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Hopf Bifurcation Analysis for a Delayed Business
Cycle Model-The Equivalence of Multiple Time

Scales Versus Center Manifold Reduction
Methods∗
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Abstract In this paper, we study the Hopf bifurcation of a model with a
second order term, which is the business cycle model with delay. Multiple
time scales method, which is mainly used by the engineering researchers, and
center manifold reduction method, which is mainly used by researchers from
mathematical society, are used to derive the two types of normal forms near
the Hopf critical point. A comparison between the two methods shows that
the two normal forms are equivalent. Scholars can derive the normal form by
choosing appropriate methods according to their actual demands. Moreover,
bifurcation analysis and numerical simulations are given to verify the analytical
predictions.
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1. Introduction

Over the past several decades, the bifurcation problems of delayed differential e-
quations have been hot topics in studying nonlinear dynamical systems. As we all
know, it is very important to compute normal forms of differential equations in
study of bifurcation properties. There are two popular and effective approaches
for determining the normal forms of bifurcations in nonlinear delayed dynamical
systems, that is, multiple time scales (MTS) method [11, 12] and center manifold
reduction (CMR) method [5, 6, 16].

The MTS method was originally used to study the Hopf bifurcation of one-
dimensional second order ordinary differential vibration equation [11], and Nayfe-
h [12] extended this method to solve Hopf bifurcation of functional differential
equations. The MTS method is mainly used by applied scientists and researcher-
s from engineering society since it is simple without complicated computation
[1,2,11–13,15], while this method has some limitations. For example, it cannot solve
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non-semisimple singularity bifurcation in functional differential equations, such as
Bogdanov-Takens bifurcation.

The CMR method can be used to solve all kinds of functional differential e-
quations [7, 9, 17], and it is widely used by researchers from mathematical society.
However, this method needs the basic knowledge of functional analysis and algebra
in mathematics major, and it needs large amount of calculation and complicated
process. For CMR method in delayed differential systems, one needs to first change
the delayed equations to an abstract ordinary differential equation in infinite di-
mensional image space, and then decompose the solution space of their linearized
form into stable manifold and center manifold. Next, with adjoint operator equa-
tions, one computes the center manifold by projecting the whole space to the center
manifold,and finally calculates the normal form restricted to the center manifold.

In fact, both of the two approaches combine the two steps involved in using
center manifold theory and normal form theory into one unified step to obtain the
normal form and nonlinear transformation simultaneously, thus, there may exist
some relations between the two methods. Many authors considered some types of
bifurcations by using the two methods at the same time. For example, Nayfeh [12]
used both the MTS and CMR methods to derive equivalent normal forms of Hopf
bifurcation for some simple delayed nonlinear dynamical systems, while the CMR
method used in this paper had some differences with Faria’s center manifold reduc-
tion method. Ding et al. [3,4] applied the two methods to obtain the normal forms
near Hopf-zero and double-Hopf critical points in delayed differential equations re-
spectively, and showed their equivalence. Peng et al. [14] used two methods to study
the Hopf bifurcation of van der Pol-Duffing equation with delay, while in this paper,
Peng et al. only used Hassard’s method [8] to derive the formulae for determining
the stability of Hopf bifurcating periodic solutions and the direction of Hopf bifur-
cation, not showed the explicit normal form of Hopf bifurcation. Moreover, we find
that the systems discussed in the above papers are all without quadratic terms.
Actually, Yu et al. [18] proved that, if system does not contain second-order terms,
the normal forms associated with the semisimple n1-Hopf-n2-zero singularity, de-
rived by using the multiple time scales and center manifold reduction methods, are
identical up to third order.

However, if system contains second-order terms, can we also obtain equivalent
normal forms by using MTS and CMR methods? It is also the motivation of this
study. In this paper, we consider the following delayed business cycle model, which
contains quadratic term [10]. Then, we investigate the equivalence of two normal
forms of Hopf bifurcation in this system, derived by using the multiple time scales
and center manifold reduction methods, and the system shows as follows:

ẍ+ ax(t− τ)− qx3 = −vẋ3 − vẋ2 − uẋ, (1.1)

where x represents gross national income(or output), ẋ is the derivative of x to time
t; 0 < a < 1 is marginal propensity to consume; q > 0 is fixed interest rate; v > 0
denotes the fixed rate of national income, we usually call it acceleration factor;
0 < u ≤ 1, 1/u is called Keynesian coefficient due to the time lag of investment
process, τ represents the delay caused by the delay of investment decision. In the
business cycle model, gross national income is an important target to reflect the
overall economic activities, which is often used in the research of macroeconomic.
Thus, the delay is introduced into gross national income, and the results show that
the delay will cause the fluctuation of macroeconomics and effect the stability of
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the business cycle. Ma et al. [10] studied the Hopf bifurcation of system (1.1),
the bifurcation direction coefficient, the direction and stability of the bifurcation
periodic solution of the model (1.1) was calculated by using Hassard’s method [8],
while there was no specific normal form of Hopf bifurcation. In the present paper,
the Hopf bifurcation normal form of the system (1.1) is derived by using MTS and
CMR methods, and then the Hopf bifurcation direction and stability of periodic
solution of the system are obtained, and it is proved that the two normal forms of
deriving by using two methods are equivalent for this specific model.

The rest of the paper is organized as follows. In Section 2, the stability analysis
of equilibria and Hopf bifurcation analysis of the system (1.1) are mainly carried
out. In Section 3, we derive the normal form of Hopf bifurcation by using multiple
time scales and center manifold reduction methods respectively, and the equivalent
of the two normal forms is also considered in this section. Bifurcation analysis and
numerical simulation are presented in Section 4. Finally, conclusions are drawn in
the final part.

2. Stability of equilibrium and existence of Hopf b-
ifurcation

In this part, we will discuss the stability of equilibria and the existence of Hopf
bifurcation of system (1.1). In order to make the research more convenient, let
ẋ = y, then model (1.1) can be shown as follows:{

ẋ = y,

ẏ = −ax(t− τ) + qx3 − vy3 − vy2 − uy.
(2.1)

System (2.1) has three equilibria:

E0 = (0, 0), E1 = (

√
a

q
, 0), E2 = (−

√
a

q
, 0).

The characteristic equation of system (2.1), evaluated at E0, is given as follows:

λ2 + uλ+ ae−λτ = 0. (2.2)

When τ = 0, the characteristic equation at E0 is

λ2 + uλ+ a = 0.

Obviously, it has two characteristic values with negative real parts due to a > 0
and u > 0. Thus, equilibrium E0 of system (2.1) is local asymptotically stable for
τ = 0.

The characteristic equation of system (2.1), evaluated at E1,2 is given by

λ2 + uλ− 3a+ ae−λτ = 0. (2.3)

When τ = 0, it becomes
λ2 + uλ− 2a = 0.

Obviously, it has one eigenvalue with positive real part due to a > 0 and u > 0.
thus, equilibria E1,2 of system (2.1) are unstable for τ = 0.
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Next, we consider the existence of bifurcation periodic solutions near the equilib-
rium E0 for τ > 0. Let λ = iω1(i2 = −1, ω1 > 0) be a root of characteristic equation
(2.2), substituting the root into (2.2) and separating the real and imaginary parts,
we obtain:

ω2
1 = a cos(ω1τ), uω1 = a sin(ω1τ),

that is,

sin(ω1τ) =
uω1

a
, cos(ω1τ) =

ω2
1

a
.

Let z1 = ω2
1 , thus

z21 + u2z1 − a2 = 0,

then

ω1 =

√
−u2 +

√
u4 + 4a2

2
. (2.4)

Due to uω1

a > 0, then

τ
(j)
1 =

1

ω1
(arccos(

ω2
1

a
) + 2jπ), j = 0, 1, 2, · · · . (2.5)

When τ = τ
(j)
1 , characteristic equation (2.2) have a pair of pure imaginary roots

λ = ±iω1. Calculating the transversality conditions, we have:

Re(
dλ

dτ
)−1
τ=τ

(j)
1

=
2ω2

1 + u2

a2
> 0, j = 0, 1, 2, · · · . (2.6)

Next, we consider the possible bifurcation periodic solution near equilibria E1,2.
Suppose λ = iω2(i2 = −1, ω2 > 0) is a root of characteristic equation (2.3), substi-
tuting it into (2.3) and separating the real and imaginary parts yields

ω2
2 + 3a = a cos(ω2τ), uω2 = a sin(ω2τ).

Then, we have

sin(ω2τ) =
uω2

a
, cos(ω2τ) =

ω2
2 + 3a

a
.

Let z2 = ω2
2 , we have

z22 + (u2 + 6a)z2 + 8a2 = 0.

It has no positive root due to −u2 − 6a < 0, 8a2 > 0, namely, equation (2.3) has
no pure imaginary root. Thus, equation (2.1) does not occur Hopf bifurcation near
equilibria E1,2.

Combining above results, we obtain the following theorem.

Theorem 2.1. System (2.1) undergoes a Hopf bifurcation at trivial equilibrium E0

when τ = τ
(j)
1 (j = 0, 1, 2, · · · ), where τ

(j)
1 is given by (2.5). The trivial equilibrium

E0 is local asymptotically stable for τ ∈ [0, τ
(0)
1 ), and unstable for τ > τ

(0)
1 . System

(2.1) does not undergo a Hopf bifurcation near equilibria E1,2, and E1,2 are always
unstable for τ ≥ 0.
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3. Normal form in Hopf bifurcation

In order to normalize the delay, we first re-scale the time t by using t 7→ t/τ ,
equation (2.1) is transformed into:

dx

dt
= τy(t),

dy

dt
= −τ [ax(t− 1) + uy(t) + vy2(t)− qx3(t) + vy3(t)].

(3.1)

Equation (3.1) also can be written as:

Ż(t) = τN1Z(t) + τN2Z(t− 1) + τF (Z(t), Z(t− 1)), (3.2)

where

Z(t) = (x(t), y(t))T, Z(t− 1) = (x(t− 1), y(t− 1))T,

F (Z(t), Z(t− 1)) = (0, qx3(t)− vy2(t)− vy3(t))T,

and

N1 =

 0 1

0 −u

 , N2 =

 0 0

−a 0

 .

In this section, we treat time delay τ as a bifurcation parameter, and denote
the critical value τ = τc, at which system (3.2) undergoes a Hopf bifurcation at
equilibrium E0. First, we derive the normal form in the Hopf bifurcation of system
(3.2) by using multiple time scales method. Then, we derive the normal form by
using the center manifold reduction method. Finally, we compare the equivalence
of the two methods associated with system (3.2).

3.1. Multiple time scales method

Let h be eigenvector corresponding to eigenvalue λ = iωτ of equation (3.2), and
h∗ be the eigenvector corresponding to eigenvalue λ = −iωτ of adjoint matrix of
equation (3.2), satisfying

〈h∗, h〉 = h̄∗
T
h = 1.

By calculating, it can be found that:

h = (1, iω)T, h∗ = d(u− iw, 1)T, (3.3)

where d = 1
u−2iω .

We treat the delay τ as the bifurcation parameter, let τ = τc + εµ, where

τc = τ
(j)
1 (j = 0, 1, 2, · · · ) is the Hopf bifurcation critical value, see formula (2.5)

for τ
(j)
1 , µ is perturbation parameter, ε is dimensionless scale parameter. Suppose

system (3.2) undergoes a Hopf bifurcation from the trivial equilibrium at the critical
point τ = τc, and then, by the MTS method, the solution of (3.2) is assumed as
follows:

Z(t) = Z(T0, T1, T2, · · · ) =

+∞∑
k=1

εkZk(T0, T1, T2, · · · ), (3.4)
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where

Z(T0, T1, T2, · · · ) = (x(T0, T1, T2, · · · ), y(T0, T1, T2, · · · ))T,
Zk(T0, T1, T2, · · · ) = (xk(T0, T1, T2, · · · ), yk(T0, T1, T2, · · · ))T,

and the derivative with regard to t is transformed into

d

dt
=

∂

∂T0
+ ε

∂

∂T1
+ ε2

∂

∂T2
+ · · · = D0 + εD1 + ε2D2 + · · · ,

where Di is differential operator, and

Di =
∂

∂Ti
, (i = 0, 1, 2, · · · ).

From (3.2), we have

Ż(t) = εD0Z1 + ε2D1Z1 + ε3D2Z1 + ε2D0Z2 + ε3D1Z2 + ε3D0Z3 + · · · . (3.5)

We expand x(T0−1, ε(T0−1), ε2(T0−1), · · · ) at x(T0−1, T1, T2, · · · ) by the Taylor
expansion, we get

x(t−1) = εx1,τc +ε2x2,τc +ε3x3,τc−ε2D1x1,τc−ε3D2x1,τc−ε3D1x2,τc + · · · , (3.6)

where xj,τc = xj(T0 − 1, T1, T2, · · · ), j = 1, 2, · · · .
Substituting formulas (3.4)-(3.6) into equation (3.2), then comparing the coef-

ficients of ε, ε2 and ε3 on both sides of the equation respectively. Then, we obtain
the following expressions:

D0x1 − τcy1 = 0,

D0y1 + τcuy1 + τcax1,τc = 0.
(3.7)

D0x2 − τcy2 = −D1x1 + µy1,

D0y2 + τcuy2 + τcax2,τc = τcaD1x1,τc −D1y1 − µax1,τc − µuy1 − τcvy21 .
(3.8)

D0x3 − τcy3 = −D1x2 −D2x1 + µy2,

D0y3 + τcuy3 + τcax3,τc = aD1(µx1,τc + τcx2,τc)−D1y2 + aτcD2x1,τc

−D2y1 + τcqx
3
1 − µax2,τc − τcvy31

− 2τcvy1y2 − µ(vy21 + uy2).

(3.9)

Equation (3.7) has the solution with following form,

Z1 = GheiωτcT0 + Ḡh̄e−iωτcT0 , (3.10)

where h is given by (3.3). Equation (3.8) is a linear non-homogeneous equation, and
the non-homogeneous equation has a solution if and only if a solvability condition
is satisfied. That is, the right-hand side of (3.8) be orthogonal to every solution
of the adjoint homogeneous problem. Thus, substituting solution (3.10) into the
right part of equation (3.8), and the coefficient vector of eiωτcT0 is noted as m1, by
〈h∗,m1〉 = 0, we can solve ∂G

∂T1
, namely,

∂G

∂T1
= MµG, (3.11)
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where

M = b(−ω2 − ae−iωτc),

with

b = (u+ 2iω − τcae−iωτc)−1.

Solving equation (3.8), we obtain its solutions with following form:

x2 = f1eiωτcT0 + g1e2iωτcT0 + c.c.+ l1,

y2 = f2eiωτcT0 + g2e2iωτcT0 + c.c.+ l2,
(3.12)

where c.c. stands for the complex conjugate of the preceding terms, then substituting
solutions (3.12) into (3.8), and we get

f1 =
V + (iω −M)J

iωτcJ
µG, f2 =

V

τcJ
µG, g1 = vω2SG2, g2 = 2iω3vG2S,

l1 =
2vω2

a
GḠ, l2 = 0,

with

J = −ω2 + iωu+ ae−iωτc , M = b(−ω2 − ae−iωτc), b = (u+ 2iω − τcae−iωτc)−1,

V = e−iωτc(aM − 2aiω + aiωτcM) + ω2(M + u), S =
1

−4ω2 + 2iωu+ ae−2iωτc
.

Next, substituting solutions (3.10) and (3.12) into (3.9), and the coefficient
vector of eiωτcT0 is denoted as m2, by solvability condition, we have 〈h∗,m2〉 = 0.
Note that µ is disturbance parameter, and µ2 has little influence for small unfolding
parameter, thus, we ignore the µ2G term, then ∂G

∂T2
can be solved to yield

∂G

∂T2
= HG2Ḡ, (3.13)

where

H =bτc(3q − 3viω3 − 4v2ω4S),

with

b = (u+ 2iω − τcae−iωτc)−1, S =
1

−4ω2 + 2iωu+ ae−2iωτc
.

Let G → G/ε, we obtain the normal form of Hopf bifurcation of system (3.2)
truncated at the cubic order terms:

Ġ = MµG+HG2Ḡ, (3.14)

where

M = b(−ω2 − ae−iωτc), H = bτc(3q − 3viω3 − 4v2ω4S),

with

b = (u+ 2iω − τcae−iωτc)−1, S =
1

−4ω2 + 2iωu+ ae−2iωτc
.
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3.2. Center manifold reduction method

In this subsection, we will use center manifold reduction method to derive the
normal form of Hopf bifurcation of system (3.2) near Hopf bifurcation critical value
τc when λ = iωτ . Let τ = τc + µ, µ is a bifurcation parameter, system (3.2) can be
written as

Ẋ(t) = L(µ)Xt + F (µ,Xt), (3.15)

where

L(µ)Xt =

 (τc + µ)yt(0)

(τc + µ)(−axt(−1)− uyt(0))

 ,

F (µ,Xt) =

 0

(τc + µ)(qx3t (0)− vy3t (0)− vy2t (0))

 .

Choose

η(θ) =


τcN1, θ = 0,

0, θ ∈ (−1, 0),

−τcN2, θ = −1,

where

N1 =

 0 1

0 −u

 , N2 =

 0 0

−a 0

 .

Then, the linearized equation of (3.15) is

Ẋ(t) = L0Xt,

where L0φ =
∫ 0

−1 dη(θ)φ(θ), φ ∈ C = C([−1, 0], R2), and the bilinear form on
C∗ × C (∗ stands for adjoint) is

〈ψ(s), φ(θ)〉 = ψ(0)φ(0)−
∫ 0

−1

∫ θ

0

ψ(ξ − θ)dη(θ)φ(ξ)dξ,

where φ ∈ C, ψ ∈ C∗. Next, the phase space C is decomposed by Λ = {±iωτc} as
C = P ⊕ Q, where Q = {φ ∈ C : (ψ, φ) = 0, for all ψ ∈ P ∗}, and the bases for P
and its adjoint P ∗ are given respectively by

Φ(θ) =

 eiωτcθ e−iωτcθ

iωeiωτcθ −iωe−iωτcθ

 , Ψ(s) =

 b(iω + u)e−iωτcs be−iωτcs

b̄(−iω + u)eiωτcs b̄eiωτcs

 ,

with b = (u+ 2iω − τcae−iωτc)−1, and they satisfy

(Ψ,Φ) = I, Φ̇ = ΦB,−Ψ̇ = BΨ,

where
B = diag(iτcω,−iτcω).



The Equivalence of MTS and CMR Methods in the Model 411

Now, we consider the enlarged phase space BC of functions from [−1, 0] to R2,
which are continuous on [−1, 0) with a possible jump discontinuity at zero. This
space can be identified as C × R2. Thus, its elements can be written in the form
ψ = φ+X0c, where φ ∈ C, c ∈ R2 and X0 is a 2×2 matrix-valued function, defined
by X0(θ) = 0 for θ ∈ [−1, 0) and X0(0) = I. In the BC, (3.15) becomes an abstract
ordinary differential equation,

ẇ = Aw +X0F̃ (w, µ), (3.16)

where w ∈ C, and A is defined by

A : C1 → BC, Aw = ẇ +X0[L0w − ẇ(0)],

and
F̃ (w, µ) = [L(µ)− L0]w + F (w, µ).

By the continuous projection π : BC 7→ P, π(φ+X0c) = Φ[(Ψ, φ) + Ψ(0)c], we
can decompose the enlarged phase space by Λ = {±iωτc} as BC = P⊕Kerπ, where
Kerπ = {φ+X0c : π(φ+X0c) = 0}, denoting the Kernel under the projection π.
Let η = (η1, η̄1)T, vt ∈ Q1 := Q∩C1 ⊂ Kerπ, and AQ1 is the restriction of A as an
operator from Q1 to the Banach space Kerπ. Further, denote wt = Φη + vt. Then,
equation (3.16) is decomposed as η̇ = Bη + Ψ(0)F̃ (Φη + vt, µ),

dvt
dt

= AQ1vt + (I− π)X0F̃ (Φη + vt, µ),
(3.17)

where
B = diag(iτcω,−iτcω).

Next, let M1
2 denote the operator defined in V 3

2 (R2 ×Kerπ), with

M1
2 : V 3

2 (R2) 7→ V 3
2 (R2), (M1

2 p)(η, µ) = Dηp(η, µ)Bη −Bp(η, µ),

where V 3
2 (R2) represents the linear space of the second order homogeneous poly-

nomials in three variables (η1, η̄1, µ) with coefficients in R2. Then, it is easy to
verify that one may choose the decomposition V 3

2 (R2) = Im(M1
2 ) ⊕ Im(M1

2 )c with
complementary space Im(M1

2 )c spanned by the elements µη1e1 and µη̄1e2, where
ei (i = 1, 2) are unit vectors.

Consequently, the normal form of (3.17) on the center manifold associated with
the origin equilibrium near µ = 0 has the form

dη

dt
= Bη +

1

2
g12(η, 0, µ) + h.o.t.,

where g12 is the function giving the quadratic terms in (η1, η̄1, µ) for vt = 0, and
is determined by g12(η, 0, µ) = Proj(Im(M1

2 ))
c × f12 (η, 0, µ), where f12 (η, 0, µ) is the

function giving the quadratic terms in (η, µ) for vt = 0 defined by the first equation
of (3.17). Thus, the normal form, truncated at the quadratic order terms, is given
by

η̇1 = iωτcη1 +M∗µη1 + h.o.t., (3.18)
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where
M∗ = b(−ω2 − ae−iωτc),

with
b = (u+ 2iω − τcae−iωτc)−1.

To find the normal form up to third order, similarly, let M1
3 denote the operator

defined in V 4
3 (R4 ×Kerπ), with

M1
3 : V 2

3 (R2) 7→ V 2
3 (R2), (M1

3 p)(η, µ) = Dηp(η, µ)Bη −Bp(η, µ),

where V 2
3 (R2) denotes the linear space of the third-order homogeneous polynomials

in two variables (η1, η̄1) with coefficients in R2. Then, one may choose the decompo-
sition V 2

3 (R2) = Im(M1
3 )⊕ Im(M1

3 )c with complementary space Im(M1
3 )c spanned

by the elements η21 η̄1e1 and η1η̄
2
1e2, where ei (i = 1, 2) are unit vectors.

Then, we obtain

dη

dt
= Bη +

1

2!
g12(η, 0, µ) +

1

3!
f̃13 (η, 0, µ) + h.o.t., (3.19)

where

f̃13 (η, 0, µ) =f13 (η, 0, µ) +
3

2
((D(η,vt)f

1
2 (η, vt, µ))vt=0U2(η)

−DηU
1
2 (η)g12(η, 0, µ)).

Notice that

Dηh(η)Bη − ḣ(η) +X0(ḣ(η)(0)− L0(h(η))) = (X0 − ΦΨ(0))f12 ,

where

X0(θ) =

{
0, θ ∈ (−1, 0),

I, θ = 0,
(I − π)X0 =

{
−ΦΨ(0), −1 ≤ θ < 0,

I − Φ(0)Ψ(0), θ = 0,

we have

h
(1)
20 (θ) =

1

2iωτc
C1e2iωτcθ + iωv(beiωτcθ + b̄e−iωτcθ),

h
(2)
20 (θ) =

1

2iωτc
C2e2iωτcθ − vω2(beiωτcθ − b̄e−iωτcθ),

h
(1)
11 (θ) = −4iωv(−beiωτcθ + b̄e−iωτcθ) + C3,

h
(2)
11 (θ) = −4ω2v(beiωτcθ + b̄e−iωτcθ),

(3.20)

where

C1 =
4iω3τcv(1− iωb+ iωb̄) + 2aω2τcv(be−iωτc + b̄eiωτc)

−4ω2 + 2iωu+ ae−2iωτc
,

C2 = 2iωC1 + 2ω2τcv(iωb− iωb̄),

C3 =
4ω2v

a
[u(b+ b̄) + iω(b− b̄)− 1] + 4iωv(−be−iωτc + b̄eiωτc).

Due to
1

3!
g13(η, 0, 0) =

1

3!
(I − P 1

I,3)f̃13 (η, 0, 0),
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finally, the normal form of Hopf bifurcation on the center manifold arising from
(3.19) becomes

η̇1 = iωτcη1 +M∗µη1 +H∗η21 η̄1, (3.21)

where

M∗ = b(−ω2−ae−iωτc), H∗ = bτc[3q−3iω3v−2iωv(h
(2)
11 (0)−h(2)20 (0))+9iv2ω3(b−b̄)],

with

h
(2)
20 (0) =

4iω3v(1− iωb+ iωb̄)

−4ω2 + 2iωu+ ae−2iωτc
+

2aω2v(be−iωτc + b̄eiωτc)

−4ω2 + 2iωu+ ae−2iωτc
,

h
(2)
11 (0) = −4vω2(b+ b̄),

b = (u+ 2iω − τcae−iωτc)−1.

3.3. Comparison of the MTS and CMR methods

Equation (3.14) is the normal form derived by using the MTS method, and equation
(3.21) is the normal form derived by using the CMR method.

With the polar coordinate: G = r1eiθ1 , substituting that expression into (3.14),
we obtain the amplitude equation of (3.14) on the center manifold as

ṙ1 = Re(M)µr1 + Re(H)r31, (3.22)

where M and H are given by (3.14).
With the polar coordinate: η1 = r2eiθ2 , substituting that expression into (3.21),

we obtain the amplitude equation of (3.21) on the center manifold as

ṙ2 = Re(M∗)µr2 + Re(H∗)r32, (3.23)

where M∗ and H∗ are given by (3.21).
Note that G in (3.14), used to represent the normal form in the MTS method,

corresponds to η1 in (3.21), used to denote the normal form in the CMR method.
Next, neglecting the difference in the notations, we consider the equivalence of the
two normal forms.

Firstly, the two normal forms are identical up to the second order, that is,
M = M∗. The coefficients of cubic terms in the above two normal forms are H and
H∗ respectively. As long as Re(H)Re(H∗) > 0, equation (3.22) can be transformed

into (3.23) by linear transformation r1 =
√

Re(H∗)
Re(H) r2. Thus, we obtain the following

theorem:

Theorem 3.1. Consider the Hopf bifurcation of system (2.1), the polar coordinate
normal forms (3.22) and (3.23) derived by MTS and CMR methods respectively,
are equivalent as long as Re(H)Re(H∗) > 0.

Remark 3.1. MTS and CMR methods are two methods for deriving normal for-
m. Thus, the expressions associated with coefficients of cubic terms H and H∗

are slightly different. Actually, both of the two normal forms are local equivalent
topologically to system (3.2) near equilibrium E0. If there exist some linear trans-
formation such that the two normal forms are equivalent, both of the two normal
forms derived by MTS and CMR methods are equivalent. Then, we can deter-
mine the stability of Hopf bifurcating periodic solutions and the direction of Hopf
bifurcation by using any one of the two normal forms (3.22) and (3.23).
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4. Bifurcation analysis and numerical simulations

In this section, we first give a bifurcation analysis based on the normal form (3.22)
(or (3.23)) of Hopf bifurcation associated with system (2.1), and then present some
numerical simulation results.

The nontrivial equilibrium of (3.22) (or (3.23)) corresponds to the periodic solu-
tion of system (2.1). In order to analyze the stability of periodic solution of equation
(2.1), we can directly discuss the stability of nontrivial equilibrium of system (3.22)
(or (3.23)).

For the stability of periodic solutions of Hopf bifurcation of system (2.1), we
have the following theorem:

Theorem 4.1. When Re(M)µ
Re(H) < 0 (or Re(M∗)µ

Re(H∗) < 0), system (2.1) exists periodic

solutions: If Re(M)µ < 0 (or Re(M∗)µ < 0), the periodic solution is unstable; if
Re(M)µ > 0 (or Re(M∗)µ > 0), the periodic solution is stable.

In order to give a more clear bifurcation picture, we consider the actual meaning
of parameters and choose

a = 0.5, q = 0.1, v = 0.25, u = 0.6,

by a simple calculation from (2.4) and (2.5), we obtain

ω = 0.5928, τ
(0)
1 = 1.3351.

Therefore, from Theorem 2.1, the trivial equilibrium E0 is local asymptotically

stable for τ ∈ [0, τ
(0)
1 ) = [0, 1.3351), and unstable for τ > τ

(0)
1 = 1.3351.

From expressions (3.14) and (3.21), we have

M = M∗ = 0.1797 + 0.4374i, H = −0.1021− 0.2665i, H∗ = −0.0758− 0.3682i.

Obviously, Re(H)Re(H∗) > 0, from Theorem 3.1, the two normal forms are e-
quivalent. By Theorem 4.1, system (2.1) exists stable periodic solutions near the
bifurcation critical value for µ > 0. We choose three groups of parameter values:

τ = 0, τ = 1 ∈ (0, τ
(0)
1 ) and τ = 1.5 > τ

(0)
1 , with initial values being all (0.1, 0.1),

corresponding to a stable fixed point shown in Figure 1, a stable fixed point depict-
ed in Figure 2 and a stable periodic solution as shown in Figure 3 respectively. It
is clear that the numerical simulations agree with the analytical predictions.
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Figure 1. Equilibrium point E0 = (0, 0) of system (2.1) with τ = 0 is locally asymptotically stable.
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Figure 2. Equilibrium point E0 = (0, 0) of system (2.1) with τ = 1 is locally asymptotically stable.
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Figure 3. System (2.1) with τ = 1.5 has a stable periodic solution.

Next, we choose reasonable area of parameters for further discussion and simula-
tion, and consider the universal applicability associated with the results of Theorem
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3.1. First, we fix three variables among of parameters a, q, v and u, and show the
value of Re(H)Re(H∗) varies with the remaining one parameter (see Figure 4).
Figure 4(a) shows q = 0.1, v = 0.25 and u = 0.6, in the domain a ∈ (0.35, 0.9),
and Figure 4(b) shows a = 0.5, v = 0.25 and u = 0.6 in the domain q ∈ (0, 0.5),
and Figure 4(c) shows a = 0.5, q = 0.1 and u = 0.6 in the domain v ∈ (0, 0.98),
and Figure 4(d) shows a = 0.5, q = 0.1 and v = 0.25 in the domain u ∈ (0, 0.85),
obviously, Re(H)Re(H∗) are always positive.
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Figure 4. The value of Re(H)Re(H∗) varies with parameters a, q, v and u in system (2.1) respectively.

Further, we fix two variables among of parameters a, q, v and u, and show the
image of Re(H)Re(H∗) varies with the remaining two parameter (see Figures 5-7).
Figure 5(a) shows a = 0.5, u = 0.6, in the domain q ∈ (0.1, 0.4), v ∈ (0.2, 0.5),
Figure 5(b) shows a = 0.5, q = 0.1, in the domain u ∈ (0, 0.6), v ∈ (0, 1), Figure
6(a) shows q = 0.1, u = 0.6, in the domain a ∈ (0.4, 1), v ∈ (0.5, 1), Figure 6(b)
shows q = 0.1, v = 0.25, in the domain a ∈ (0.5, 1), u ∈ (0.4, 0.7), Figure 7(a) shows
a = 0.5, v = 0.25, in the domain q ∈ (0, 0.6), u ∈ (0, 0.5), Figure 7(b) shows u = 0.6,
v = 0.25, in the domain a ∈ (0.4, 0.43), q ∈ (0.4, 0.5), obviously, Re(H)Re(H∗) are
always positive.

0
0.5

0.01

0.4

R
e(

H
)R

e(
H

*)

0.4

0.02

(a)

v

0.3

q

0.03

0.3
0.2

0.2 0.1

0
0.8

0.02

0.04

0.6 0.8

R
e(

H
)R

e(
H

*)

0.06

(b)

0.6

v

0.4

u

0.08

0.4
0.2 0.2

0 0

Figure 5. (a) The images of Re(H)Re(H∗) varies with parameters q and v in system (2.1), (b) The
images of Re(H)Re(H∗) varies with parameters u and v in system (2.1).
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Figure 6. (a) The images of Re(H)Re(H∗) varies with parameters a and v in system (2.1), (b) The
images of Re(H)Re(H∗) varies with parameters a and u in system (2.1).
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Figure 7. (a) The images of Re(H)Re(H∗) varies with parameters q and u in system (2.1), (b) The
images of Re(H)Re(H∗) varies with parameters a and q in system (2.1).

Remark 4.1. By a comparison between the MTS and CMR methods, we find that
the coefficients of second order terms Re(M) and Re(M∗) in the two normal forms
(3.22) and (3.23) are identical, while the coefficients of third order terms Re(H)
and Re(H∗) are slightly different. Figures 4-7 show the images of Re(H)Re(H∗)
vary with one or two parameters in system (2.1), and Re(H)Re(H∗) > 0 in these
reasonable areas of parameters. Thus, we can introduce a linear transformation
such that the two normal forms (3.22) and (3.23) are equivalent from Theorem 3.1.
Namely, the two normal forms of Hopf bifurcation in system (2.1), derived by using
the multiple time scales and center manifold reduction methods, are equivalent.

Remark 4.2. As far as we know, there is no paper to study the equivalence of
MTS and CMR methods for systems with second-order terms. The feature of this
paper is to discuss the equivalence of the two methods when the system have second-
order terms. Some scholars have proved the equivalence of MTS and CMR, but the
models without second-order terms. For example, Nayfeh [12] used two methods
to calculate the Hopf bifurcation normal forms of some systems; Ding et al. [3, 4]
also used two methods to calculate the normal forms of Hopf-zero bifurcation and
double Hopf bifurcation; Yu et al. [18] gave a general proof, that is, for systems



418 X. Zhen & Y. Ding

without second-order terms, the normal forms of Hopf bifurcation obtained by the
two methods must be equivalent. For general delayed differential systems, both
MTS and CMR methods can calculate the normal form of Hopf bifurcation. The
two methods have their own advantages. Obviously, MTS is more convenient, the
calculation process is relatively simple, and it is easier for the scholars in the en-
gineering society to understand, but at present, the MTS has not given a general
method for calculating the Bogdanov-Takens bifurcation. On the other hand, the
CMR can be used to calculate the Bogdanov-Takens bifurcation, but this method
requires a lot of calculation and complex process, and also requires a lot of basic
knowledge in mathematics major. Thus, researchers can take appropriate methods
according to their own needs.

5. Conclusions

In this paper, we have studied Hopf bifurcation of a model with a second order term,
which is the business cycle system with time delay. We have obtained two normal
forms by using multiple time scales and center manifold reduction methods respec-
tively. A comparison between the two methods shows that the two normal forms
are equivalent when there exists a second order term in the system. Thus, we can
derive the same results associated with Hopf bifurcation direction and the stability
of periodic solution of the system (2.1) by using the two normal forms. Moreover,
bifurcation analysis near the Hopf bifurcation critical point is given, showing that
the system (2.1) may exhibit a stable fixed point and periodic solutions. Numerical
simulations are given to verify the analytical predictions. We have also given the
images of Re(H)Re(H∗) vary with one or two variables in system (2.1), and fur-
ther verify the equivalence of the normal forms obtained by the two methods from
Theorem 3.1 due to Re(H)Re(H∗) > 0 in reasonable areas of parameters.

We can also see that the MTS method, unlike the CMR method which involves
solving differential equations, only involves algebraic manipulations with explicit
algebraic formulas. Actually, we can introduce a linear transformation such that
the two normal forms are equivalent. Subsequent work is that we will plan to prove
the equivalence of two methods for general systems.
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[5] T. Faria and L. T. Magalhães, Normal form for retarded functional differen-
tial equations with parameters and applications to Hopf bifurcation, Journal of
Differential Equations, 1995, 122, 181–200.
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