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ANALYSIS AND NUMERICAL RESULTS FOR BOUNDARY
OPTIMAL CONTROL PROBLEMS APPLIED TO TURBULENT

BUOYANT FLOWS

ANDREA CHIERICI, VALENTINA GIOVACCHINI AND SANDRO MANSERVISI

Abstract. In this work, we introduce the mathematical analysis of the optimal control for
the Navier-Stokes system coupled with the energy equation and a k-ω turbulence model. While
the optimal control of the Navier-Stokes system has been widely studied in past works, only a
few works are based on the analysis of the turbulent flows. Moreover, the optimal control of
turbulent buoyant flows are usually not taken into account due to the difficulties arising from the
analysis and the numerical implementation of the optimality system. We first prove the existence
of the solution of the boundary value problem associated with the studied system. Then we
use an optimization method that relies on the Lagrange multiplier formalism to obtain the first-
order necessary condition for optimality. We derive the optimality system and we solve it using a
gradient descent algorithm that allows uncoupling state, adjoint, and optimality conditions. Some
numerical results are then reported to validate the presented theoretical analysis.
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1. Introduction

In recent years, the optimal control of the energy and Navier-Stokes equations has
gained attention in a variety of engineering fields. The optimal design of natural or
mixed convection systems is crucial in many contexts, ranging from the thermal-
hydraulics of nuclear reactors to semiconductor production processes where buoy-
ancy forces control crystal growth.

In past years, considerable progress has been made in the mathematical analysis
of the optimal control of Navier-Stokes and energy equations. Several works have
been focused on the optimal control of the heat transfer in forced convection flows,
where the coupling between the Navier-Stokes and energy equations is a one-way
coupling, see for example [1, 2] and citations therein. In the case of natural or mixed
convection flows, the mathematical analysis of the optimal control for the Oberbeck-
Boussinesq system has been considered in several works focusing on stationary
distributed and boundary controls [3, 4, 5, 6]. Distributed controls are very effective,
but they are not feasible in many real cases. In the case of distributed controls, a
feedback control can be applied over long period of time to obtain steady desired
solutions, see for example [7, 8].

In this paper, we consider only boundary steady optimal control problems for
turbulent flows in mixed or natural convection. The mathematical analysis and
numerical simulations of the optimal control for turbulent flows without considering
the temperature dependence have been investigated in past works [9, 10, 11]. An
adjoint approach for the optimal control of turbulent buoyancy-driven flows has
been proposed in [12], however a mathematical analysis has not been presented.

In this work, we consider the Reynolds averaged Navier-Stokes and energy sys-
tem. The state is defined by the average velocity, total pressure field (u, p), the
temperature field T and closed with a k-ω turbulence model [13], where k is the
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turbulent kinetic energy and ω its specific dissipation rate. We introduce the sym-
metric deformation tensor S(u) and its squared norm S2(u) as

S(u) = ∇u + ∇uT , S2(u) = S(u) : S(u) .
The k-ω dynamical production terms Sk and Sω for turbulence equations are defined
by

Sk = νtS(u) : ∇u = 1
2
νtS2(u) ,(1)

Sω = ηω

k
νtS(u) : ∇u = 1

2
ηS2(u) .(2)

We model the flow as incompressible according to the Oberbeck-Boussinesq ap-
proximation neglecting fluid density variations risen by the temperature in the ad-
vective term. Density temperature dependence cannot be neglected in the buoyancy
force and a linear dependence is taken into account through the fluid coefficient of
expansion γ around the reference temperature T0 in the following specific form of
the buoyancy force

fb = γg(T − T0) ,
where g is the gravitational acceleration vector.

The production terms due to buoyancy in k-ω equations are modeled according
to [14, 15]. The source terms depending on the interaction between gravity and the
turbulent heat flux components are modeled as

Sk,b = γνt

Prt
g · ∇T ,(3)

Sω,b = ηγ

Prt
g · ∇T .(4)

The coefficients η, β and β∗ are model constants [13].
Under this framework, we consider an open bounded domain Ω with boundary

Γ and the following governing state equations
(u · ∇)u + ∇p− ∇ · [(ν + νt)S(u)] = f − γg(T − T0) ,(5)
∇ · u = 0 ,(6)
(u · ∇)T = ∇ · [(α+ αt)∇T ] ,(7)
(u · ∇)k − ∇ [(ν + σkνt) · ∇k] = Sk + Sk,b − β∗ k ω ,(8)
(u · ∇)ω − ∇ [(ν + σωνt) · ∇ω] = Sω + Sk,b − βω2 ,(9)

where ν is the kinematic viscosity, α thermal diffusivity of the fluid, νt = k/ω is
the eddy kinematic viscosity and αt = νt/Prt is the eddy thermal diffusivity, where
the turbulent Prandtl number Prt is assumed to be constant. The coefficients σk

and σω are model constants [13]. The system of equations (5)-(9) defines the state
variable (u, p, T, k, ω) when this is completed with suitable boundary conditions.
However, the above system may not have a solution in many physical situations
when k and ω become too large or too small. The k and ω equations have the
typical pattern of the diffusion-reaction equations and therefore, introducing some
assumptions, their solutions can be constrained inside a precise interval limited by
the roots of the equation defined only by the right-hand-side non-linear terms. In an
infinite medium or when advection and diffusion terms are negligible the equations
(8)-(9) reduce to the non-linear right-hand-side terms

Sk + Sk,b − β∗kω = 0 ,(10)
Sω + Sω,b − βω2 = 0 ,(11)
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that implies

k =

√
νt
Sk + Sk,b

β∗ , ω =

√
Sω + Sω,b

β
.(12)

While Sk ≥ 0 and Sω ≥ 0, the sign of Sk,b and Sω,b is not defined a priori, so we
must impose Sk + Sk,b ≥ 0 and Sω + Sω,b ≥ 0.

In order to limit the behavior of the k and ω variables, it is convenient to intro-
duce two new variables Pk and Pω

(u · ∇)k − ∇ [(ν + σkνt) · ∇k] = Pk − β∗ k ω ,(13)
(u · ∇)ω − ∇ [(ν + σωνt) · ∇ω] = Pω − βω2 .(14)

Now we must define the source terms Pk and Pω by taking into account their
positiveness. To consider these lower bounds, we can define

S′
k = max [Sk + Sk,b, 0] ,(15)
S′

ω = max [Sω + Sω, 0] .(16)

Moreover, to keep the Navier-Stokes solutions in standard functional classes and
have turbulent fields bounded in well-defined intervals, we must regularize the mod-
eling of the turbulence sources. This is achieved by limiting the total turbulence
production terms Pk = S′

k and Pω = S′
ω under the maximum value of the respective

dissipation terms. Therefore, given arbitrary limiting values k1 and ω1 we define

Pk = min [S′
k, β

∗k1ω] ,(17)
Pω = min

[
S′

ω, βω
2
1
]
.(18)

In the rest of the paper, we label k1 and ω1 with kmax and ωmax since they will be
proved to be the limits for k and ω fields. The two relations (17) and (18) assure
that, in the case of unbounded gradient velocity, the dissipation term can cope with
the turbulence sources and keep k and ω limited.

The definition of νt can lead to singularities when ω ≈ 0. For this reason we
bound the value of νt as

νt = min
[
k

ω
, νmax

]
.(19)

Note that the introduced constants kmax, ωmax and νmax can be chosen as large
as needed in order to assure the regularity of the problem together with the accu-
racy of the physical solution. By doing so the solution of Navier-Stokes equations
remains unchanged while only the turbulence source terms are modeled to avoid
singularities.

In this work, we aim to control the temperature Tc on a portion of the boundary
ΓC ⊂ Γ and minimize the cost functional

(20)
J (u, k, Tc) = αu

2

∫
Ωd

(u − ud)2dx + αk

2

∫
Ωd

(k − kd)2dx

+ λ1

2

∫
ΓC

T 2
c dx + λ2

2

∫
ΓC

(∇Tc)2dx ,

under the constraints (5)-(9) in order to have a desired velocity ud or a desired
turbulence kinetic energy kd located over a certain domain Ωd ⊆ Ω. The constants
αu, αk and λ2 are non-negative, while λ1 is a positive constant. In particular, when
αu = 0 or αk = 0 the objective functional can be used to control only the turbulent
kinetic energy or the velocity field, respectively. Both λ1 and λ2 are regularization
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parameters, and the choice of them is a key point for the numerical solution of the
problem because high values of λ1 and λ2 can result in a poor control, while low
values can lead to convergence issues due to the enlargement of the functional space
of the control variable Tc.

The rest of this paper is organized as follows. In the next section, we introduce
the weak formulations and we prove the existence of the solution of the Navier S-
tokes, energy, and turbulence equations. We also prove the existence of a solution of
the associated boundary value problem. In section 3, we formulate the optimization
problem and prove the existence of optimal solutions. In section 4, we show that
the Lagrange multiplier approach is well-posed and we derive the final optimality
system. In section 5, we introduce a numerical algorithm for the numerical imple-
mentation of the optimality system in a finite element framework and we present
some numerical results.

2. Variational formulation of the state problem

We use standard notation Hs(O) for Sobolev space of order s with respect to
the set O, which can be the flow domain Ω ⊂ ℜn, with n = 2, 3, or its boundary Γ
or a part of it. The inner product over Hm(O) is denoted by (f, g)m, whenever m
is a non-negative integer. We define, for (fg) ∈ L1(O) and (u · v) ∈ L1(O)

(f, g)O =
∫

O
fgdx , (u,v)O =

∫
O

u · vdx .

We associate to Hm(O) its natural norm ∥f∥m,O =
√

(f, f)m. We will neglect the
domain label when O ≡ Ω.

For vector-valued functions and spaces, we use boldface notation. For exam-
ple, Hs(Ω) = [Hs(Ω)]n denotes the space of ℜn-valued functions such that each
component belongs to Hs(Ω). Of special interest is the space

H1(Ω) =
{
ui ∈ L2(Ω)

∣∣∣ ∂ui

∂xj
∈ L2(Ω) for i, j = 1, . . . , n

}
equipped with the norm ∥u∥1 = (

∑
i,j(∥ui∥2 + ∥∂ui/∂xj∥2))1/2. We also define the

space
V(Ω) = {u ∈ H1(Ω) | ∇ · u = 0} .

Let Γs be a subset of Γ, we consider the subspace
H1

Γs
(Ω) = {u ∈ H1(Ω) | u = 0 on Γs} .

Also, we write H1
0(Ω) = H1

Γ(Ω). Let H1∗
Γs

(Ω) denote the dual space of H1
Γs

(Ω).
Note that H1∗

Γs
(Ω) is a subspace of H−1(Ω), where the latter is the dual space of

H1
0(Ω).
Since the pressure is only determined up to an additive constant by the Navier-

Stokes system with velocity boundary conditions, we define the space of square
integrable functions having zero mean over Ω as

L2
0(Ω) = {p ∈ L2(Ω)|

∫
Ω
pdx = 0} .

We introduce the following continuous bilinear and trilinear forms useful to derive
the weak form of the introduced system

a(ν; u,v) = 1
2

∫
Ω
νS(u) : S(v)dx ∀u,v ∈ H1(Ω) ,(21)

b(u, ψ) = −
∫

Ω
ψ∇ · u dx ∀ψ ∈ L2

0(Ω) , ∀u ∈ H1(Ω) ,(22)
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a(k;T, φ) = k

∫
Ω

∇T · ∇φdx ∀T, φ ∈ H1(Ω) .(23)

Also we introduce the following continuous trilinear forms

c(w; u,v) = 1
2

[∫
Ω

(w · ∇)u · v dx −
∫

Ω
(w · ∇)v · u dx

]
(24)

c(u, T, φ) =
∫

Ω
(u · ∇T )φdx ,(25)

for all w ∈ V(Ω), u ∈ H1(Ω) ,v ∈ H1(Ω) , T ∈ H1(Ω) and φ ∈ H1(Ω). It is clear
that c(w; v,v) = 0 for all w ∈ V(Ω) and c(u, ϕ, ϕ) = 0 for all φ ∈ H1(Ω). A
detailed discussion on these trilinear forms can be found in [16].

We consider the following formulation of the direct problem for the Navier Stokes
and energy system (5)-(7).

(26)

a(ν + νt; u,v) + c(u; u,v) + b(v, p) = (f ,v) − (γ(T − T0)g,v) ∀v ∈ H1
0(Ω)

b(u, q) = 0 ∀q ∈ L2
0(Ω)

(u, s)Γ = (gu, s)Γ ∀s ∈ H−1/2(Γ)

a
(
α+ νt

Prt
;T, φ

)
+ c(u;T, φ) = (φ, gT,N )ΓN ∀φ ∈ H1

ΓD
(Ω)

(T, sT )ΓD
= (gT , sT )ΓD

∀sT ∈ H−1/2(ΓD) .
We also consider the following formulation of the direct problem for turbulence
equations (8)-(9).

(27)

c(u; k, ψ) + a(ν + νtσk; k, ψ) = (Pk, ψ) − (β∗ kω, ψ) ∀ψ ∈ H1
0 (Ω)

(k, sk)Γ = (gk, sk)Γ ∀sk ∈ H−1/2(Γ)
c(u;ω, ϕ) + a(ν + νtσω;ω, ϕ) = (Pω, ϕ) − (β ω2, ϕ) ∀ϕ ∈ H1

0 (Ω)

(ω, sω)Γ = (gω, sω)Γ ∀sω ∈ H−1/2(Γ) .
Note that ΓD and ΓN are the portion of the boundary where Dirichlet and Neumann
boundary conditions on the temperature field are imposed, respectively. Moreover,
one may compute the normal flux on ΓD in the normal direction as

qn =
(
α+ νt

Prt

)
∇T · n̂|ΓD ∈ H−1/2(ΓD) .

The existence of the solution of system (26) has been proved in [17], Theorem
3.1. Here we report the cited theorem.

Theorem 1. Let Ω be an open, bounded set with Lipschitz-continuous boundary
Γ. Let νt be a non-negative function in L∞(Ω), f ∈ H−1(Ω), g ∈ L∞(Ω), gu ∈
H1/2(Γ), gT ∈ H1/2(ΓD) and gT,N ∈ L2(ΓN ). Then,

(i) the system (26) has at least one solution (u, p, T ) ∈ H1(Ω) ×L2(Ω) ×H1(Ω).
(ii) there exist constants C1, C2 > 0 such that

(28) ∥T∥1 + ∥u∥1 ≤ C1
(
∥f∥−1 + ∥gT,N ∥0,ΓN

)
+ C2 ,

where C2 depends on gu and gT . In particular, if gu = 0 and gT = 0 then
C2 = 0.

We now introduce the existence of the solution for the k-ω turbulence system.

Theorem 2. Let Ω be an open, bounded set with Lipschitz-continuous boundary Γ.
Let u ∈ V(Ω), gk and gω in H1(Ω) ∪ L∞(Ω) and νt, Pk, Pω as defined in (19),
(17) and (18), respectively. Then
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(i) there exists at least one solution (k, ω) ∈ H1(Ω) ×H1(Ω) of (27);
(ii) let ωmax and kmax be positive real constants and

ksup = sup{sup
Γ

{gk}, kmax} ,(29)

ωinf = inf{inf
Γ

{gω}, inf
Ω

{
√
Pω/β}} ,(30)

ωsup = sup{sup
Γ

{gω}, ωmax} ,(31)

then
0 ≤ k ≤ ksup ,(32)
0 ≤ ωinf ≤ ω ≤ ωsup .(33)

Proof. The proof of this Theorem can be found in [9], Theorem 2.
�

By using previous theorems we can prove the existence of the solution of the
associated boundary value problem.

Theorem 3. There exists a solution (u, p, T, k, ω) of the associated boundary value
problem in (26)-(27).

Proof. To prove the existence of the solution, we rely on the Schauder’s fixed point
theorem and we follow standard techniques (e.g. see [18]). To simplify the notation,
we consider now the presented physical system with gu = 0 and gT = gT,N = gk =
gω = 0. For a given set (u1, T1, k1, ω1) ∈ H1

0(Ω) × H1
ΓD

(Ω) × H1
0 (Ω) × H1

0 (Ω),
(u, p, T ) and (k, ω) are the state of the following Navier-Stokes-k-ω and energy
system

(34)

a(ν + νt1; u,v) + c(u1; u,v) + b(v, p) = (f ,v)
− (γ(T1 − T0)g,v) ∀v ∈ H1

0(Ω)
b(u, q) = 0 ∀ q ∈ L2

0(Ω)

a
(
α+ νt1

Prt
;T, φ

)
+ c(u1;T, φ) = 0 ∀φ ∈ H1

ΓD
(Ω)

c(u1; k, ψ) + a(ν + νt1σk; k, ψ) = (Pk1, ψ) − (β∗ kω1, ψ) ∀ψ ∈ H1
0 (Ω)

c(u1;ω, ϕ) + a(ν + νt1σω;ω, ϕ) = (Pω1, ϕ) − (β ωω1, ϕ) ∀ϕ ∈ H1
0 (Ω)

where νt1 = νt(k1, ω1), Pk1 = Pk(u1, T1, k1, ω1), Pω1 = Pω(u1, T1). Under the
imposed hypotheses, we can now prove the existence of the solution of the split
system (34). In fact, from Theorem 1 we have that ∥T∥1 + ∥u∥1 is uniformly
bounded. Moreover, from Theorem 2 we have that ∥k∥1 and ∥ω∥1 are uniformly
bounded by the constants Ck and Cω as a function of the given values kmax and
ωmax.

Let D = H1
0(Ω)×H1

ΓD
(Ω)×H1

0 (Ω)×H1
0 (Ω) and A = H1

0(Ω)×H1
ΓD

(Ω)×H1
0 (Ω)×

H1
0 (Ω). We consider now the mapping T : D → A such that

(35)

u = u(u1, T1, k1, ω1)
T = T (u1, T1, k1, ω1)
k = k(u1, T1, k1, ω1)
ω = ω(u1, T1, k1, ω1) .

We endow the product space H1
0(Ω) × H1

ΓD
(Ω) × H1

0 (Ω) × H1
0 (Ω) with the norm

∥(u1, T1, k1, ω1)∥ = ∥u1∥1 + ∥T1∥1 + ∥k1∥1 + ∥ω1∥1. It can be proved that T is
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a continuous mapping with respect to the introduced norm. Let R denote the
constant R = Cu,T + Ck + Cω, where Cu,T = C1

(
∥f∥1 + ∥gT,N ∥0,ΓN

)
+ C2. For

all (u1, T1, k1, ω1) ∈ D we have ∥(u, T, k, ω)∥ = ∥u∥1 + ∥T∥1 + ∥k∥1 + ∥ω∥1 <
Cu,T + Ck + Cω = R. Therefore
(36) T (BR) ⊂ BR ,

where BR is the ball of radius R.
The condition (36) derives from Theorem 1 and 2, and represents a mandatory

hypothesis for the Schauder’s fixed point theorem. In fact, the theorem provides
that for a separated topological vector space D, a convex subset BR ⊂ D, a con-
tinuous mapping of BR into itself T , such that T (BR) is contained in a compact
subset of BR, equipped with the topology inherited from D, then T has a fixed
point, namely, there exists x ∈ BR such that T (x) = x. In conclusion, we can
now apply the fixed point theorem to the system (34), and therefore there exists a
solution of the system. �

3. The optimal control problem

In this section, we present the model for the optimal control of the presented
state system, and prove the existence of an optimal solution. We first recall that,
according to the Theorem 2, the set of all admissible functions k and ω is determined
by
(37) Tad =

{
(k, ω) ∈ H1(Ω) ×H1(Ω) | 0 ≤ ωinf ≤ ω ≤ ωsup and 0 ≤ k ≤ ksup

}
,

where ωinf , ωsup and ksup have been introduced above.
In this work, we aim to control the temperature T = gT + Tc on a portion of

the boundary ΓC ⊆ ΓD ⊆ Γ to have a desired velocity ud or a desired turbulence
kinetic energy kd on a certain domain Ωd ⊆ Ω. The optimal control problem can
be summarized as follows

Given gk, gω ∈ H
1
2 (Γ), gT ∈ H

1
2 (ΓD) and gu ∈ H 1

2 (Γ), find a state-
control set (u, p, T, Tc, k, ω, Pk, Pω, νt) ∈ H1(Ω) ×L2

0(Ω) ×H1(Ω) ×
H1

0 (ΓC) × Tad × L2(Ω) × L2(Ω) × L2(Ω) which minimizes the cost
functional (20) under the constraints (26)-(27).

We also recall that Pk, Pω and νt are defined in (17), (18) and (19), respectively.
We can now define the admissible set of states and controls as

(38)
Sad =

{
(u, p, T, Tc, k, ω, Pk, Pω, νt) ∈ H1(Ω) × L2

0(Ω) ×H1(Ω) ×H1
0 (ΓC)×

× Tad × L2(Ω) × L2(Ω) × L2(Ω) such that J (u, k, Tc) < ∞
}
.

Since the main statement of the optimal control problem is the minimization of
the functional (20), the problem can be reformulated as follows. We say that
(û, p̂, T̂ , T̂c, k̂, ω̂, P̂k, P̂ω, ν̂t) ∈ Sad is an optimal solution if there exists M > 0 such
that

(39)

J (û, T̂ , T̂c, k̂) < J (u, k, Tc), ∀ (u, p, T, Tc, k, ω, Pk, Pω, νt) ∈ Sad

satisfying ∥u − û∥1 + ∥p− p̂∥0 + ∥T − T̂∥1 + ∥k − k̂∥1 + ∥ω − ω̂∥1

+ ∥νt − ν̂t∥0 + ∥Pk − P̂k∥0 + ∥Pω − P̂ω∥0 + ∥Tc − T̂c∥1,ΓC < M .

We now turn to the question of the existence of optimal solutions for the problem
(39).

Theorem 4. Let Sad be not empty. There exists at least one optimal solution
(û, p̂, T̂ , T̂c, k̂, ω̂, P̂k, P̂ω, ν̂t) ∈ Sad.
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Proof. The proof of the existence of an optimal solution is obtained with standard
techniques, and the interested reader can consult [19, 20]. We consider Tc = 0, i.e.
T = gT on ΓC , then we can find the solution (u, p, T, 0, k, ω, Pk, Pω, νt). This implies
that Sad is not empty. Therefore, since the set of the values of J is bounded from be-
low, there exists a minimizing sequence (um, pm, Tm, Tcm, km, ωm, Pkm, Pωm, νtm) ∈
H1(Ω) × L2

0(Ω) × H1(Ω) × H1
0 (ΓC) × Tad × L2(Ω) × L2(Ω) × L2(Ω). As defined

in (17), (18) and (19), the sequences Pkm, Pωm and νtm are uniformly bounded.
Since Pkm and Pωm are bounded, then also km and ωm are uniformly bound-
ed in Tad. From Theorem 1, we can also state that um and Tm are uniformly
bounded in H1(Ω) and H1(Ω), respectively. Following standard techniques, we
can now extract subsequences (un, pn, Tn, Tcn, kn, ωn, Pkn, Pωn, νtn) converging to
(û, p̂, T̂ , T̂c, k̂, ω̂, P̂k, P̂ω, ν̂t). To prove that the limit of the sub-sequence satisfies
the problem we pass to the limit the equation problem. Following [18, 19], we can
state that the solution of all the linear and the nonlinear operators converges to
the solution of the equation problem. �
4. The Lagrange multiplier method

4.1. Preliminaries. In this section, we show that the Lagrange multiplier tech-
nique is well-posed and can be used to obtain the first-order necessary condition.
In particular, we introduce the Lagrangian map and we show that it is strictly
differentiable.

We recall the inequality constraints introduced in (15)-(19) and define auxiliary
variables which allows us to transform them into equality constraints [21]. Let us
consider the source S′

k = max [Sk + Sk,b, 0] defined by (15). It is easy to show that
finding S′

k from (15) is equivalent to solve the following system of equation
S′

k(S′
k − (Sk + Sk,b)) = 0 ,(40)

r2
k1 − S′

k − (S′
k − (Sk + Sk,b)) = 0 .(41)

From (15) we have S′
k = Sk +Skb or S′

k = 0 that satisfies (40). When Sk +Skb ≥ 0
we have S′

k = Sk + Skb = r2
k1 ≥ 0 for some real number r2

k1. Otherwise, when
Sk + Skb ≤ 0 we have S′

k = 0 and (Sk + Skb) = −r2
k1 ≤ 0 for some real number

r2
k1 that satisfies (41). The value r2

k1 = 0 is attained when S′
k = (Sk + Sk,b) = 0.

Vice-versa from (40) we have S′
k = 0 and/or S′

k = Sk + Sk,b. From (41), S′
k is zero

when Sk + Sk,b ≤ 0 and S′
k = Sk + Sk,b when S′

k ≥ 0. With the same arguments
the source Pk, defined in (17), satisfies

(S′
k − Pk)(β∗kmaxω − Pk) = 0 ,(42)

r2
k2 − (S′

k − Pk) − (β∗kmaxω − Pk) = 0 ,(43)

for some rk2 ∈ L2(Ω). By using similar arguments, finding Pk in (17) it is equivalent
to solve (42) and find a real r2

k2 in (43).
Similarly, let us consider the definition of S′

ω = max [Sω + Sω,b, 0] in (18). When
Sω + Sωb ≥ 0 we have S′

ω = Sω + Sωb and S′
ω − (Sω + Sωb) = r2

ω1 ≥ 0 for
some real number r2

ω1. Otherwise, when Sω + Sωb ≤ 0 we have S′
ω = 0 and

−(Sω + Sωb) = r2
ω1 ≥ 0 for some real number r2

ω1. In this case, we have that S′
ω

satisfies
S′

ω(S′
ω − (Sω + Sω,b)) = 0 ,(44)

r2
ω1 − S′

ω − (S′
ω − (Sω + Sω,b)) = 0 ,(45)

for some rω1 ∈ L2(Ω). Vice-versa, when (44) is satisfied and there exists a r2
ω1 we

have S′
ω = Sω + Sωb with S′

ω ≥ 0 or S′
ω = 0 with Sω + Sω,b ≤ 0 which implies (18).
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With the same arguments the source Pω, defined in (18), satisfies

(S′
ω − Pω)(βω2

max − Pω) = 0 ,(46)
r2

ω2 − (S′
ω − Pω) − (βω2

max − Pω) = 0 ,(47)

for some rω2 ∈ L2(Ω). Finding Pω from (15) is equivalent to solve (46)-(47).
Finally, the inequality (19) can be replaced by

(k − νtω)(νmax − νt) = 0 ,(48)
r2

ν − (k − νtω) − ω(νmax − νt) = 0 ,(49)

for some rν ∈ L2(Ω).
Now we consider all the constraint equations and the functional in two mappings

in order to study their differential properties. It is convenient to define the following
functional spaces

(50)
B1e = H1(Ω) × L2

0(Ω) ×H1(Ω) ×H1
0 (ΓC) ×H− 1

2 (ΓD) × Tad ,

B1c = (L2(Ω))4 × (L2(Ω))4 × (L2(Ω))2 , B1 = B1e × B1c ,

(51)
B2e = H−1(Ω) × L2

0(Ω) ×H1∗(Ω) ×H
1
2 (ΓD) ×H−1(Ω) ×H−1(Ω) ,

B2c = (L2(Ω))4 × (L2(Ω))4 × (L2(Ω))2 , B2 = B2e × B2c ,

(52)
B3e = H1

0(Ω) × L2
0(Ω) ×H1

ΓDrΓC
(Ω) ×H1

0 (ΓC) ×H− 1
2 (ΓD) × (H1

0 (Ω))2 ,

B3c = (L2(Ω))4 × (L2(Ω))4 × (L2(Ω))2 , B3 = B3e × B3c ,

and equip B1,B2,B3 with the usual graph norms for the product spaces involved.
Given z0 = (u, p, T, Tc, qn, k, ω, S

′
k, rk1, Pk, rk2, S

′
ω, rω1, Pω, rω2, νt, rν) ∈ B1, we can

now define the nonlinear mapping M : B1 → B2 at z0 by M(z0) · z0 = b with
b = (l1, l2, l3, l4, l5, l6, lk, lω, lν) if and only if

a(ν + νt; u,v) + c(u; u,v) + b(v, p) − (f ,v)
+ (γ(T − T0)g,v) = (l1,v) ∀v ∈ H1

0(Ω)
b(u, q) = (l2, q) ∀ q ∈ L2

0(Ω)

a

(
α+ νt

Prt
;T, φ

)
+ c(u;T, φ) − (qn, φ)ΓD

− (gT,N , φ)ΓN
= (l3, φ) ∀φ ∈ H1(Ω)(53)

(T, sT )ΓD − (Tc, sT )ΓC − (gT , sT )ΓD = (l4, sT )ΓD ∀sT ∈ H−1/2(ΓD)
c(u; k, ψ) + a(ν + νtσk; k, ψ) − (Pk, ψ) + (β∗kω, ψ) = (l5, ψ) ∀ψ ∈ H1

0 (Ω)
c(u;ω, ϕ) + a(ν + νtσω;ω, ϕ) − (Pω, ϕ) + (βω2, ϕ) = (l6, ϕ) ∀ϕ ∈ H1

0 (Ω)

and

S′
k

(
S′

k − 1
2
νtS2(u) − γνt

Prt
g · ∇T

)
= lk0

r2
k1 − S′

k −
(
S′

k − 1
2
νtS2(u) − γνt

Prt
g · ∇T

)
= lk1

(S′
k − Pk)(β∗kmaxω − Pk) = lk2 , r2

k2 − (S′
k − Pk) − (β∗kmaxω − Pk) = lk3

S′
ω

(
S′

ω − 1
2
ηS2(u) − ηγ

Prt
g · ∇T

)
= lω0(54)
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r2
ω1 − S′

ω −
(
S′

ω − 1
2
ηS2(u) − ηγ

Prt
g · ∇T

)
= lω1

(S′
ω − Pω)(βω2

max − Pω) = lω2 , r2
ω2 − (S′

ω − Pω) − (βω2
max − Pω) = lω3

(k − νtω)(νmax − νt) = lν0 , r2
ν − (k − νtω) − ω(νmax − νt) = lν1

where all the equations of (54) hold in Ω. From the definition of b, we can state
that the set of constraint equations in our optimal control problem can be expressed
as M(z0) · z0 = 0.

Given ẑ = (û, p̂, T̂ , T̂c, q̂n, k̂, ω̂, Ŝ
′
k, r̂k1, P̂k, r̂k2, Ŝ

′
ω, r̂ω1, P̂ω, r̂ω2, ν̂t, r̂ν) ∈ B1, we

define the nonlinear mapping Q : B1 → ℜ×B2. For a ∈ ℜ we set Q(z0)·ẑ = (a,b)
if and only if

(55) Q(z0) · ẑ =
(

J (u, k, Tc) − J (û, k̂, T̂c)
M(z0) · ẑ

)
=
(
a
b

)
.

4.2. Mapping differentiability. We now introduce the notion of map differen-
tiability, and we show that the mappings M and Q introduced above are strictly
differentiable. For the definition of the differentiability, see [22].

Lemma 1. Let z0 ∈ B1, z̃0 = (ũ, p̃, T̃ , T̃c, q̃n, k̃, ω̃, S̃
′
k, r̃k1, P̃k, r̃k2, S̃

′
ω, r̃ω1, P̃ω,

r̃ω2, ν̃t, r̃ν) ∈ B3 and b = (̄l1, l̄2, l̄3, l̄4, l̄5, l̄6, l̄k, l̄ω, l̄ν) ∈ B2. Let consider, as de-
rivative map, the bounded linear operator M′ : B3 → B2, where M′(z0) · z̃0 = b ,
defined as

a(ν̃t; u,v) + a(ν + νt; ũ,v) + c(ũ; u,v) + c(u; ũ,v) + b(v, p̃)

+ (γgT̃ ,v) = (̄l1,v) ∀v ∈ H1
0(Ω)

b(ũ, q) = (l̄2, q) ∀ q ∈ L2
0(Ω)

a

(
ν̃t

Prt
;T, φ

)
+ a

(
α+ νt

Prt
; T̃ , φ

)
+ c(ũ;T, φ) + c(u; T̃ , φ)

− (q̃n, φ)ΓD = (l̄3, φ) ∀φ ∈ H1(Ω)

(T̃ , sT )ΓD − (T̃c, sT )ΓC = (l̄4, sT )ΓD ∀sT ∈ H−1/2(ΓD)(56)

c(ũ; k, ψ) + c(u; k̃, ψ) + a(ν̃tσk; k, ψ) + a(ν + νtσk; k̃, ψ)

− (P̃k, ψ) + (β∗k̃ω, ψ) + (β∗kω̃, ψ) = (l̄5, ψ) ∀ψ ∈ H1
0 (Ω)

c(ũ;ω, ϕ) + c(u; ω̃, ϕ) + a(ν̃tσω;ω, ϕ) + a(ν + νtσω; ω̃, ϕ)

− (P̃ω, ϕ) + 2(βωω̃, ϕ) = (l̄6, ϕ) ∀ϕ ∈ H1
0 (Ω)

and

S̃′
k

(
S′

k − (Sk + Sk,b)
)

+

S′
k

(
S̃′

k − 1
2
ν̃tS2(u) − νtS(u) : S(ũ) − γν̃t

Prt
g · ∇T − γνt

Prt
g · ∇T̃

)
= l̄k0

2rk1r̃k1 − 2S̃′
k + 1

2
ν̃tS2(u) + νtS(u) : S(ũ) + γν̃t

Prt
g · ∇T + γνt

Prt
g · ∇T̃ = l̄k1

(S̃′
k − P̃k)(β∗kmaxω − Pk) + (S′

k − Pk)(β∗kmaxω̃ − P̃k) = l̄k2

2rk2 r̃k2 − S̃′
k − β∗kmaxω̃ + 2P̃k = l̄k3

S̃′
ω

(
S′

ω − (Sω + Sω,b)
)

+ S′
ω

(
S̃′

ω − ηS(u) : S(ũ) − ηγ

Prt
g · ∇T̃

)
= l̄ω0(57)
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2rω1 r̃ω1 − 2S̃′
ω + ηS(u) : S(ũ) + ηγ

Prt
g · ∇T̃ = l̄ω1

(S̃′
ω − P̃ω)(βω2

max − Pω) − P̃ω(S′
ω − Pω) = l̄ω2

2rω2 r̃ω2 − S̃′
ω + 2P̃ω = l̄ω3

(k̃ − ν̃tω − νtω̃)(νmax − νt) − (k − νtω)ν̃t = l̄ν0

2rν r̃ν − k̃ + 2ν̃tω + 2νtω̃ − ω̃νmax = l̄ν1

Consider the nonlinear operator Q′ : B3 → ℜ × B2, where Q′(z0) · z̃0 = (ā,b) for
ā ∈ ℜ. If we set

(58)
J ′(u, k, Tc) · z̃0 = αu

∫
Ωd

(u − ud) · ũdx + αk

∫
Ωd

(k − kd)k̃dx

+ λ1

∫
ΓC

TcT̃cdx + λ2

∫
ΓC

∇Tc · ∇T̃cdx ,

then the strict derivative of Q at a point z0 is given by Q′ if and only if( J ′(u, k, Tc) · z̃0

M′(z0) · z̃0

)
=

(
ā

b

)
.(59)

Proof. The linearity and the boundedness of the operators M′ and Q′ follows from
the continuity of the forms a(·; ·, ·), b(·, ·) and c(·; ·, ·) for both scalar and vector
functions. The proof that M′ is the strict derivative of the mapping M also follows
from the continuity of the trilinear form c(·; ·, ·) and bilinear form a(·; ·, ·). The pro-
cedure is standard, and similar proofs have been reported in [19, 23]. Indeed, it can
be proved that for a given z0 = (u, p, T, Tc, qn, k, ω, S

′
k, rk1, Pk, rk2, S

′
ω, rω1, Pω, rω2,

νt, rν) ∈ B1, then for any ε > 0, and considering z1, z2 ∈ B1 such that, for an
appropriate δ = δ(ε), we have ∥z0 − z1∥B1 < δ and ∥z0 − z2∥B1 < δ, we obtain

∥M(z1) − M(z2) − M′(z0) · (z1 − z2)∥B2 ≤ ε∥z1 − z2∥B1 .

This proves that the mapping M is strictly differentiable on all B1 and its strict
derivative is given by M′.

Using again standard techniques, it is easy to show that the mapping Q is strictly
differentiable and that its strict derivative is given by Q′ [19, 23]. �

We now recall the fact that the introduced variables rk1, rω1, rk2, rω2, and rν are
equal to zero when the turbulence sources in k and ω satisfy both limits at the same
time in all the relations (15)-(19). This may be a problem for the optimization if
this is verified over domain with positive measure. However, this is not a problem
if this happens over points or boundary regions with zero measure. For this reason
we introduce the following subsets

ΩPk
=
{

x ∈ Ω such that S′
k = Sk + Sk,b = 0 or Pk = β∗kmax ω = S′

k

}
,(60)

ΩPω =
{

x ∈ Ω such that S′
ω = Sω + Sω,b = 0 or Pω = βω2

max = S′
ω

}
,(61)

Ων =
{

x ∈ Ω such that νt = νmax = k/ω
}
.(62)

These sets are used to assure the validity of the Lagrange multiplier technique
around the region where the minimum point should be searched.

The differential operator M′ is rather complex. Many equations in this opera-
tor are non-coercive elliptic equations with advection term driven by the velocity
field u ∈ H1(Ω). The existence result for this class of equations can be obtained
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not in the Lax-Milgram setting, but by using a Leray-Schauder Topological De-
gree argument. In order to deal with these equations, we introduce the following
theorem.

Theorem 5. Let Ω ⊂ ℜn be a bounded open subset with boundary Γ. Let ΓD ⊂ Γ
be a set with positive measure and ΓN ⊆ Γ r ΓD. Consider

(63)
−∇ · (AT ∇y) + (u · ∇)y + by = f in Ω

y = y1 on ΓD

AT ∇y · n = yn on ΓN ,

with b ∈ Ln∗/2(Ω), b ≥ 0 a.e. on Ω, u ∈ Ln∗(Ω), and f ∈ H1∗
ΓD

(Ω) where n∗ = n
when n ≥ 3, n∗ ∈]2,∞[ when n = 2. If A is a function which satisfies these two
properties:

(1) ∃αA > 0 such that A(x)ξ · ξ ≥ αA|ξ|2 for a.e. x ∈ Ω and for all ξ ∈ ℜ;
(2) ∃ ΛA > 0 such that |A(x)| ≤ ΛA for a.e. x ∈ Ω;

then, there exists a unique solution y ∈ H1(Ω) of (63).

Proof. The proof of this result is based on a Leray-Schauder Topological Degree
argument and can be found in [24]. �

We remark that the Theorem 5 is also valid with only Dirichlet boundary con-
ditions, namely when the boundary ΓN is empty.

Lemma 2. Let z0 ∈ B1. Then, if the region ΩPk
∪ ΩPω ∪ ΩSν has zero measure,

we have that
(i) the operator M′(z0) has closed range in B2,

(ii) the operator Q′(z0) has closed range in ℜ × B2,
(iii) the operator Q′(z0) is not onto in ℜ × B2.

Proof. In order to prove (i) we can split the range operator M′(z0) in a product
of range spaces for all its components and apply well known results. The operator
range of M′ can be split into four parts: the Navier-Stokes, the temperature, the
k-ω model and the turbulence source constraint derivative equations. First, let us
consider the Navier-Stokes derivative operator

a(ν + νt; ũ,v) + c(ũ; u,v) + c(u; ũ,v) + b(v, p̃) = (̄l∗
1,v) ∀v ∈ H1

0(Ω)

(̄l∗
1,w) = (̄l1,w) − (γgT̃ ,w) − a(ν̃t; u,w) ∀w ∈ H1

0(Ω)(64)
b(ũ, q) = (l̄2, q) ∀ q ∈ L2

0(Ω)

with νt ∈ L∞(Ω) and ν + νt > 0. The question of the closeness of the range (l∗
1, l2)

in H−1(Ω) ×L2
0(Ω) of (64) is discussed in many papers, see for examples [25, 9, 1].

Since z0 is an optimal solution, T̃ and q̃n solve the equations

(65)
a

(
α+ νt

Prt
; T̃ , φ

)
+ c(u; T̃ , φ) − (q̃n, φ)ΓD = (l̄∗3, φ) ∀φ ∈ H1(Ω)

(T̃ , sT )ΓD
= (l̄∗4, sT )ΓD

∀sT ∈ H−1/2(ΓD)

with

(66)
(l̄∗3, φ) = (l̄3, φ) − a

(
ν̃t

Prt
;T, φ

)
− c(ũ;T, φ) ∀φ ∈ H1(Ω)

(l̄∗4, sT )ΓD = (T̃c, sT )ΓC + (l̄4, sT )ΓD ∀sT ∈ H−1/2(ΓD)
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For (l3, l4) ∈ H1∗(Ω) ×H1/2(Γ) we have (l∗3, l
∗
4) ∈ H1∗(Ω) ×H1/2(Γ). By using the

result in Theorem 5 for each (l∗3, l
∗
4) ∈ H1∗(Ω) × H1/2(Γ) we have a solution and

therefore the range of the mapping M′(z0) for the energy equation is onto.
Now we consider the k-ω system in M′. Since z0 is an optimal solution, reduces

to

(67)

a(ν + νtσk; k̃, ϕ) + c(u; k̃, ϕ) + (β∗ωk̃, ϕ) = (l∗5ϕ) ∀ϕ ∈ H1
0 (Ω)

(l∗5ϕ) = (l5ϕ) − a(ν̃tσk; k, ϕ) − c(ũ; k, ϕ) − (β∗ω̃k, ϕ) + (P̃k, ϕ) ∀ϕ ∈ H1
0 (Ω)

a(ν + νtσω; ω̃, ψ) + c(u; ω̃, ψ) + (2βωω̃, ψ) = (l∗6ψ) ∀ψ ∈ H1
0 (Ω)

(l∗6ψ) = (l6ψ) − a(ν̃tσω;ω, ψ) − c(ũ;ω, ψ) + (P̃ω, ψ) ∀ψ ∈ H1
0 (Ω)

with homogeneous Dirichlet boundary conditions. It is possible to show that ω̃-
equation in (67) has a solution for all l∗6 and also that k̃-equation can be solved for
all l∗4. In fact, since ν+νt is a positive function in L∞(Ω) and thanks to the Sobolev
compact embeddings H1(Ω) ↩→ Lq(Ω) which holds for 1 ≤ q < ∞ when n = 2 and
for 1 ≤ q ≤ 6 when n = 3, we have that u ∈ H1(Ω) verifies the hypothesis in
Theorem 5 both with n = 2 and with n = 3.

Finally, we focus on the system (57) under the assumption that z0 is an optimal
solution. From this we have that S2(u) is bounded and νt ∈ L∞(Ω). If we assume
that the region Ων ∪ ΩPk

∪ ΩPω has a measure zero then rν , rk1, rk2, rω1, rω2 cannot
be zero a.e. on the domain Ω. Therefore the equations can be solved a.e in Ω for
all lν = (lν0, lν1) ∈ L2(Ω) ×L2(Ω), lk = (lk0, lk1, lk2) ∈ L2(Ω) ×L2(Ω) ×L2(Ω) and
lω = (lω0, lω1, lω2) ∈ L2(Ω) ×L2(Ω) ×L2(Ω) as a function of ν̃t, r̃ν1, k̃, r̃k1, r̃k2 and
ω̃, r̃ω1 and r̃ω2, respectively.

Starting from (i), the proof of (ii) and (iii) can be found easily by using the
standard techniques in [25, 19, 9]. �

Theorem 6. Let ẑ ∈ B1 denote an optimal solution. Then there exists a nonzero
Lagrange multiplier (Λ, ẑa) = (Λ, ûa, p̂a, T̂a, q̂a, k̂a, ω̂a, Ŝ′

ka, r̂k1a, P̂ka, r̂k2a, Ŝ′
ωa, P̂ωa,

r̂ω1a, r̂ω2a, ν̂a, r̂νa) ∈ ℜ × B∗
2 satisfying the Euler equations

(68) ΛJ ′(û, k̂, T̂c) · z̃0 + ⟨ẑa,M′(ẑ) · z̃0⟩ = 0 ∀z̃0 ∈ B3

where ⟨·, ·⟩ denotes the duality pairing between B2 and B∗
2.

Proof. From Lemma 2, we have that the range of Q′(ẑ) is a closed, proper subspace
of ℜ×B2. Then, from the Hahn-Banach theorem, there exists a nonzero element of
ℜ × B∗

2 that nullifies the range of Q′(ẑ). Then, there exists (Λ, ûa, p̂a, T̂a, q̂a, k̂a, ω̂a,

Ŝ′
ka, r̂k1a, P̂ka, r̂k2a, Ŝ′

ωa, r̂ω1a, P̂ωa, r̂ω2a, ν̂a, r̂νa) ∈ ℜ × B∗
2 such that

(69) ⟨(ā, b̄), (Λ, ẑa)⟩ = 0 ,

for all (ā, b̄) = (ā, l̄1, l̄2, l̄3, l̄4, l̄5, l̄6, l̄ν , l̄k, l̄ω) belonging to the range of Q′(ẑ), where
⟨·, ·⟩ denotes the duality pairing between ℜ×B2 and ℜ×B∗

2. Note that Λ ̸= 0 since
otherwise we would have that ⟨b̄, ẑa⟩ = 0 for all b̄ ∈ B2. This would imply ẑa = 0
contradicting the fact that (Λ, ẑa) ̸= 0. Clearly, using the definition of Q′(ẑ), (68)
and (69) are equivalent. �

4.3. The optimality system. Dropping the (̂·) notation for optimal solution,
we derive now the optimality system using (68). Thus, we introduce the following
equations

(70) λ1(Tc, T̃c)ΓC + λ2(∇Tc,∇T̃c)ΓC = (qa, T̃c)ΓC ,
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for all T̃c ∈ H1
0 (ΓC),

(71)

b(ua, p̃) = 0 ,
a(ν + νt; ũ,ua) + c(u; ũ,ua) + c(ũ; u,ua) + b(ũ, pa) =

= −αuΛ((u − ud), ũ)Ωd
− c(ũ;T, Ta) − c(ũ; k, ka) − c(ũ;ω, ωa)

+ a(νt(rk1a − S′
kaS

′
k) + η(rω1a − S′

ωaS
′
ω); u, ũ) ,

for all (ũ, p̃) ∈ H1
0(Ω) × L2

0(Ω),

(72)

a(α+ νt

Prt
; T̃ , Ta) + c(u; T̃ , Ta) + (T̃ , qa)ΓD

= −(γgT̃ ,ua)

+
(

γ

Prt
g · ∇T̃ , νt(rk1a − S′

kaS
′
k) + η(rω1a − S′

ωaS
′
ω)
)

(Ta, q̃n)ΓD
= 0 ,

with

(73) qa = −
(
α+ νt

Prt

)
∇Ta · n̂ on ΓD ,

for all (T̃ΓDrΓC
, q̃n) ∈ H1(Ω) ×H− 1

2 (ΓD),

(74)

a(ν + νtσk; k̃, ka) + c(u; k̃, ka) + (β∗k̃ω, ka) = −αkΛ((k − kd), k̃)Ωd

− (k̃, νa(νmax − νt) − rνa) ,
a(ν + νtσω; ω̃, ωa) + c(u; ω̃, ωa) + (2βωω̃, ωa) =

− (β∗kω̃, ka) − (Pka(S′
k − Pk) − rk2a, β

∗kmaxω̃)
+ (νtνa(νmax − νt) − rνa(2νt − νmax), ω̃) ,

for all (k̃, ω̃) ∈ H1
0 (Ω) ×H1

0 (Ω). We also introduce the algebraic system

(75)

νaω

(
νmax + k

ω
− 2νt

)
= S(u) : S(ua)

2
+ ∇T · ∇Ta

Prt
+ σk∇k · ∇ka

+ σω∇ω · ∇ωa − (S′
kaS

′
k − rk1a)

(
1
2

S2(u) + γ

Prt
g · ∇T

)
+ 2rνaω ,

S′
ka

(
2S′

k − 1
2
νtS2(u) − γνt

Prt
g · ∇T

)
= 2rk1a + rk2a − Pka(β∗kmaxω − Pk) ,

S′
ωa

(
2S′

ω − 1
2
ηS2(u) − ηγ

Prt
g · ∇T

)
= 2rω1a + rω2a − Pωa(βω2

max − Pω) ,

Pka(β∗kmaxω + S′
k − 2Pk) = 2rk2a − ka ,

Pωa(βω2
max + S′

ω − 2Pω) = 2rω2a − ωa .

Lastly, we have
(76) rk1ark1 = rk2ark2 = rω1arω1 = rω2arω2 = rνarν = 0 .

Theorem 7. Let z ∈ B1 denote a solution of the optimal control problem. Then,
if the region ΩPk

∪ ΩPω
∪ Ων has zero measure, the control variable Tc ∈ H1

0 (ΓC) is
the solution of (70).

Also, (ua, pa) ∈ H1
0(Ω) × L2

0(Ω) is solution of (71). In addition, (Ta, qa) ∈
H1(Ω)×H− 1

2 (ΓD) is the solution of (72) under the condition (73). Also, (ka, ωa) ∈
H1

0 (Ω) ×H1
0 (Ω) is solution of (74).

Moreover, (νa, S
′
ka, S

′
ωa, Pka, Pωa) ∈ (L2(Ω))5 are solutions of the algebraic equa-

tions (75), and (rk1a, rk2a, rω1a, rω2a, rνa) ∈ (L2(Ω))5 satisfy (76).
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Proof. The Euler equations (68) are equivalent to

Λ(αu((u − ud), ũ)Ωd
+ αk((k − kd), k̃)Ωd

+ λ1(Tc, T̃c)ΓC
+ λ2(∇Tc,∇T̃c)ΓC

)
+ a(ν̃t; u,ua) + a(ν + νt; ũ,ua) + c(ũ; u,ua) + c(u; ũ,ua)

+ b(ua, p̃) + (γgT̃ ,ua) + b(ũ, pa) + c(ũ;T, Ta) + c(u; T̃ , Ta)

+ a

(
ν̃t

Prt
;T, Ta

)
+ a

(
α+ νt

Prt
; T̃ , Ta

)
− (q̃n, Ta)ΓD

+ (T̃ , qa)ΓD
− (T̃c, qa)ΓC

+ c(ũ; k, ka) + c(u; k̃, ka) + a(ν̃tσk; k, ka) + a(ν + νtσk; k̃, ka) − (P̃k, ka)

+ (β∗k̃ω, ka) + (β∗kω̃, ka) + c(ũ;ω, ωa) + c(u; ω̃, ωa)

+ a(ν̃tσω;ω, ωa) + a(ν + νtσω; ω̃, ωa) − (P̃ω, ωa) + 2(βωω̃, ωa)

+
(
S′

ka, S̃
′
k

(
S′

k − 1
2
νtS2(u) − γνt

Prt
g · ∇T

)
+ S′

k

(
S̃′

k − 1
2
ν̃tS2(u) − νtS(u) : S(ũ)

− γν̃t

Prt
g · ∇T − γνt

Prt
g · ∇T̃

))
+
(
rk1a, 2rk1r̃k1 − 2S̃′

k + 1
2
ν̃tS2(u) + νtS(u) : S(ũ)

+ γν̃t

Prt
g · ∇T + γνt

Prt
g · ∇T̃

)
+ (Pka, (S̃′

k − P̃k)(β∗kmaxω − Pk)

+ (S′
k − Pk)(β∗kmaxω̃ − P̃k)) + (rk2a, 2rk2r̃k2 − S̃′

k − β∗kmaxω̃ + 2P̃k)

+
(
S′

ωa, S̃
′
ω

(
S′

ω − 1
2
ηS2(u) − ηγ

Prt
g · ∇T

)
+ S′

ω

(
S̃′

ω − ηS(u) : S(ũ)

− ηγ

Prt
g · ∇T̃

))
+
(
rω1a, 2rω1r̃ω1 − 2S̃′

ω + ηS(u) : S(ũ) + ηγ

Prt
g · ∇T̃

)
+ (Pωa, (S̃′

ω − P̃ω)(βω2
max − Pω) − P̃ω(S′

ω − Pω)) + (rω2a, 2rω2r̃ω2 − S̃′
ω + 2P̃ω)

+ (νa, (k̃ − ν̃tω − νtω̃)(νmax − νt) − (k − νtω)ν̃t) + (rνa, 2rν r̃ν − k̃

+ 2ν̃tω + 2νtω̃ − ω̃νmax) = 0 ,

for all z ∈ B1. In order to satisfy the integral on the boundary, we set homogeneous
Dirichlet boundary conditions for the adjoint variables (ua, ka, ωa). By extracting
the terms involved in the same variation, we obtain (70)-(76). �

If the region ΩPk
∪ ΩPω

∪ ΩSν
has zero measure, then rk1, rk2, rω1, rω2 and rν

are almost everywhere different from zero. From (76) we note that if rk1 ̸= 0, then
rk1a = 0. This is true also for rk2a, rω1a, rω2a and rνa. Therefore, the final adjoint
system reduces to

(77)

b(ua, p̃) = 0 ,
a(ν + νt; ũ,ua) + c(u; ũ,ua) + c(ũ; u,ua) + b(ũ, pa) =

= −αuΛ((u − ud), ũ)Ωd
− c(ũ;T, Ta) − c(ũ; k, ka) − c(ũ;ω, ωa)

− a(νtS
′
kaS

′
k + ηS′

ωaS
′
ω; u, ũ) ,

for all (ũ, p̃) ∈ H1
0(Ω) × L2

0(Ω),

(78)
a(α+ νt

Prt
; T̃ , Ta) + c(u; T̃ , Ta) + (T̃ , qa)ΓD = −(γgT̃ ,ua)

−
(

γ

Prt
g · ∇T̃ , νtS

′
kaS

′
k + ηS′

ωaS
′
ω

)
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for all T̃ΓDrΓC
∈ H1(Ω),

(79)

a(ν + νtσk; k̃, ka) + c(u; k̃, ka) + (β∗k̃ω, ka) = −αk((k − kd), k̃)Ωd

− (k̃, νa(νmax − νt)) ,
a(ν + νtσω; ω̃, ωa) + c(u; ω̃, ωa) + (2βωω̃, ωa) = −(β∗kω̃, ka)

− (Pka(S′
k − Pk), β∗kmaxω̃) + (νtνa(νmax − νt), ω̃) ,

for all (k̃, ω̃) ∈ H1
0 (Ω) ×H1

0 (Ω). Lastly, in the case in which ΩPk
∪ ΩPω ∪ ΩSν has

zero measure, we have the following algebraic equations

(80)

νar
2
ν = S(u) : S(ua)

2
+ ∇T · ∇Ta

Prt
+ σk∇k · ∇ka

+ σω∇ω · ∇ωa − S′
kaS

′
k

(
1
2

S2(u) + γ

Prt
g · ∇T

)
,

S′
kar

2
k1 = −Pka(β∗kmaxω − Pk) ,

S′
ωar

2
ω1 = −Pωa(βω2

max − Pω) ,
Pkar

2
k2 = −ka ,

Pωar
2
ω2 = −ωa .

Furthermore, in the case in which no bounds are reached, we have

(81) νt = k

ω
, Pk = S′

k = Sk + Skb , Pω = S′
ω + Sωb ,

then the adjoint system (77)-(80) simplifies and in particular

(82) S′
kaS

′
k = ka , S′

ωaS
′
ω = ωa .

5. Numerical Results

In this section, we report the results obtained by solving the optimality system
(70) and (77)-(80). Since the coupled solution of the system is extremely expensive,
we uncouple the state, adjoint and control equations by using the steepest descent
algorithm described in Algorithm 1. In particular, a standard line search with
backtracking strategy is performed [26]. When the functional decreases under a
certain tolerance εopt, the optimal solution is found and the algorithm stops. We
set εopt = 10−6 for all tests in this section.
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Algorithm 1 Description of the Steepest Descent algorithm.
1. Set T 0

c = 0 and find a state (u0, p0, T 0, k0, ω0, ν0
t ) satisfying (26) and (27)

2. Compute the functional J 0 in (20)
3. Set r0 = 1
for i = 1 → imax do

4. Solve the system (77)-(80) to obtain the adjoint state (ui
a, pi

a, T i
a, ki

a, ωi
a, νi

a)
5. Solve control equation (70) to obtain T i

c

6. Set ri = r0

while J i(T i−1|ΓC − riT i
c ) > J i−1(T i−1|ΓC ) do ◃ Line search

7. Set ri = ρ ri

8. Solve (26)-(27) for the state (ui, pi, T i, ki, ωi, νi
t) with T i|ΓC = T i−1|ΓC −riT i

c

if ri < εr then
Line search not successful ◃ Unsuccessful end of algorithm

end if
if
(
(J i(T i|ΓC ) − J i(T i−1|ΓC )

)
/J i(T i−1|ΓC ) < εopt then

Optimal solution found ◃ Successful end of algorithm
end if

end while
end for

We study a two-dimensional cavity where the flow is driven by buoyancy forces.
Let us consider the domain Ω = [0, L] × [0, L] ∈ ℜ2 reported in Figure 1. In
our computations we consider L = 0.01m. Let be ΓD = Γ1 ∪ Γ3, ΓC = Γ1 and
ΓN = Γ2 ∪ Γ4. We set f = 0, gu = 0 and gT,N = 0, while gk = a1δ

2 and
gω = 2ν/β∗δ2 where δ is the distance from the wall. Moreover, the function gT on
ΓD is given as

(83) gT =

{
493 K on Γ3

503 K on Γ1 .

For the reference case, we set Tc = 0 then on ΓC = Γ3 we have T = gT .

Γ1

Γ2

Γ3

Γ4

g

Figure 1. Computational domain Ω ∈ ℜ2.

Since the presented optimal control problem allows controlling the velocity ud

and the turbulence kinetic energy kd on Ωd, we now consider two different control
cases. In particular, we report a velocity matching case, and a turbulent kinet-
ic energy enhancement case. In both cases we consider γ = 2.5684 · 10−4K−1,
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Pr = 0.025 and a kinematic viscosity ν = 1.750 · 10−7m2/s. We discretize the nu-
merical problem in a finite element framework, and we consider a 30 × 30 uniform
quadrangular mesh.

Velocity matching case. We first consider a velocity matching case, imposing
αu = 1 and αk = 0 in (20). We set Ωd = [0.2y+, 0.3y+] × [0.4y+, 0.6y+], where
y+ = y/L. Moreover, considering ud = (ud, vd) we aim to control the vertical
component of the velocity vd = 8 · 10−3m/s. In the reference case, the average
vertical component of the velocity on Ωd is vd,ref = 5.689 · 10−3m/s, and the
distance from the objective

∫
Ωd

(u − ud)2dx assumes the value 5.8518 · 10−12.

Table 1. Velocity matching case: objective functional and num-
ber of iterations of the optimization algorithm for different λ1 and
λ2 values.

1012 ·
∫

Ωd
(u − ud)2dx (iterations)

@
@
@

λ1

λ2 10−7 10−8 10−9 10−10 0

10−4 3.0859 (117) 3.1189 (88) 3.2028 (53) 3.1681 (37) 3.0762 (34)
10−5 3.0842 (10) 3.1023 (7) 3.1210 (5) 2.9488 (3) 2.6664 (2)
10−6 1.5356 (3) 1.5304 (3) 1.4946 (3) 1.4160 (4) 1.3499 (4)
10−7 1.4873 (4) 1.4942 (4) 1.5482 (3) 1.4322 (4) 1.3618 (4)
10−8 1.4884 (5) 1.5019 (4) 1.5038 (3) 1.4576 (3) 1.3363 (4)
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Figure 2. Velocity matching case: on the left temperature profiles
on ΓC for λ1 = 10−6 and λ2 = 10−8, 10−9, 10−10, 0; on the right
temperature profiles on ΓC for λ2 = 10−10 and λ1 = 10−5, 10−6,
10−7, 10−8.

A brief analysis of the dependence on the regularization parameters of the im-
plemented numerical algorithm is now reported. In particular, in Table 1 the values
of the distance from the objective

∫
Ωd

(u − ud)2dx are reported for different values
of λ1 and λ2. The number of iterations needed by the implemented numerical al-
gorithm is also reported in Table. We observe that for larger values of the penalty
parameters λ1 and λ2, the number of iterations increases. However, in the standard
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control cases, the number of iterations is supposed to decrease for larger penalty
parameters λ1 and λ2. This behavior concerns the numerical simulations where
the optimality system is solved in a fully coupled fashion or when it is solved with
an iterative scheme and a minimum value of the functional J is found for each
iteration of the internal cycle (note that the “internal cycle” is the loop solving the
state system, and the “external cycle” is the loop solving the adjoint equations, see
Algorithm 1). However, the Steepest Descent algorithm used in our work is based
on the exit condition J i(T i−1|ΓC − riT i

c) < J i−1(T i−1|ΓC ) for the internal cycle.
Then, when this condition is satisfied, we solve the adjoint system in the external
cycle to find a new minimization direction. Thus, we do not find the minimum of
the functional for each loop of the internal cycle. For this reason, a general behavior
based on the penalty parameters λ1 and λ2 cannot be established in the presented
algorithm.

The effects of the regularization parameter λ1 on the distance from the objective
are negligible, with the exception of the cases with λ1 = 10−5 and λ1 = 10−4. In
fact, for high values of the regularization parameter λ1, the control is less effective,
and the number of iterations needed by the algorithm increases. In particular, for
λ1 = 10−4 the algorithm needs a significantly higher number of iterations to find
the optimal solution. The variable λ2 has a small impact on the results, however,
the distance from the objective tends to decrease as the value of λ2 decreases. More
generally, we can assert that low values of the regularization parameters lead to a
smaller distance from the objective. Note that in the presented tests the ratio
between the distance from the objective of the reference solution and the optimal
one is smaller than 10. This is due to the fact that the average reference velocity
on Ωd reported above is close to the desired one.

We now define the non-dimensional temperature field T+ = T/Tref , where Tref

is the temperature on ΓC in the reference case. We consider Tref = 503K. In Figure
2 we report T+ on ΓC for different values of the regularization parameter λ2 (on the
left) and λ1 (on the right). Note that the choice of the regularization parameters
affects the optimal solution on ΓC . In particular, high values of the regularization
parameters lead to flat profiles of the controlled temperature, as expected.

Turbulence kinetic energy enhancement case. To test the optimal control
solver with αu = 0 and αk = 1 in (20) we consider a turbulence enhancemen-
t problem which consists in increasing the turbulent kinetic energy k. We set
kd = 5.0 · 10−4 m2/s2 since in the reference case the turbulent kinetic energy is
everywhere smaller than this value, in particular k0

max = 1.5 · 10−5 m2/s2. Let
Ωd = [0.45y+, 0.55y+] × [0.45y+, 0.55y+] be the region where we aim to minimize
the functional

∫
Ωd

(k − kd)2dx, which assumes the value 1.3338 · 10−10 in the ref-
erence case. We solve the optimal control problem with λ1 = 10−4, 10−5, 10−6,
10−7 and λ2 = 10−9, 10−10, 10−11, 0. In Table 2 the objective functional and the
number of algorithm iterations are reported for the different λ1 and λ2 values. The
functional appears strongly decreased in all the considered cases. The decrease in
the functional ranges from two orders of magnitude to four orders of magnitude.
The test cases with a higher λ1 value, in particular with λ1 = 10−4 and 10−5, are
characterized by a higher number of iterations to find the optimum.

In Figure 3 non-dimensional temperature T+ profiles on the controlled boundary
ΓC are reported for different values of λ1 and λ2. In the left of Figure 3, the influence
of the penalization coefficient λ2 is shown. The plot illustrates the temperature
profiles obtained with the optimization algorithm for λ1 = 10−6 and λ2 = 10−9,
10−10, 10−11, 0. The Figure evidences that the highest considered value of λ2



366 A. CHIERICI, V. GIOVACCHINI AND S. MANSERVISI

Table 2. Turbulent kinetic energy enhancement case: objective
functional and number of iterations of the optimization algorithm
for different λ1 and λ2 values.

1017 ·
∫

Ωd
(k − kd)2dx (iterations)

@
@
@

λ1

λ2 10−9 10−10 10−11 0

10−4 4.7800 (309) 19.314 (348) 21.211 (316) 21.642(307)
10−5 13.228 (33) 19.950 (37) 21.404 (34) 23.679 (33)
10−6 68.757 (5) 21.113 (6) 38.872 (5) 129.83 (5)
10−7 179.87 (3) 241.72 (3) 114.29 (3) 17.216 (3)
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Figure 3. Turbulent kinetic energy enhancement case: on the left
temperature profiles on ΓC for λ1 = 10−6 and λ2 = 10−9, 10−10,
10−11, 0; on the right temperature profiles on ΓC for λ2 = 10−9

and λ1 = 10−4, 10−5, 10−6, 10−7.

brings to the smoothest temperature profile on ΓC , while with low values of λ2 the
optimal solution is less regular and close to the solution obtained with λ2 = 0. On
the right of Figure 3 we aim to show the influence of the penalization coefficient λ1.
The results with λ2 = 10−9 and different values of λ1, i.e. λ1 = 10−4, 10−5, 10−6,
10−7, are reported. The temperature profiles are characterized by similar behavior
in the cases with fixed λ2. When λ1 is small the boundary temperature assumes
higher values, but the profiles have a similar trend. The penalization coefficient λ2
in this test case influences strongly the optimal solution, while the coefficient λ1
plays a minor role.

6. Conclusion

In this work, the analysis of a boundary optimal control problem for the Reynolds
Averaged Navier-Stokes and energy system coupled with a two-equation turbulence
model in a k-ω formulation has been presented. In particular, by starting from
the existence of the solution of the Navier-Stokes system coupled with the energy
equation, and the existence of the solution of the k-ω turbulence model, we have
proved the existence of the coupled associated boundary value problem. In order
to do so, we have introduced some bounds on Pk, Pω and νt. Moreover, we have
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introduced a boundary optimal control problem to obtain a desired velocity and/or
a desired turbulence kinetic energy on a domain Ωd, by controlling the temperature
on a boundary ΓC . The optimal control system has been obtained through the
Lagrange multiplier method. In particular, we have proved that the Lagrange
multiplier technique is well-posed and can be used to obtain the first-order necessary
condition.

Lastly, we have introduced a numerical Steepest Descent algorithm for the nu-
merical implementation of the proposed optimality system in a FEM framework.
Then, some numerical results have been shown, presenting both velocity matching
and turbulent kinetic energy enhancement cases. In particular, the dependence on
the regularization parameters has been analyzed in order to show consistency with
the expectations.
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