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Abstract. Most existing theoretical analysis of reinforcement learning (RL) is limited to the tabular setting or
linear models due to the difficulty in dealing with function approximation in high dimensional space with an
uncertain environment. This work offers a fresh perspective into this challenge by analyzing RL in a general
reproducing kernel Hilbert space (RKHS). We consider a family of Markov decision processes M of which the
reward functions lie in the unit ball of an RKHS and transition probabilities lie in a given arbitrary set. We
define a quantity called perturbational complexity by distribution mismatch A p¢(€) to characterize the complexity
of the admissible state-action distribution space in response to a perturbation in the RKHS with scale e. We
show that Ay (€) gives both the lower bound of the error of all possible algorithms and the upper bound of
two specific algorithms (fitted reward and fitted Q-iteration) for the RL problem. Hence, the decay of A 4 (€)
with respect to € measures the difficulty of the RL problem on M. We further provide some concrete examples
and discuss whether A\ (e) decays fast or not in these examples. As a byproduct, we show that when the
reward functions lie in a high dimensional RKHS, even if the transition probability is known and the action
space is finite, it is still possible for RL problems to suffer from the curse of dimensionality.
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1 Introduction

Modern reinforcement learning (RL) algorithms in practice often utilize function approx-
imation tools to deal with problems involving an enormous amount of states in high di-
mensions. However, the majority of existing theoretical analysis of RL is only applicable
to the tabular setting (see, e.g., [1-6]), in which both the state and action spaces are dis-
crete and finite, and no function approximation is involved. Relatively simple function
approximation methods, such as the linear model in [7,8] or generalized linear model
in [9,10], have been recently studied in the context of RL with various statistical estimates.
Yet, these results are not sufficient to explain the practical success of RL algorithms in high
dimensions. In the tabular setting, the number of samples required by an RL algorithm
is proportional to the size of state-action pairs, which is enormous in practice. For linear
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model or generalized linear model, the assumption therein is pretty restrictive for practice.
The kernel function is a class of models that can approximate more general functions than
the tabular setting or linear model, and it is widely used in practice. Moreover, the kernel
function approximation is closely related to neural network approximation, as established
in the theory of neural tangent kernel in [11] and Barron space in [12]. RL with kernel
function approximation has been recently studied in [13H17]. Still, results therein either
suffer from the curse of dimensionality or require stringent assumptions on the kernel or
the dynamics. As pointed out in [18] and [17, Section 5], L*-estimation, as a widely used
technique in classical RL analysis of the tabular setting, may give rise to a curse of dimen-
sionality in kernel method, which signifies new difficulties in RL algorithms with kernel
function approximation. In this paper, we aim at a systematic study of RL with kernel
function approximation and consider the following question:

When can a reinforcement learning problem be solved efficiently using kernel function approx-
imation?

Note that in this paper “efficiency” is considered in terms of sample complexity, i.e.,
the number of data an algorithm needs to collect to achieve a specified performance cri-
terion. Our analysis will focus on the sample complexity of the RL problem, while other
complexities such as computational complexity will not be covered. We are particularly in-
terested in high dimensional state-action spaces and want to identify RL problems that can
be solved efficiently with kernel function approximation even in high dimensions. Simi-
lar questions have been studied in the realm of supervised learning. There the answer is
quite clear: once the target function lies in a reproducing kernel Hilbert space (RKHS), no
matter how large the dimension is, the corresponding supervised learning problem can be
solved efficiently (see, e.g., [19]). In RL, the reward function plays a similar role with the
target function in supervised learning. This analogy motivates us to study a more concrete
question:

If the unknown reward function lies in an RKHS, what is the condition of the RKHS and tran-
sition dynamics to ensure that the reinforcement learning problem can be solved efficiently?

Below we give some intuition of the main challenge to answer this question and the
key concept we introduce in this paper. Given an RKHS H and a probability distribution
v, existing results in supervised learning have shown that for any target distribution g
lying in the unit ball of H, one can efficiently obtain an estimation ¢ such that

s~ &l <2115~ 8llizy <

for any € > 0 (see, e.g., [19] or Lemma[5.1). We can then view ¢ as a v-perturbation of g
and define the v-perturbation space with scale € as

Hep ={g € M: [8lln <1 lI8ll2) <€}

While the distribution v is given in supervised learning, in the theoretical analysis of RL,
one needs to control the difference of the expectation between the target function and es-
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timation with a probability distribution unknown a priori. That probability distribution
is unknown because that is the state distribution or state-action distribution induced by a
particular policy, which is unknown a priori. Take the estimation of the optimal Q-value
function Qj (see (5.8) below for the detailed definition) for example. The optimal policy
can be derived from the optimal Q-value function through the greedy policy. In practice,
given any probability distribution v, under certain conditions, one can estimate the opti-
mal Q-value function Q; in the sense of Lz(v) using Q-learning algorithm in [20] or fitted
Q-iteration algorithm (see Algorithm [3 or [21] and [17]). In other words, one can obtain
QZ, a v-perturbation of Q;. However, when evaluating the performance of 7, the greedy
policy derived from QZ, one needs to control the error between Q; and QZ under the state-
action distribution induced by the policy 7 (see the performance difference lemma in [22]
or (5.16)), which is unknown before one obtains Q;‘l We call this phenomenon distribu-
tion mismatch: mismatch between the distribution v for estimation and the distribution for
evaluation that is unknown a priori. This phenomenon is ubiquitous in the analysis of RL
(see, e.g., [22, Section 6]). Although not detailed above, when estimating the optimal Q-
value function in the sense of L?(v), one needs to deal with the error propagation between
steps, and distribution mismatch also brings difficulty.
To quantify the error brought by distribution mismatch, we define a semi-norm

7

I8l = sup| [ gdp
pell

where IT is a set of probability distributions and introduce the perturbation response by
distribution mismatch:
R(ILH,e,v) = sup [glln
8€Hey

One shall notice that if IT = {v}, then R(I1, H, €,v) cannot be greater than e. However,
in analysis, we usually can only choose I1 as the possible state-action distributions under
a class of policies. The scale of perturbation response by distribution mismatch measures
the discrepancy between v and IT and reflects the error brought by the fact that we do
not know the state-action distribution under the policy of interest. If IT consists of all
probability distributions, then the above semi-norm is just the L*-norm, which is used
to handle the distribution mismatch in the tabular and linear RL problems. However, for
many common RKHSs, the L*-estimation may suffer from the curse of dimensionality;
see [18] and [17, Section 5] for a detailed discussion. The challenge of L*-estimation in
high dimensional space reveals the difficulty of RL problems in the RKHS compared to
the tabular setting or linear function approximation. In this sense, the introduced IT-norm
can be understood as a generalization of the L*-norm to overcome this difficulty. This
concept takes into account the distribution structure of the RL problem and allows us
to do a more delicate error analysis. Following this idea, we introduce the perturbational
complexity by distribution mismatch A, (€) for a large class of families of Markov decision
processes (MDPs) and prove that once the perturbational complexity decreases fast with
respect to €, the RL problem can be solved efficiently. On the other hand, by considering
the RL problem in which one only knows the reward function lies in the unit ball of a
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general RKHS and transition probability lies in a given arbitrary set, we show that the
perturbational complexity A \((€) must decay fast with respect to € if this RL problem can
be solved efficiently.

Combining the above two types of results together, we show that the perturbational
complexity A ¢ (€) measures the intrinsic difficulty of an RL problem. Note that most of
our results still hold if we replace RKHS with a Banach space in which we can efficiently
obtain an L2-estimation, e.g., linear space or Barron space in [12]. Furthermore, our re-
sults shed some light on studying practical RL algorithms. First, the structure of IT has
been used in the previous analysis of RL in various settings; see e.g., [13}23-25]. While
previous works mainly focus on the so-called concentration coefficients of I and use re-
lated assumptions to prove upper bounds for RL problems, our work shows the necessity
of additional assumptions on IT in order to ensure that the RL problem in the RKHS can
be efficiently solved. As indicated by Proposition[6.3] if the eigenvalue decay of the ker-
nel is slow and IT consists of all probability distributions, then A y(€) also decays slowly.
Therefore, to design efficient RL algorithms, one needs to better understand the set I1,
particularly when the eigenvalue decay of the kernel is slow. Second, when the unknown
reward function lies in the unit ball of an RKHS and the transition probability is known,
Theorems 4.1l and 5.1l show that solving the RL problem is equivalent to using finite val-
ues of a target function g to obtain a function estimate ¢ that is accurate with respect to
the IT-norm; see Remark 5.3l for detailed discussions. Theorems and also establish
a partial connection between these two problems in the case of unknown transition prob-
ability. Therefore, it is helpful to study this supervised learning problem as a prototype of
the RL problem.

Our contributions:

1. We define the perturbational complexity by distribution mismatch A (e) for the
families of MDPs M of which the reward functions lie in the unit ball of an RKHS and
transition probabilities lie in a given arbitrary set. We then show that A (€) gives

a lower bound for the error of every algorithm on the corresponding RL problem
(Theorems K.T]and [4.2).

2. In the case of known transition (all transition probabilities in the families of MDPs are
the same), we show that Ay (€) also gives an upper bound of the error of the fitted
reward algorithm (Algorithm 2) without any further assumption (Theorem [5.7).

3. In the case of unknown transition (general case), with an additional assumption on
Bellman operators (5.11), we show that A \¢(€) gives an upper bound for the error of
the fitted Q-iteration algorithm (Algorithm[3land Theorem (5.2)).

4. We give a concrete form of the perturbation response by distribution mismatch (Lemma
[6.1) and show that when the assumptions on concentration coefficients in the existing
literature (see e.g., [13//17,21124]) are satisfied or the eigenvalue decay of the kernel is
fast, A p¢(€) decays fast with respect to € (Proposition[6.2land Proposition[6.3).

5. We give a concrete example in which the reward functions lie in a high dimensional
RKHS, the transition probability is known, and the action space is finite, but the
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corresponding RL problem can not be solved without the curse of dimensionality
(Proposition[6.4).

Related literature. While the optimal lower bound of the error of RL algorithms in the
tabular setting has been established in [2}/4], there are much fewer results about lower
bounds of RL with function approximation. [26] proves an optimal lower bound for Lips-
chitz function approximation. [27] shows that even when the value function, policy func-
tion, reward function, and transition probability can be approximated by a linear function,
it is still possible that solving the RL problem requires samples exponentially depending
on the horizon. [24] shows that even when the set of candidate approximating functions is
finite and includes the optimal Q-value function, there does not exist an algorithm whose
sample size is a polynomial function of the logarithm of the size of the candidate func-
tion set, the size of action space, horizon, and the reciprocal of accuracy. In other words,
the previous works either consider function spaces (Lipschitz function space) that are too
large to derive meaningful upper bound or only give lower bounds on special cases. In-
stead, we consider a fairly general class of RL problems associated with the RKHS and
give both lower bound and upper bound through the perturbational complexity by distri-
bution mismatch.

Previous works establish several upper bounds for RL algorithms with kernel function
approximation. Based on the type of used assumptions, these works can be divided into
two categories. The first category of upper bounds in [14H16] depends on the eigenvalue
decay of kernel while the second category in [17,23] requires accessibility to reference
distributions that can uniformly bound all possible state-action distributions under ad-
missible policies (called assumption on concentration coefficients). In this work, we show
that the perturbational complexity A (€) decays fast in both situations and establish an
upper bound for the fitted reward algorithm (see Algorithm[2]in Section5.1)) and the fitted
Q-iteration algorithm (see Algorithm [Blin Section5.2) under the assumption that A\ (e)
decays fast. In this sense, our work generalizes both categories of the previous work.

Besides the error bounds of the RL algorithms, there is recent work in [28] studying
policy evaluation in RKHS as a component of the RL algorithm and analyzing its optimal
convergence rate.

Notation: Let X’ be an arbitrary subset of a Euclidean space, we use C(&X') and P(X) to
denote the bounded continuous function space and probability distribution space on X,
respectively. We use || - ||¢(x) to denote the uniform norm on C(X):

18llccx) = sup [g(x)]-

xeX

Given a probability distribution v on X', we use || - [|;2(,) and || - || to denote L%-norm and

L*®-norm, respectively. Given two probability distributions y and v in P(X’), define the
total variation distance:

lu —v|rv = sup{|p(A) —v(A)|: Ais a measurable subset of X'}.

When y is absolute continuous with respect to v, define the Radon-Nikodym derivative
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% and the Kullback-Leibler divergence:

KL(elv) = [ 1og (S2) dp.

For any random variable, we use L(-) to denote the law of the random variable. Given
a positive integer H, [H| denotes the set {1,---,H}. INT denotes the set of all positive
integers. $%~1 denotes the unit sphere of R%: {x € RY, ||x|» = 1}. Given a Banach space
B, we use | - |5 to denote the norm of B. We say f(n) = G)(g(np, if there exist two
constants ¢, C > 0 independent of n such that cg(n) < f(n) < Cg(n)

2 Preliminary

2.1 Markov Decision Process

We consider an episodic MDP (S, A, H, P, r, i) as the mathematical model for the RL prob-
lem. Here H is a positive constant integer indicating the length of each episode. S and
A denote the set of all the states and actions, respectively. We assume S is a subset of a
Euclidean space and A is a compact subset of a Euclidean space. P: [H] x § x A +— P(S)
is the state transition probability. For each (h,s,a) € [H| x S x A, P(-|h,s,a) denotes
the transition probability for the next state at step / if the current state is s and action a
is taken. r: [H] x S x A — R is the reward function, denoting the expected reward at
step h if we choose action a at the state s. We assume each observed reward is the sum of
the expected reward and an independent standard Gaussian noise. 4 € P(S) is the initial
distribution.
We denote a policy by m = {m;,}/L, € P(A|S, H), where

P(A|S, H) = {{nh(.|.)},fj:1: u(+|s) € P(A) forany s € Sand h € [H]}.

Given a time step &, a transition probability P, a policy 7t and an initial distribution p,
we use P, p,r, to denote the distribution of (Sp, Ap) where S1 ~ u, A, follows the policy
, (| Sp) and Sy is distributed according to the transition probability P(- |k, Sy, Ay).
Moreover, we use I'I(h, P, u) to denote the set of all the possible distributions of Oh,p,7eu S
follows
T1(1, P, ) = {onpp: 7€ PIA| S, H)),
and let
I(P,u) = |J II(h,P,p).
he[H]
Given an MDP M and a policy 7r, we define the total reward as follows:

H
M) = 32 [ 7l @) dpp )

Later we also use © to denote an index set associated with a family of MDPs. The specific meaning should be always
clear from context.
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The optimal total reward is defined as J*(M) = sup,cp(4|s,u)J (M, 7). We assume there
exists at least one optimal policy 7t* such that J(M, 7*) = J*(M).

2.2 Reproducing Kernel Hilbert Space (RKHS)

Suppose k : (S x A) x (S x A) — R is a continuous positive definite kernel that satisfies
1. k(z,7') = k(Z,2),Vz,Z € S x A;
2.Vm>1,z1,-+ ,zp € Sx Aand ¢y, -+, o € R, we have:

m.om
Z Z CZ'C]'k<Zi, Z]) > 0.

i=1j=1

Then, there exists a Hilbert space H; C C(S x A) such that
1L.VzeSxAKk(z ) €Mt
2.VzeSx Aand g € Hy, g(z) = (g, k(z, - )k,

and k is called the reproducing kernel of Hy in [29] and we use || - ||y and (-, - )i to denote
the norm and inner product in the Hilbert space H, respectively.

Given a probability distribution v on S x A, we will use {A}};cn+ and {¢} }ien+ to
denote the eigenvalues and eigenfunctions of the operator

(Kug)@) = [ Kz)g()dv()

from L2(v) to L?(v). We further require that {A},c+ is nonincreasing and {¢!} ;- is
orthonormal in L?(v). The famous Mercer decomposition states that

+oo
= L A ()9} (). 2.1)
i=1
Moreover, for any g € H
T 1
Islle = L xv It vz (2.2)

i=

See, e.g., [30, Section 2.1].
Given any two probability distributions p and p’ on § x A, the maximum mean dis-
crepancy (MMD) is defined as follows (see e.g. [31]):

MMDy(p,0') = sup / - (2)do' (2)].
kAP IIgH <1‘ S><A S><Ag P ‘

An equivalent but more concrete expression of MMD is

MMDi(p,) =/ [ [ Kz )l ¢ dle - ) ()
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3 Problem setup

We first specify our prior knowledge of the RL problem. We want to solve an RL problem
whose underlying MDP belongs to a family of MDPs

M= {M@ = (S,A,PQ,TQ,H,‘M)Z 0 e @},

where S, A, H and p are common state space, action space, length of each episode and
initial distribution. The possible transition probability Py and reward function rg is in-
dexed by 0, and © is an index set. We do not know the exact value of 6 but can access
a generative simulator. In other words, for any step i € [H| and state-action pair (s,a),
we can observe a state x ~ Py( - |h,s,a) and a noisy reward y ~ N (r4(h,s,a),1), which is
called one sample or one access to the generative simulator. So far we need to assume the
noise of the reward is Gaussian to prove the lower bounds, but the noise can be relaxed to
be sub-Gaussian in the upper bounds. Another popular form of the simulator is the so-
called episodic simulator, through which one can only choose the initial state and a policy
to observe the whole path and corresponding rewards. Our lower bound is still valid if we
only have an episodic simulator but might be loose. How to obtain a tight lower bound in
those settings is left to future work.
We assume 6 = (0p, 0,) and the index set is a Cartesian product

® - {(613,9;‘): 913 S @P, 9;‘ € @r},

where 0p and 6, are the actual indexes of the transition probability and reward function,
ie., Py = Py,, 19 = rp,. We also assume

{ro,: 0, €O} ={r:|r(h,-,-)|lp <1, Vh € [H]},

where B is a Banach space such that B is a subset of C(S x A) and || - [|¢(sx.4) < Bl - [I5
with a positive constant B.

Following the intuition introduced in Section [1] we give the following definitions in
preparation for the analysis.

Definition 3.1.

(i) Forany set Il consisting of probability distributions on S x A, we define a semi-norm || - ||11
on C(S x A):
= su s,a)do(s,a)|.
gl =sup| [ s(sa)dp(s,a
We call this semi-norm IT-norm.

(ii) Given a Banach space, a positive constant € > 0 and a probability distribution v € P(S X
A), we define B, a v-perturbation space with scale €, as follows:

Bey:={g € B:llglls < 1LlIgl2q) < €}-

(iii) The perturbation response by distribution mismatch is defined as the radius of B, under
II-norm,
R(IL, B,e,v) == sup |g]|m-
8€Bey
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3.1 Properties of perturbation response by distribution mismatch

We first state two propositions later used to give readers more understanding of the prop-
erties of perturbation response by distribution mismatch R (I1, 5, €, v). The proofs of these
two propositions are postponed to Section el The first proposition gives a more concrete
formula of R(I1, B, €,v). Specifically, when B is an RKHS, R (11, B, €, v) can be determined
by a maximin problem related to MMD; see (3.).

Proposition[6.1l We have

R(IL,B,e,v) =sup inf [[o—gov|p: +€llglli20)],
pellgel?(v)

where g o v is a signed measure such that

dgov
v &

B* is the dual space of B and ||p|| 5+ is the dual norm of linear functional

= d , VeebB,
p(e) = [ s(=)dp(), Vg
for any signed measure p on S x A (we slightly abuse the notation that p are both the

signed measure and linear functional in B). If B is an RKHS with kernel k, then

R(ILHy,e,v) =sup inf [MMDy(p,gov) +€lgll2)]- (3.1)
pEll geL2(v)

When B is an RKHS, the kernel’s eigenvalues encode much information. The following
proposition shows that the perturbation response of P(S x A), the set of all probability
distributions on S x A, is closely related to the kernel’s eigenvalues. Later in Section
we will discuss how this proposition gives us the implication in the efficiency of RL algo-
rithms.

Proposition[6.3l Assume that
sup k(z,z) <1.
zeSxA

For any p € P(S x A), define
n(p) = max{i € NT: nAf >1}.
We have

R(P(S x A), Hy,n 2,v) >

NI~

—+00
sup Y A
PEP(SxA) i=n(v)+1

and, by n(v) <,

inf  R(P(S x A), Hy,n 2,v) >
veEP(SxA)

NI -

PEP(SxA)i=n+1

—+o00
sup ). AL
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Moreover, if there exists a distribution 7 € P(S x A) such that

sup [[] [l < +00,
ieN+

then

R(P(S x A), H,n"2,0) < ZJ @ + f} A? sup (9] [|co-

i=n(0)+1  i€ENT

3.2 General algorithm

Now we state in Algorithm [] the general RL algorithm for estimating the optimal value
J*(Mpy) with n samples. In Algorithm [I the superscript 6 indicates that the collected
data depends on the underlying MDP Mjy. The superscript ¢ denotes the collection
{f1,++, fu, F}, where f; are measurable mappings: ([H] x S x A x S x R)®"1 x R +
[H] x S x A, F is a measurable mapping: ([H] x S x A x § x R)®" x R — R. ¢ can be
viewed as an RL algorithm, which adaptively chooses the step-state-action tuple (1, s, a)

at the i-th step based on all received data D, o , according to function f; and receives a sub-
sequent state and reward through the generatlve simulator. After collecting n samples, the
algorithm outputs an estimate of the optimal value based on all data according to function
F. The randomness of the whole process in Algorithm [Ilis related to i.i.d. standard nor-
mal random variables {€;}1<j<y, {1;}1<i<y, and 1, which all live in a common probability
space (Q),IP). €; denotes the noise in the observed reward. u; denotes the randomness
of the transition, for which we assume that, by the isomorhism theorem [32, Section 41],
po : [H] x S x A x R+ § is a measurable function satisfying pg(h,s,a,u;) ~ Py(-|h,s,a)
forany # € © and h € [H|. Again by the isomorphism theorem, we use il to denote
all the randomness of the algorithm ¢ itself besides the randomness within the simulator.
Mathematically, Algorithm [Tl can also be summarized as follows:

9, 0, , & 08 08 08 0, .
Zzoif:@,epié GC%{(GC ZC lifélélylé)}’ 1<i<nmn,
£ — p(DY* a), (h9%,s9¢,a%) = £(DY%,, ), (3.2)

ef;_p(h P2 a0 1),y é_r((?é 0 04) 1 e,

We use &, to denote the set of all possible choices of ¢. So &, is the set of all possible RL
algorithms which only access the generative simulator n times. Our goal is to find the best
¢, or the best RL algorithm, to minimize the worst-case error of the optimal total reward
given n opportunities to access the simulator:

inf sup E|J2% — J*(Mj)].
e, 0cO

In Sections @] and B below, we give lower and upper bounds for the worst-case error, re-
spectively. In both sections, we first consider the special case where the transition proba-
bility is known and then generalize our results to the case where the transition probability
is unknown. In practice, it is often of interest to estimate the optimal policy as well. In
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Algorithm 1 General Reinforcement Learning Algorithm for Estimating the Optimal Value

Input: Number of samples n
Initialize: Dg’g =Q.
fori=1,--- ,ndo
Obtain i-th step-state-action tuple through (he’g 0 9":) ﬁ( i 1, i)

Collect the subsequent state x = po(h; oc, 9’5, ale’g, u;) and the noisy reward yf’g =

7"9(”19 4 sle’g, 19’5) + €; from the snnulator

. 0, 9 0, 0, 0 0,
Setl?ig C LJ{( L 08 0.5 08 5)}

Z’l’l’l’yl
end

Output: J%¢ = F(DY*, 1) as an estimate of the optimal value J*(My)

the upper bound part, we also provide algorithms to obtain the optimal policy that gives
the estimated optimal total reward. Nevertheless, in the lower bound part, we abstractly
estimate the optimal total reward without estimating the optimal policy. Note that we
can always use the Monte-Carlo method to estimate the optimal total reward accurately
given an optimal or near-optimal policy. So our lower bound result still serves as a valid
difficulty measure of the RL problem aiming at finding the optimal policy.

4 Lower bound

4.1 The case of known transition

We first consider the case that the transition probability Py is known, assuming ®p = {0}
is a single-point set. In this case, we have the following definition of the perturbational
complexity by distribution mismatch.

Definition 4.1. The perturbational complexity by distribution mismatch in the case of known
transition is
Ap(e):= inf  R(II(Py, u),B,e,v). (4.1)
veP(SxA)

The following theorem shows that this quantity can give a lower bound of the worst-
case error.

Theorem 4.1. Assume ®p = {0}, i.e., there is only one possible transition probability, then
1

. * 1 )
inf suplP(|]g’€—] (My)| > gAM(” 7)) >
feE, €@

IS,

Therefore,

inf sup E|J% — " (My)| > A (n %),
feE, 0cO
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Proof. With fixed ¢ € B such that ||g||g < 1,¢ € E, and h* € [H], we first estimate

L) — LU v,

where 01,0, € O satisfying

P91 = P92 =P, rg, = 0, T, (h,S,El) = {

0, when h #£ h*,
g(s,a), whenh = h*.

By the definition (3.2) and Pinsker’s inequality (see e.g. [33}134]), we have

61, 0, 0 0,,6 -
LY = L) |3y < |L(DYYE, i) — LD, ) |3y

S%Kuﬁ( Dy, a)||L(DY, ).

Calculation gives that

<

KL(L(Dy, m)|| (D, )

n <y91/€> yelrg (helrgl Selrgl aelrg)z

lE ].Og < eXp 1 1 1 1 1 >
[ew (- :

1 S g0k S g0k

5[}[@( )? = 2g(s; )QHBﬁ i

i=1
1y S g0k
52: [1g(s; )7

N
Il
—

Combining the last two inequalities, we know that

where

L)

1

n
9,': 9,': 9,': 2
— L(J,? HTV<—Z Ve, a 1) 4/ g(s,a)l dvg(s a),

=i&

By definition, we have

AM(TZ

_%) < sup sup sup / g(s,a)dp(s,a).
) JSxA

hG[H} ”gHBglr\/ﬁHg”LZ(]ﬁ) <1 pGH(h,Po,‘u

So we can choose g € B with ||g||z < 1and 1* € [H] to define a reward function ry, such

that

1
’ 2d§ ’ <-
o JssaPafsn <,

1

2
I'(Mg,) = Z8p(n %),
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which means that

1
105 = L)l < 5,

1 1
{x ER: |x — J*(Mg,)| < gAM(n%)} n {x €R: |x| < §AM(n%)} )
Noticing that J*(Mjp,) = 0, we can use the second condition above to have

1 1
P(Ju" — " (Mo))| = zAm(172)
Al

P(IJi] = 38m(n~
1 1
> P(J" —J"(Mg,)| < 5Am(n72)).

Nl—=

Therefore,
1
2 =
9,, 1 _1 0, 1 _1
> 1= P(J; — " (Mg,)| = 380 (n72) =P(J"* =" (Mg,)| = 38p(n"2)).
Rearranging the above inequality, we can then conclude that for any ¢ € &,
9, 1 1
sup P(IJ;€ — *(Mo)| = 3Am(n"2) 2 5
0cO 3 4
This completes the proof. O

1 1 1 1
(] =" (Mo,)| < 3Am(n~2) = P(J3* = J*(Me,)| < 3Apm(n"2))

4.2 The case of unknown transition

In this section, we deal with the general case when there are multiple possible transition
probabilities. Following the idea of Theorem .1}

1
sup A, (n”2)
0c®
can provide a lower bound of the worst-case error, where My is the subset of M whose
transition probability is Pyp. However, we can have an even better lower bound. The
critical observation is that we do not know the exact value of Py, but can only sample from
Py with finite observed data. So the optimal distribution v for estimation corresponding to

1, . . . . .
A, (n™2) is generally inaccessible, and we can leverage this fact to better characterize the
perturbational complexity to improve the lower bound. To this end, we assume a general
sampling algorithm as follows to characterize the set of distribution v:
0,8 _ 0.5 _ i? 5 9 6 06 08
D,” =@, D/ U{( a;,7,x7) , 1<i<n,

<h?5,s9g 95) ﬁ( ot i), x p(heg $9,a0% ),

i (4.2)
Z[' 95 95
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Here & = (f1,--- , fu) and f; are measurable mappings ([H] x S x A x §)®(~1 x R
[H] x S x A. Eq. @.2) shares a similar spirit with (3.2), but only focuses on sampling
the next-step states from the transition probability. Similar to ¢ in (3.2), ¢ can be viewed
as a sampling algorithm which adaptively chooses n step-state-action tuples (h,s,a) and
obtains samples from Py( - | h,s,a). We let &, denote the set of all possible choices of ¢.
Now we define the perturbational complexity by distribution mismatch in the case of
unknown transition.

Definition 4.2. The perturbational complexity by distribution mismatch in the case of un-
known transition is )
Ap(e) == inf supR(II(Py, u), B, e, v%%). (4.3)
§eE 2 9€O

Here we choose the number of samples to be [1/¢€?] so that the result is consistent with
the case of known transition. The following theorem shows that perturbational complexity
gives a lower bound of the worst-case error in the case of unknown transition.

Theorem 4.2. We have
. 08 1 1 _1
inf sup P11 — *(Mp)| > zAu(n~2)) >
e, 0O

NP,

Therefore,

1
inf sup E|J;* — ] (Me)| > A p(n 1),
CeE, 0cO

Proof. Following the proof of Theorem .1 we know that for any ¢ € &,

=

1 _1
sup P <|Jn"f I*(Mp)| > 5 sup R(I1(Py, ), B, n %,v%)) >
€

0c®

Here

n
SO — % Z L(P0OF f0)2)

and {s ‘:, o(® ‘:}1<1<n is generated by the sampling path (3.2) with Py 4y = Py and

rgy(0) = 0. Hence, y;° 60(6)8 €; for any 1 < i < n. Using the 1somorphlsm theorem [32,
Section 41], we can find the measurable mappings T; : R — R for 1 <i < n 4 1 such that

(Ty(@), -+, Tu(i), ty+1(i1)) has the same distribution with (eq, - - - , €y, ).
Therefore, for any ¢ € &, there exists ¢ € &, such that for all § € O,
V08 — Ok,

Therefore,

sup R(I1(Py, ), B, n_%,ve":) > Ap(n72),
0c®

which concludes our proof. O
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5 Upper bound

In this section, we discuss how to use Ay (e) in Definitions 4.1] £.2] to design sample-
efficient RL algorithms. We will use C to denote a universal positive constant, which may
vary from line to line. As motivated in the introduction, one important reason for us to
consider the perturbation response is to study those high-dimensional spaces in which L®
estimation can not be obtained efficiently through finite samples. Many common RKHSs
are such examples. So in this section we focus on the case that B is an RKHS with kernel
k. We remark that most of our results still hold for general Banach spaces whenever an
L? estimation can be obtained efficiently through finite samples, such as linear space and
Barron space [12].

5.1 The case of known transition

Again we first consider the case where the transition probability is known, i.e., ©p = {0}.
We let .
7 = argmin R(II(Py, u), Hx,n" 2,v).
veP(SxA)
Here 7 is an intrinsic property of the MDP family M wi