĤ∗|eK
ds−

∫

K
H(Vh)·∇φdx=

∫

K
S(hh,Bh)φdx, (3.1)

where H(V) :=F(V)−VẊ . The modified numerical flux Ĥ∗ for the edge eK is defined as

Ĥ∗|eK
= Ĥ(V∗,int

h,K ,V∗,ext
h,K ,ne

K)+∆∗
eK
·ne

K, (3.2)

where










h∗,int
h,K |eK

=max
(

0,hint
h,K |eK

+Bint
h,K|eK

−max
(

Bint
h,K|eK

,Bext
h,K|eK

)

)

,

h∗,ext
h,K |eK

=max
(

0,hext
h,K|eK

+Bext
h,K|eK

−max
(

Bint
h,K|eK

,Bext
h,K|eK

)

)

,
(3.3)
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V∗,int
h,K |eK

=













h∗,int
h,K |eK

(

h∗,int
h,K

hint
h,K

mint
h,K

)
∣

∣

∣

eK
(

h∗,int
h,K

hint
h,K

wint
h,K

)∣

∣

∣

eK













, V∗,ext
h,K |eK

=











h∗,ext
h,K |eK

(

h∗,ext
h,K

hext
h,K

mint
h,K

)∣

∣

∣

eK
(

h∗,ext
h,K

hext
h,K

wint
h,K

)
∣

∣

∣

eK











, (3.4)

∆∗
eK
=







Ẋ|eK
h∗,int

h,K |eK
−Ẋ|eK

hint
h,K|eK

Ẏ|eK
h∗,int

h,K |eK
−Ẏ|eK

hint
h,K|eK

g
2 (h

int
h,K|eK

)2− g
2 (h

∗,int
h,K |eK

)2 0

0
g
2 (h

int
h,K|eK

)2− g
2 (h

∗,int
h,K |eK

)2






. (3.5)

It can be verified that
Ĥ∗|eK

=H
(

V int
h,K

)

·ne
K (3.6)

holds when the lake-at-rest steady state is reached. It is also not difficult to show that the
residual of (3.1)

Rh,K ≡Rh,K(Vh,φ,Bh)=
∫

K
S(hh,Bh)φdx+

∫

K
H(Vh)∇φdx

−∑
eK

∫

eK∈∂K
φĤ∗|eK

ds−
∫

K
φ∇·(VhẊ)dx (3.7)

vanishes for the lake-at-rest steady state if all integrals involved in the (3.7) are computed
exactly. Thus, the semi-discrete scheme (3.1) is well-balanced.

To study the well-balance property of a fully discrete scheme, we notice that (3.1) can
be rewritten into a more compact form as

d

dt

∫

K
Vhφdx=Rh,K+

∫

K
φ∇·(VhẊ)dx, ∀φ∈V k

h(t).

For simplicity, we consider the first-order forward Euler scheme here. Other explicit RK
schemes can be considered similarly. The fully discrete QLMM-DG scheme reads as

∫

Kn+1
Vn+1

h φn+1dx=
∫

Kn
Vn

h φndx+∆tn

(

Rn
h,K+

∫

Kn
φn∇·(Vn

h Ẋ
n)dx

)

.

The corresponding GCL preserving update of the element area is given by

|Kn+1|= |Kn|+∆tn|K
n|∇·Ẋn|Kn . (3.8)

For the lake-at-rest steady state, recalling that Rn
h,K =Rh,K(V

n
h ,φn,Bn

h)=0, we have

∫

Kn+1
Vn+1

h φn+1dx=
∫

Kn
Vn

h φndx+∆tn

∫

Kn
φn∇·(Vn

h Ẋ
n)dx. (3.9)

Obviously, we have mn+1
h = 0 and wn+1

h = 0 if mn
h = 0 and wn

h = 0, and the water depth
satisfy

∫

Kn+1
hn+1

h φn+1dx=
∫

Kn
hn

h φndx+∆tn

∫

Kn
φn∇·(hn

h Ẋ
n)dx. (3.10)
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For the water surface level, we can rewrite (3.10) into
∫

Kn+1
(hn+1

h +Bn+1
h )φn+1dx=

∫

Kn
(hn

h+Bn
h)φ

ndx+∆tn

∫

Kn
φn∇·

(

(hn
h+Bn

h)Ẋ
n
)

dx

+
∫

Kn+1
Bn+1

h φn+1dx−
∫

Kn
Bn

h φndx−∆tn

∫

Kn
φn∇·(Bn

h Ẋ
n)dx.

Multiplying (3.8) with φ̂, integrating the resulting equation over K̂, changing the inde-
pendent variables, and noticing that ∇·Ẋn

K is constant, we get

∫

Kn+1
φn+1dx=

∫

Kn
φndx+∆tn

∫

Kn
φn∇·Ẋndx.

Combining the above two equations and assuming that hn
h+Bn

h =C, we get

∫

Kn+1
(hn+1

h +Bn+1
h −C)φn+1dx

=
∫

Kn+1
Bn+1

h φn+1dx−
∫

Kn
Bn

h φndx−∆tn

∫

Kn
φn∇·(Bn

h Ẋ
n)dx. (3.11)

Since the right-hand side does not vanish in general for non-flat B, we do not have hn+1
h +

Bn+1
h =C and thus the scheme is not well-balanced.

Interestingly, (3.11) suggests that if we update B according to

∫

Kn+1
Bn+1

h φn+1dx=
∫

Kn
Bn

h φndx+∆tn

∫

Kn
φn∇·(Bn

h Ẋ
n)dx, (3.12)

then the scheme will be well-balanced. However, the above equation is actually the for-
ward Euler discretization of the semi-discrete problem

d

dt

∫

K
Bhφdx=

∫

K
φ∇·(BhẊ)dx,

which in turn is a “central” Galerkin approximation to the equation

∂B

∂t
=0.

Thus, (3.12) is unconditionally unstable and cannot be used for updating B.

4 Numerical results

In this section we present numerical results obtained with the well-balanced QLMM-DG
method described in Section 2 for a selection of one- and two-dimensional examples for
the SWEs.

In the computation we take the CFL number in (2.31) and (2.32) as 0.3 for P1-DG and
0.18 for P2-DG in one dimension, and 0.2 for P1-DG and 0.1 for P2-DG in two dimensions,
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unless otherwise stated. For the TVB limiter implemented in the RKDG scheme, the
TVB constant Mtvb is taken as zero except for the accuracy test Example 4.1 to avoid the
accuracy order reduction near the extrema. The gravitation constant g is taken as 9.812.
For the purpose of comparison, unless otherwise stated, we take the numerical solution
obtained with the P2-DG method with a fixed mesh of N=10,000 as a reference solution.
Except for the accuracy test (Example 4.1), to save space we omit the results for P1-DG
since they are similar to those for P2-DG.

We generate the adaptive moving mesh using the MMPDE moving mesh method;
e.g., see [41, Section 4] for a brief description of the method and [15–18] for a more de-
tailed description and a development history. A key to the method is that a metric tensor
M=M(x) is used to control the size, shape, and orientation of mesh elements throughout
the domain. Roughly speaking, mesh points are concentrated in regions where the deter-
minant of M is larger. We compute the metric tensor based on the equilibrium variable
E = 1

2(u
2+v2)+gη and the water depth h so that the mesh adapts to the features in the

water flow and the bottom topography; see [41, Section 4].

Example 4.1. (The accuracy test for the 1D SWEs over a sinusoidal hump.)

In this example we verify the high-order accuracy of the well-balanced QLMM-DG
method. The bottom topography is a sinusoidal hump

B(x)=sin2(πx), x∈ (0,1).

Periodic boundary conditions are used for all unknown variables. The initial conditions
are

η(x,0)=5+ecos(2πx)+B(x), hu(x,0)=sin
(

cos(2πx)
)

.

This example has been used as an accuracy test by a number of researchers; e.g., see
[23, 35, 36]. The final simulation time is T = 0.1 when the solutions remain smooth. A
reference solution is obtained using the P2-DG method with a fixed mesh of N=20,000.
The TVB minmod constant Mtvb is taken as 40 in this example to avoid the accuracy
order reduction near the extrema. The L1 and L∞ norm of the error for h= η−B and hu
is plotted as a function of N in Fig. 2 for fixed and moving meshes. One can see that the
QLMM-DG method is second-order for P1-DG and third-order for P2-DG in both L1 and
L∞ norm. Moreover, the error for moving meshes is a slightly smaller than but otherwise
comparable to the error for fixed meshes. The error is much smaller for P2-DG than P1-
DG, as expected for smooth problems. Fig. 3 plots the L1 norm of the error for h against
the CPU time for the QLMM P1-DG and P2-DG methods. One can see that P2-DG is more
efficient than P1-DG in the sense that the former leads to a smaller error than the latter
for a fixed amount of the CPU time.

Example 4.2. (The lake-at-rest steady-state flow test for the 1D SWEs over three different
bottom topographies.)
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Figure 2: Example 4.1. The L1 and L∞ norm of the error for the water depth h=η−B and water discharge hu
is plotted as a function of N for fixed and moving meshes.
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Figure 3: Example 4.1. The L1 norm of the error for h=η−B is plotted against the CPU time.
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We now test the well-balance property of the QLMM-DG method with two smooth
topographies and a discontinuous topography,

B(x)=5e−
2
5 (x−5)2

, x∈ (0,10), (4.1)

B(x)=

{

4, for x∈ (4,8),

0, for x∈ (0,4)∪(8,10),
(4.2)

B(x)=10e−
2
5 (x−5)2

, x∈ (0,10). (4.3)

The initial solution is taken as the lake-at-rest steady state,

u=0, η=h+B=10.

We expect that this steady-state solution is preserved since the QLMM-DG method is
well-balanced. The final time is T=0.5.

The L1 and L∞ error for η and hu is listed in Tables 1 and 2 for smooth B (4.1) and dis-
continuous B (4.2), respectively. We can observe that the error is at the level of round-off
error (double precision in MATLAB), which demonstrates that the QLMM-DG method is
well-balanced.

The bottom topography (4.3) (with a dry region) is used to demonstrate the well-
balance and PP properties of the QLMM-DG method. This topography has a similar
shape as (4.1) but its height touches the surface level at x= 5 where h= 0 initially. The
computed water depth can have negative values during the computation and the ap-
plication of the PP limiter is necessary. For positivity preservation (cf. [37]), we take a
smaller CFL number as 0.15 for P2-DG for this test. The L1 and L∞ error for η and hu is
listed in Table 3. The results clearly show that the QLMM-DG method is well-balanced.

Table 1: Example 4.2. Well-balance test for the P2-DG method with fixed and moving meshes for smooth B
defined in (4.1).

η hu

N L1-error L∞-error L1-error L∞-error

FM-DG method

25 4.697E-15 7.849E-15 1.771E-14 3.968E-14

50 4.813E-15 7.691E-15 1.617E-14 4.954E-14

QLMM-DG method

25 1.510E-14 2.146E-14 1.510E-14 3.684E-14

50 2.289E-14 3.709E-14 3.102E-14 9.464E-14

Example 4.3. (The perturbed lake-at-rest steady-state flow test for the 1D SWEs.)

Following [11, 22, 23, 35, 36], we use this example to demonstrate that the QLMM-DG
method is able to capture small perturbations of the lake-at-rest steady-state flow over
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Table 2: Example 4.2. Well-balance test for the P2-DG method with fixed and moving meshes for discontinuous
B defined in (4.2).

η hu

N L1-error L∞-error L1-error L∞-error

FM-DG method

25 4.517E-15 6.204E-15 1.088E-14 3.416E-14

50 4.682E-15 7.090E-15 1.876E-14 5.815E-14

QLMM-DG method

25 1.393E-14 2.126E-14 1.840E-14 4.412E-14

50 2.177E-14 3.325E-14 3.417E-14 9.337E-14

Table 3: Example 4.2. Well-balance test for the P2-DG method with fixed and moving meshes for the bottom
topography (4.3) (with a dry region).

η hu

N L1-error L∞-error L1-error L∞-error

FM-DG method

25 4.513E-15 5.389E-15 2.117E-14 5.636E-14

50 4.579E-15 6.190E-15 3.079E-14 7.233E-14

QLMM-DG method

25 1.460E-14 2.264E-14 1.847E-14 4.411E-14

50 2.686E-14 4.208E-14 4.812E-14 1.182E-13

non-flat bottom topography. We also use it to demonstrate the mesh adaptation ability of
the method. The bottom topography in this example is taken as

B(x)=

{

0.25(cos(10π(x−1.5))+1), for x∈ (1.4,1.6),

0, for x∈ (0,1.4)∪(1.6,2),
(4.4)

which has a bump in the middle of the physical interval. The initial conditions are

η(x,0)=

{

1+ε, for 1.1≤ x≤1.2,

1, otherwise,
and u(x,0)=0,

where ε is a constant for the perturbation magnitude. We consider two cases, ε = 0.2
(large pulse) and ε=10−5 (small pulse). The initial conditions for both cases are plotted
in Fig. 4. We use the transmissive boundary conditions and compute the solution up to
T=0.2 when the right wave has passed the bottom bump.

The mesh trajectories obtained with the P2-DG method and a moving mesh of N=160
are shown in Fig. 5. The obtained water surface level η and discharge hu are shown in
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Figure 4: Example 4.3. The initial water surface level η and the bottom topography B are plotted for the pulse

of ε=0.2 and ε=10−5.

(a) Big pulse ε=0.2 (b) Small pulse ε=10−5

Figure 5: Example 4.3. The mesh trajectories are obtained with the P2-DG method and a moving mesh of
N=160 for the pulse of ε=0.2 and ε=10−5.

Figs. 6 and 7 (for ε=0.2) and Figs. 8 and 9 (for ε=10−5). It is interesting to observe that the
initial wave splits into two waves at about t= 0.0165 and the two waves propagate left
and right at the characteristic speeds ±

√

gh, respectively. The right-propagating wave
interacts with the bottom bump and generates a complex wave structure in the bump
region. Thus, it is beneficial to concentrate mesh points around the bump.

From the numerical results, we can see that the mesh points are concentrated around
the waves before and after the split and in the region of the bottom bump. This is what we
want as well as expect. To explain, we recall that the metric tensor for mesh adaptation
is constructed based on the equilibrium variable E = u2/2+gη and the water height h.
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Figure 6: Example 4.3. The water surface level η at t= 0.2 obtained with the P2-DG method and a moving
mesh of N=160 is compared with those obtained with fixed meshes of N=160 and N=480 for a large pulse
ε=0.2.

It is not difficult to imagine that the mesh points concentrate around the waves because
η and thus E have significant changes there. Meanwhile, η is constant in most places of
the domain. Then, the spatial variations in B are reflected in h, which in turn leads to the
higher mesh concentration in the region of the bottom bump. Figs. 6, 7, 8, and 9 show
that the QLMM-DG method is able to capture perturbations, small or large, of the lake-
at-rest steady-state flow over non-flat bottom topography. Moreover, the moving mesh
solutions with N = 160 are more accurate than those with fixed meshes of N = 160 and
N=480 and contain no visible spurious numerical oscillations.

To verify the well-balance and positivity-preserving properties of the QLMM-DG
method we increase the height of the bottom topography (4.5) to contain a dry region
(near x=1.5),

B(x)=

{

0.5(cos(10π(x−1.5))+1), for x∈ (1.4,1.6),

0, for x∈ (0,1.4)∪(1.6,2).
(4.5)

We repeat the computation with ε=10−5. The bottom topography, the initial water level,
and the mesh trajectories of N=160 obtained with the P2 QLMM-DG method are plotted
in Fig. 10. The mesh has higher concentration around the shock waves and the non-flat
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Figure 7: Example 4.3. The water discharge hu at t=0.2 obtained with the P2-DG method and a moving mesh
of N=160 is compared with those obtained with fixed meshes of N=160 and N=480 for a large pulse ε=0.2.
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Figure 8: Example 4.3. The water surface level η at t= 0.2 obtained with the P2-DG method and a moving
mesh of N=160 is compared with those obtained with fixed meshes of N=160 and N=480 for a small pulse
ε=10−5.
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Figure 9: Example 4.3. The water discharge hu at t=0.2 obtained with the P2-DG method and a moving mesh
of N=160 is compared with those obtained with fixed meshes of N=160 and N=480 for a small pulse ε=10−5.
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Figure 10: Example 4.3. (a) The initial water surface η and the bottom B (4.5) for the small perturbation test

with a dry region. (b) The mesh trajectories obtained with P2 QLMM-DG method of N=160.

topography region. The mesh trajectories show that the right moving shock stops after it
hits the dry region.

The water surface η and discharge hu obtained with P2-DG and a moving mesh of
N = 160 and fixed meshes of N = 160 and N = 640 are plotted in Figs. 11 and 12. The
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Figure 11: Example 4.3 with the bottom topography (4.5) with a dry region. The water surface η at t= 0.2

obtained with P2-DG and a moving mesh of N= 160 are compared with those obtained with a fixed mesh of
N=160 and N=640.
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Figure 12: Example 4.3 with the bottom topography (4.5) with a dry region. The water discharge hu at t=0.2
obtained with P2-DG and a moving mesh of N= 160 are compared with those obtained with a fixed mesh of
N=160 and N=640.
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results show that the DG method with moving or fixed meshes is able to capture the
waves of small perturbation for situations containing dry regions. Moreover, the moving
mesh solutions with N=160 are more accurate than those with fixed meshes of N=160
and N=640 and contain no visible spurious numerical oscillations.

Example 4.4. (The rarefaction and shock waves test for the 1D SWEs with wavy bottom
topography.)

In this example we compute the 1D SWEs with a wavy bottom topography [32]

B(x)=

{

0.3cos30(π
2 (x−1)), for 0≤ x≤2,

0, otherwise.
(4.6)

The initial conditions are

η(x,0)=

{

2, for x∈ (−10,1),

0.35, for x∈ (1,10),
u(x,0)=

{

1, for x∈ (−10,1),

0, for x∈ (1,10).

We choose the transmissive boundary conditions and compute the solution up to T= 1.
The solution contains several interesting features, including a rarefaction wave traveling
left and two hydraulic jumps/shocks propagating right.

The mesh trajectories (N = 160) are plotted in Fig. 13, showing that the mesh points
concentrate properly around the rarefaction, the hydraulic jumps/shocks, and the region
where B is non-flat. Figs. 14 and 15 show the water surface level η and water discharge hu
at t=1 obtained with P2-DG and a moving mesh of N=160 and fixed meshes of N=160
and N=1280. It can be seen that the moving mesh solutions of N=160 are more accurate
than those with a fixed mesh of N=160 and comparable with that with the fixed mesh of
N=1280. Moreover, the QLMM-DG method does a good job in resolving the shock near
x=2 which is known to be a difficult structure for a fixed-mesh method to resolve.

Figure 13: Example 4.4. The mesh trajectories are obtained with the P2-DG method and a moving mesh of
N=160.
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Figure 14: Example 4.4. The water surface level η at t= 1 obtained with the P2-DG method and a moving
mesh of N=160 is compared with those obtained with fixed meshes of N=160 and N=1280.
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Figure 15: Example 4.4. The water discharge hu at t=1 obtained with the P2-DG method and a moving mesh
of N=160 is compared with those obtained with fixed meshes of N=160 and N=1280.
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Example 4.5. (The lake-at-rest steady-state flow test for the 2D SWEs.)

We choose this example to verify the well-balance property of the QLMM-DG scheme
in two dimensions. We solve the system on the domain (x,y)∈ (0,1)×(0,1). The bottom
topographies are the isolated elliptical-shaped bump [22] and read as

B(x,y)=0.8e−50
(

(x−0.5)2+(y−0.5)2
)

, (4.7)

B(x,y)= e−50
(

(x−0.5)2+(y−0.5)2
)

. (4.8)

The initial water level and velocities are given by

η(x,y,0)=1, u(x,y,0)=0, v(x,y,0)=0.

The bottom topography (4.7) and (4.8) have the similar shape, and the latter contain a
dry region near (x,y)= (0.5,0.5). We use periodic boundary conditions for all unknown
variables and compute the solution up to t=0.1. The flow surface should remain steady
since the method is well-balanced.

The fixed meshes and initial moving meshes are used in the computation of this ex-
ample, shown in Fig. 16. The L1 and L∞ error for η, hu, and hv are listed in Table 4 for
P2-DG for the bottom topography (4.7). They show that our DG method, with either
fixed or moving meshes, maintains the lake-at-rest steady state to the level of round-off
error in both L1 and L∞ norm.

To verify the well-balance and PP properties of the QLMM-DG method, we repeat the
simulation for the bottom topography (4.8) where the application of the PP limiter to the
water depth is necessary. The L1 and L∞ error for η, hu, and hv are listed in Table 5 for
P2-DG. One can see that the QLMM-DG method is well-balanced.
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Figure 16: Example 4.5. The fixed meshes and initial moving meshes are used in the computation of this
example.
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Table 4: Example 4.5. Well-balance test for the P2-DG method with fixed and moving meshes over bottom
topography (4.7).

η hu hv

N L1-error L∞-error L1-error L∞-error L1-error L∞-error

FM-DG method

100 4.412E-16 1.874E-15 8.077E-16 5.530E-15 8.012E-16 5.379E-15

400 4.271E-16 2.021E-15 9.591E-16 7.475E-15 9.511E-16 6.338E-15

QLMM-DG method

100 4.700E-16 1.883E-15 7.844E-16 5.341E-15 7.729E-16 5.375E-15

400 4.735E-16 1.971E-15 8.020E-16 4.476E-15 7.973E-16 4.683E-15

Table 5: Example 4.5. Well-balance test for the P2-DG method with fixed and moving meshes over bottom
topography (4.8) (with a dry region).

η hu hv

N L1-error L∞-error L1-error L∞-error L1-error L∞-error

FM-DG method

100 4.777E-16 6.568E-15 8.933E-16 1.391E-14 8.797E-16 1.353E-14

400 4.707E-16 1.385E-14 1.021E-15 8.939E-15 1.025E-15 2.186E-14

QLMM-DG method

100 5.121E-16 6.557E-15 9.003E-16 1.389E-14 8.776E-16 1.352E-14

400 5.201E-16 1.542E-14 9.248E-16 7.434E-15 9.243E-16 2.191E-14

Example 4.6. (The perturbed lake-at-rest steady-state flow test for the 2D SWEs.)

We choose this example first used by LeVeque [22] to demonstrate the ability of the
QLMM-DG method to simulate small perturbations of the water surface. The bottom
topography is an isolated elliptical shaped hump,

B(x,y)=0.8e

(

−5(x−0.9)2−50(y−0.5)2
)

, (x,y)∈ (−1,2)×(0,1). (4.9)

The initial conditions are given by

η(x,y,0)=

{

1+0.01, for x∈ (0.05,0.15),

1, otherwise,

u(x,y,0)=0, and v(x,y,0)=0.

Reflection boundary conditions [33] are used for all domain boundary. Theoretically, this
perturbation splits into two waves, propagating left and right at the characteristic speeds
±
√

gh. One of these waves is moving towards the bump in the bottom topography,
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Figure 17: Example 4.6. The moving mesh of N=150×50×4 at t=0.12, 0.24, 0.36, 0.48 is obtained with the
P2 QLMM-DG method.

interacting with it, and generating a complex wave structure. The difficulty of this test
case is to resolve the waves that are very small in magnitude in comparison to the average
values of the quantities.

The moving mesh of N=150×50×4 at t=0.12,0.24,0.36,0.48 obtained with P2 QLMM-
DG method are shown in Fig. 17. The contours of the obtained solutions η, hu, and hv are
shown in Figs. 18-21. For comparison purpose, the numerical solutions obtained with
fixed meshes of N = 150×50×4 and N = 600×200×4 are also shown. We can see that
the mesh points concentrate correctly around the waves and the point (x,y)= (0.9,0.5),
the center of the non-flat region of the bottom topography. Moreover, the QLMM-DG
method resolves well the complex small-scale features of the water flow. The moving
mesh solutions with N = 150×50×4 do not contain visibly spurious oscillations and is
more accurate than that with a fixed mesh of N = 150×50×4 and comparable with that
with a fixed mesh of N=600×200×4.

5 Conclusions

We have developed a high-order, well-balanced, positivity-preserving quasi-Lagrange
moving mesh DG (QLMM-DG) method for the SWEs with non-flat bottom topography
in the previous sections. The method combines the quasi-Lagrange moving mesh DG
method [25, 39] with the hydrostatic reconstruction technique [1, 36, 38] and a change of
unknown variables to achieve the well-balance property. Specifically, we use the new
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(a) η: MM N=150×50×4 (b) hu: MM N=150×50×4 (c) hv: MM N=150×50×4

(d) η: FM N=150×50×4 (e) hu: FM N=150×50×4 (f) hv: FM N=150×50×4

(g) η: FM 600×200×4 (h) hu: FM N=600×200×4 (i) hv: FM N=600×200×4

Figure 18: Example 4.6. The contours at t=0.12 of η, hu, and hv at t=0.12 are obtained with the P2 QLMM-DG
method and a moving mesh of N=150×50×4 and fixed meshes of N=150×50×4 and N=600×200×4.

(a) η: MM N=150×50×4 (b) hu: MM N=150×50×4 (c) hv: MM N=150×50×4

(d) η: FM N=150×50×4 (e) hu: FM N=150×50×4 (f) hv: FM N=150×50×4

(g) η: FM 600×200×4 (h) hu: FM N=600×200×4 (i) hv: FM N=600×200×4

Figure 19: Continuation of Fig. 18: t=0.24.
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(a) η: MM N=150×50×4 (b) hu: MM N=150×50×4 (c) hv: MM N=150×50×4

(d) η: FM N=150×50×4 (e) hu: FM N=150×50×4 (f) hv: FM N=150×50×4

(g) η: FM 600×200×4 (h) hu: FM N=600×200×4 (i) hv: FM N=600×200×4

Figure 20: Continuation of Fig. 18: t=0.36.

(a) η: MM N=150×50×4 (b) hu: MM N=150×50×4 (c) hv: MM N=150×50×4

(d) η: FM N=150×50×4 (e) hu: FM N=150×50×4 (f) hv: FM N=150×50×4

(g) η: FM 600×200×4 (h) hu: FM N=600×200×4 (i) hv: FM N=600×200×4

Figure 21: Continuation of Fig. 18: t=0.48.
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variables (η=h+B,hu,hv) instead of the original ones (h,hu,hv) and rewrite the flux in a
special form (2.2) where some h are replaced by η and the others remain the same. In the
construction of the DG numerical flux, the value of h is modified using the hydrostatic re-
construction technique whereas η stays unmodified. It has been shown that the method,
in both semi-discrete and fully discrete forms, preserves the lake-at-rest steady-state solu-
tions while maintaining the high-order accuracy of DG methods. It has also been shown
that a QLMM-DG scheme can be developed based on the SWEs in the original variables
(h,hu,hv) but it is well-balanced only in semi-discrete form.

It is worth pointing out that the bottom topography B needs to be updated on the new
mesh at each time step. In the rezoning moving mesh DG method recently developed in
[41], it is required that B be updated using the same scheme as that for the flow variables
to attain the well-balance property. This makes the choice of the scheme for updating
B limited. A DG-interpolation scheme [40] has been used in [41] for the purpose. In
contrast, there is no constraint on the choice of the scheme for updating B in the current
QLMM-DG method. We have used L2-projection for updating B in our computation since
it is straightforward and economic to implement.

It should be emphasized that the water depth should be kept nonnegative in the
computation. Following [37, 38], we use a linear scaling positivity-preserving limiter
[26, 45, 46] to ensure the nonnegativity of the water depth. To recover the well-balance
property violated by the PP limiter, a high-order correction is made to the approximation
of the bottom topography according to the modifications in the water depth due to the
PP limiting; see (2.30).

The numerical results for a selection of one- and two-dimensional examples have
been presented to demonstrate the well-balance and positive-preserving properties and
high-order accuracy of the QLMM-DG method. They have also shown that the method
works well for the lake-at-rest steady state and its perturbations and is able to adapt the
mesh according to structures in the flow and bottom topography.

We have used the hydrostatic reconstruction technique [1,36,38] in the current work to
attain the well-balance property, which may have difficulty with topographies with stiff
slopes. Other techniques such as [4] to avoid wrong behavior of hydrostatic reconstruc-
tion are worth investigation in near future. Another interesting topic is time stepping.
In this work we have used an explicit Runge-Kutta scheme where the time step size is
subject to the CFL condition (2.32) and can become small for adaptive meshes. Implicit
schemes such as the exponential time differencing Runge-Kutta scheme [27] merit future
research.
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