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A Note on the Stefan-Boltzmann Problem for
Heat Transfer in a Fin

Boris P. Belinskiy1, John R. Graef1,† and Lingju Kong1

Abstract A fin is traditionally thought of as an extension of a surface to
facilitate the transfer of heat away from a larger body to which it is attached.
In this paper, the authors study some mathematical properties of a nonlinear
heat transfer model for a fin and its relation to an associated linear model.
Specifically, they prove that the solution exists and is unique, and they de-
termine bounds for the temperature. Further, they prove the monotonicity
of the temperature distribution, and they obtain an estimate for the maximal
difference between the temperatures as determined by the nonlinear and linear
models.

Keywords Heat transfer, Fin, Stefan-Boltzmann law, Existence and unique-
ness, Dependence.
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1. Introduction

Extended surfaces, often called fins, are used in heat exchange devices to facilitate
the transfer of the heat away from the main body. The usual physical assumptions
in the heat transfer analysis of a fin are the following (see Lienhard IV and Lienhard
V [15]):

(i) Heat transfer is 1-D.

(ii) Heat transfer is steady-state.

(iii) The conduction coefficient k, the convective heat transfer coefficient h, and
the emmisivity ε are constant.

(iv) The temperature Tb at the base of the fin is constant.

(v) The temperature T∞ of the fluid surrounding the fin is constant.

(vi) The body of the fin is a solid of revolution.

Then, it is the temperature variation along the fin that needs to be determined as
a function of the distance from the base.
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Figure 1. Profile of a fin

The geometry of the fin is as follows: First, it is located on the interval [0, L] and
is attached to a heated surface at x = 0. The radius of the cross section is given by
r(x) : [0, L]→ R+, and the cross-sectional area, denoted by A(x), is A(x) = πr2(x).
The differential of surface area becomes dAs := P (x)dx = 2πr(x)

√
1 + [r′(x)]2dx.

We will denote the temperature distribution in the fin by T (x) : [0, L] → R+.
Then, the (steady-state) heat equation can be obtained from the energy balance for
the region between x and x+ dx; it has the form (see [6, 15,17,19])

k
d

dx

(
A
dT

dx

)
− h dAs

dx
(T − T∞)− εσ dAs

dx
(T 4 − T 4

∞) = 0, x ∈ (0, L). (1.1)

The third term on the left hand side of this equation represents the amount of heat
transferred from the fin per unit area due to radiation. Here, ε is the emmisivity
of the fin face, and σ is the Stefan-Boltzmann constant. It is the presence of
the radiation effect that makes the equation nonlinear. Since the constant σ ≈
5.67 × 10−8Wm−2K−4 is small, at low temperatures the third term on the left
hand side of (1.1) may be neglected so that the equation reduces to the linear one

k
d

dx

(
A
dT

dx

)
− h dAs

dx
(T − T∞) = 0, x ∈ (0, L). (1.2)

In addition to equations (1.1) and (1.2), we need to formulate the boundary condi-
tions (BCs) that are to be satisfied.

The temperature at x = 0 is assumed to be the same as that of the base, which is
namely Tb. At the right hand endpoint x = L, we assume that we have an adiabatic
condition. Thus, our boundary conditions become

T (0) = Tb and

(
A
d

dx
T (x)

) ∣∣∣∣
x=L

= 0. (1.3)

Boundary conditions other than (1.3) have been considered in the literature. For
example, see [6, 15,19].

Remark 1.1. In [17], the (steady-state) heat equation for a circular fin is given in
the form (as adjusted to our notation)

d

dr

(
kA

dT

dr

)
− hP (T − T∞)− εσ P (T 4 − T 4

∞) = 0, r ∈ (rb, rt), (1.4)
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where P is the wetted perimeter. We wish to point out the similarity to our equation
(1.1).

We will apply methods used in the qualitative theory of differential equations
(e.g., see [1,9]) to study existence and uniqueness of the solutions, determine bounds
for the temperature, prove its monotonic distribution and obtain an estimate for
the maximal difference between the temperatures as determined by the nonlinear
and the linear models. For these mathematical studies, the class of the coefficients
of the differential equation (1.1) is of central importance and to this we refer to
standard engineering practice where fins that have certain optimal properties are
used (see a brief review on optimality studies below). Analysis of these optimal fins
shows that A(x) > 0 on [0, L), but A(L) = 0. It is well-known that if the leading
coefficient of a differential equation vanishes at the end point (so-called singular
point), the aforementioned mathematical problems may be quite non-trivial. Our
goal is to find a broad class of functions A(x) such that the existence, uniqueness,
and other aforementioned properties are present.

In the sequel, we assume that the following condition holds:

(H) Tb > T∞, A(x) > 0 on [0, L), and∫ L

0

1

A(τ)

∫ L

τ

r(t)
√

1 + [r′(t)]2 dtdτ <∞. (1.5)

The physical meaning of the first requirement is that the temperature at the base
of fin exceeds the temperature of the surrounding medium, so that the physical
application of a fin makes sense. The second requirement means that the only
sharp point of a fin is its tip. Condition (1.5) describes the class of fins for which we
are able to prove our mathematical results. This means that the fin is not too sharp
at the tip. Later, we show that the fins found in [2, 10,11] satisfy this condition.

In a recent paper, the present authors [3] made a qualitative study of boundary
value problem (BVP) (1.1), (1.3) and its relation to the classical linear problem
(1.2), (1.3) under the condition ∫ L

0

1

A(τ)
dτ <∞. (1.6)

We will show later that this condition is not always physically realistic. In particular,
it is not satisfied for the known fins in [2, 10,11].

Remark 1.2. Observing that for any given fin, its surface area is finite, so there is
a constant M > 0 such that∫ L

0

r(t)
√

1 + [r′(t)]2 dt < M.

Thus,∫ L

0

1

A(τ)

∫ L

τ

r(t)
√

1 + [r′(t)]2 dtdτ ≤
∫ L

0

1

A(τ)

∫ L

0

r(t)
√

1 + [r′(t)]2 dtdτ

< M

∫ L

0

1

A(τ)
dτ.
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Hence, we see that (1.6) implies (1.5). In Subsection 2.3 below, we examine condi-
tions (1.5) and (1.6), and show by means of two examples that in fact (1.5) is much
less restrictive than (1.6).

A great deal of work in the literature has been devoted to the study of heat
transfer problems for fins. For example, basic concepts in the theory of heat transfer
can be found in [15,19]. Some versions of the linear problem were studied in [6,19].
Two important characteristics of a fin are its efficiency and effectiveness [6, 19].

Here, it is that the problem of optimization of a fin appears. To the best of
our knowledge, the first result in this direction belongs to E. Schmidt [18] who
formulated the optimality hypothesis that the temperature distribution along a
minimum volume one-dimensional fin is linear. In [16], the problem of finding
a fin of minimum weight was re-formulated based on the Pontryagin Maximum
Principle, and the resulting nonlinear two-point BVP was solved numerically. Since
then, extensive research has been done on finding the optimal form of a fin of given
volume that would maximize efficiency, of given efficiency that would minimize
the volume and other similar types of problems. Both linear (1.2) and nonlinear
(1.1) models of fins were studied. In [17], the optimum design of a circular fin
is studied. The nonlinear model (see (1.4)) is considered but the length-of-arc
idealization is used among other assumptions. The Runge–Kutta method is used
to solve the optimization problem. For some recent examples, we refer the reader
to [2,4,5,7,8,10–14,20–22] and the references contained therein. We mention only a
few particular results. In [10,11], the analytic solution for an optimal fin was found
without the “length-of-arc” assumption. For example, a generalized methodology
for the optimum design of fins of three basic geometries is developed in [12]. Papers
devoted to the study of fins under more complex physical conditions such as porous
fins and wet fins can be found in [14] where the minimum shapes of porous fins are
studied. The heat transfer coefficient is a function of temperature and calculus of
variations techniques are often used in the analysis. The dependence of the optimal
volume on porosity has also been examined. Below, we discuss [2] and only note
here that the authors proceeded without the “length-of-arc” assumption.

An outline of our study is as follows: The existence and uniqueness of solutions
to the BVP (1.1), (1.3) is proved in Theorem 2.1. The estimates (2.3) (T∞ ≤
T (x) ≤ Tb) are proved in Lemma 2.2. The monotonicity of the temperature along
the fin is given in Theorem 2.2, and the dependence of the temperature on the
Stefan–Boltzmann constant is found in Theorem 2.3. Examples of two fins are
discussed in Section 2.3 where it is shown in particular that the fins found in [2,
10, 11] satisfy the condition (1.5). Hence, the aforementioned results (existence,
uniqueness, monotonicity, estimates (2.3)) hold for these fins.

2. Main results

2.1. Existence and uniqueness of solutions of BVP (1.1), (1.3)

In what follows, we let X be the Banach space of all continuous functions T (x) on
[0, L] equipped with the norm

‖T‖ = max
x∈[0,L]

|T (x)|, T ∈ X.



Note on the Stefan-Boltzmann Problem for Heat Transfer 107

For any T ∈ X, define a function T̃ : [0, L]→ R by

T̃ (x) = max {T∞, min{T (x), Tb}} , x ∈ [0, L].

We consider the continuous functional F : [0, L]×X → R given by

F (x, T (x)) = h
dAs
dx

(
T̃ − T∞

)
+ εσ

dAs
dx

(
T̃ 4 − T 4

∞

)
+
T (x)− T∞
1 + T 2(x)

χ{T (x)<T∞}(x)

+
T (x)− Tb
1 + T 2(x)

χ{T (x)>Tb}
(x), (2.1)

where the characteristic function χ
I

on any set I ⊂ R is defined by

χ
I
(t) =


1, t ∈ I,

0, t /∈ I.

We observe that Lemmas 1 and 3 in [3] are still true under the new condition
(1.5) since their proofs did not need condition (1.6). These are stated below as
Lemmas 2.1 and 2.2 respectively.

Lemma 2.1. BVP (1.1), (1.3) has at most one solution.

Lemma 2.2. Assume that T (x) is a solution of the BVP consisting of the equation

k
d

dx

(
A
dT

dx

)
− F (x, T (x)) = 0, x ∈ (0, L), (2.2)

and the BCs (1.3). Then,

T∞ ≤ T (x) ≤ Tb for all x ∈ [0, L]. (2.3)

Consequently, T (x) is a solution of BVP (1.1), (1.3).

In [3], inequality (1.6) above was a key assumption in the construction of a
Green’s function for a linear problem (see [3, equation (2.5)]) so that an equivalent
integral operator equation could be obtained for an associated BVP. With the new
condition (1.5), the Green function in [3] is not well-defined. However, in this paper,
we will be able to circumvent this problem and achieve the same goal by using the
following lemma.

Lemma 2.3. For any l ∈ C[0, L] with
∫ L

0
1

A(τ)

∫ L
τ
l(t)dtdτ < ∞, a function T (x)

is a solution of the BVP consisting of the equation

k
d

dx

(
A
dT

dx

)
− l(x) = 0, x ∈ (0, L) (2.4)

and the BCs (1.3), if and only if

T (x) = Tb −
1

k

∫ x

0

1

A(τ)

∫ L

τ

l(t)dtdτ. (2.5)
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Proof. Assume first that T (x) is a solution of BVP (2.4), (1.3). Integrating (2.4)
from x to L and using the second condition in (1.3), we obtain

d

dx
T (x) = − 1

kA(x)

∫ L

x

l(t)dt, x ∈ (0, L).

Then, (2.5) follows from integrating the above equality from 0 to x and using the
first condition in (1.3). On the other hand, if T (x) satisfies (2.5), it is easy to check
that it is a solution of BVP (2.4), (1.3). This completes the proof of the lemma.

Now, we show that our nonlinear problem has a unique solution.

Theorem 2.1. BVP (1.1), (1.3) has a unique solution T (x). Moreover, this solu-
tion satisfies (2.3).

Proof. First, we will prove that BVP (2.2), (1.3) has a solution in X. Define an
operator K : X → X by

(KT )(x) = Tb −
1

k

∫ x

0

1

A(τ)

∫ L

τ

F (t, T (t))dtdτ, T ∈ X.

From (1.5) and (2.1), we have∫ x

0

1

A(τ)

∫ L

τ

F (t, T (t))dtdτ <∞.

Then, by Lemma 2.3, T (x) is a solution of BVP (2.2), (1.3), if and only if T is a
fixed point of K. A standard argument can be used to verify that K is completely
continuous. Then, Schauder’s fixed point theorem implies that there exists a fixed
point T of K in X, Thus, T (x) is a solution of BVP (2.2), (1.3). In view of Lemmas
2.1 and 2.2, this completes the proof of the theorem.

Remark 2.1. As in Theorem 2.1, BVP (1.2), (1.3) also has a unique solution T (x)
that satisfies (2.3).

The following theorem is easy to verify.

Theorem 2.2. Let T (x) be the unique solution of BVP (1.1), (1.3) or BVP (1.2),
(1.3). Then, T ′(x) ≤ 0 on [0, L], and so T (x) is nonincreasing in [0, L].

We note that monotonicity of the temperature was first conjectured by Schmidt
[18] for optimal fins.

2.2. Dependence of the temperature on the parameter σ

Let Tσ(x) be the unique solution of BVP (1.1), (1.3) and T0(x) be the unique
solution of BVP (1.2), (1.3). An explicit estimate for the norm ‖Tσ − T0‖ of the
temperature difference between the nonlinear and linear problems is given in the
next theorem.

Theorem 2.3. Assume that 0 < θ < 1, where

θ =
h

k

∫ L

0

1

A(τ)

∫ L

0

g(t)dtdτ
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with g(x) = dAs
dx = 2πr(x)

√
1 + [r′(x)]2. Then, we have

‖Tσ − T0‖ ≤
εσ
(
T 4
b − T 4

∞
)
θ

(1− θ)h
. (2.6)

Proof. First recall that ε, h, and σ are physical constants appearing in equations
(1.1) and (1.2). In view of (1.5), we may apply Lemma 2.1 to obtain

Tσ(x) = Tb −
1

k

∫ x

0

1

A(τ)

∫ L

τ

[
hg(t)(Tσ(t)− T∞) + εσg(t)

(
T 4
σ (t)− T 4

∞
)]
dtdτ.

and

T0(x) = Tb −
1

k

∫ x

0

1

A(τ)

∫ L

τ

hg(t)(T0(t)− T∞)dtdτ.

Then,

Tσ(x)−T0(x) = −1

k

∫ x

0

1

A(τ)

∫ L

τ

[
hg(t)(Tσ(t)− T0(t)) + εσg(t)

(
T 4
σ (t)− T 4

∞
)]
dtdτ.

Since T∞ ≤ Tσ(x) ≤ Tb for all x ∈ [0, L], we have

|Tσ(x)− T0(x)| ≤
[
h‖Tσ − T0‖+ εσ

(
T 4
b − T 4

∞
)] 1

k

∫ x

0

1

A(τ)

∫ L

τ

g(t)dtdτ

≤
[
h‖Tσ − T0‖+ εσ

(
T 4
b − T 4

∞
)] 1

k

∫ L

0

1

A(τ)

∫ L

τ

g(t)dtdτ.

Thus,

‖Tσ − T0‖ ≤ θ‖Tσ − T0‖+ εσ
(
T 4
b − T 4

∞
) θ
h
,

from which (2.6) follows. This completes the proof of the theorem.

Remark 2.2. From (2.6), we see that

lim
σ→0+

Tσ(x) = T0(x) uniformly on [0, L].

2.3. Examples

In this subsection, we provide two examples to show that the condition (1.5) in this
paper is much less restrictive than the corresponding condition (1.6) used in [3].

Example 2.1. Let the radius of the cross section of the fin be given by r(x) =
C(L − x)n, where C > 0 and n > 0 are constants. We will verify that (1.6) only
holds only for n ∈ (0, 1/2) and (1.5) holds for all n ∈ (0, 2).

In fact, it is trivial to notice that (1.6) holds for n ∈ (0, 1/2). As for condition
(1.5), we first assume that n ∈ (0, 1). Then, since

[r′(t)]2 = C2n2(L− t)2(n−1) ≥ C2n2L2(n−1) > 0 for all t ∈ [0, L],

there exists a constant C1 > 0 such that 1 ≤ C1[r′(t)]2 on [0, L]. Thus,

1 + [r′(t)]2 ≤ C1[r′(t)]2 + [r′(t)]2 = (C1 + 1)[r′(t)]2 = C2
2 (L− t)2(n−1)
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for all t ∈ [0, L), where C2 = Cn
√
C1 + 1. Hence, we have∫ L

0

1

A(τ)

∫ L

τ

r(t)
√

1 + [r′(t)]2 dtdτ

≤ C3

∫ L

0

1

(L− τ)2n

∫ L

τ

(L− t)n
√

(L− t)2(n−1) dtdτ

≤ C3

∫ L

0

1

(L− τ)2n

∫ L

τ

(L− t)2n−1 dtdτ =
C3L

2n
<∞, (2.7)

where C3 = C2

πC is a positive constant.
Next, we assume that n ∈ [1, 2). Then,

1 + [r′(t)]2 = 1 + C2n2(L− t)2(n−1) ≤ C2
4 for all t ∈ [0, L],

where C4 =
√

1 + C2n2L2(n−1). Thus,∫ L

0

1

A(τ)

∫ L

τ

r(t)
√

1 + [r′(t)]2 dtdτ ≤ C5

∫ L

0

1

(L− τ)2n

∫ L

τ

(L− t)n dtdτ

=
1

n+ 1
C5

∫ L

0

1

(L− τ)2n
(L− τ)n+1dτ =

1

(n+ 1)(2− n)
C5L

2−n <∞, (2.8)

where C5 = C4

πC is a positive constant.
Now, from (2.7) and (2.8), we see that (1.5) holds for all n ∈ (0, 2).

Example 2.2. Hanin and Campo [11] showed that the optimal fin profile in the
form of a body of revolution has the radius of the cross-section r(x) given by (see [11,
equation (32)])

r(x) =
1

γ

(
ρ−

√
1− (1− γx)2

)
, 0 ≤ x ≤ L :=

1

γ

(
1−

√
1− ρ2

)
, (2.9)

where γ = h
k and ρ = q0

kθ0
< 1 with q0 and θ0 being the heat transfer rate at the fin

semi-base and the temperature excess at the fin base respectively.
We claim that for r(x) given in (2.9), condition (1.5) holds, but (1.6) does not.

To show that (1.5) holds, note that from (2.9), we see that

r′(x) =
γx− 1√

1− (1− γx)2
, 0 ≤ x ≤ L.

Thus,

r′(0) = −∞ and −∞ < r′(x) ≤ r′(L) = −
√

1− ρ2

ρ
< 0 for all 0 < x ≤ L.

Hence, there exists a constant C6 > 0 such that√
1 + [r′(x)]2 ≤ −C6r

′(x) for all 0 ≤ x ≤ L.

This implies
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0

1

A(τ)

∫ L

τ

r(t)
√

1 + [r′(t)]2 dtdτ

≤ 1

π
C6

∫ L

0

1

[r(τ)]2

∫ L

τ

r(t)(−r′(t)) dtdτ

≤ 1

π
C6

∫ L

0

1

[r(τ)]2
1

2
[r(τ)]2 dτ =

1

2π
C6L <∞.

Thus, (1.5) holds.
To see that (1.6) does not hold, we first observe that∫ L

0

1

A(τ)
dτ =

γ2

π

∫ L

0

1(
ρ−

√
1− (1− γτ)2

)2 dτ.

Then, making the substitution 1− γτ = sinϑ yields∫ L

0

1

A(τ)
dτ =

γ

π

∫ π
2

ϑ1

cosϑ

(ρ− cosϑ)2
dϑ,

where ϑ1 = arcsin
(√

1− ρ2
)
∈ (0, π/2). Now, making another substitution u =

cosϑ, we see that ∫ L

0

1

A(τ)
dτ =

γ

π

∫ ρ

0

u

(ρ− u)2
√

1− u2
du =∞.

Therefore, condition (1.6) does not hold.
Barman et al. [2] found the optimal form of the longitudinal wet fin. Similarly,

with the Hanin–Campo fin, we can prove that the optimal form found in [2] satisfies
(1.5) but not (1.6).

Examples 2.1 and 2.2 above confirm the fact that the class of functions A(x) is
much broader under the condition (1.5) than under (1.6).

3. Conclusions

We apply methods from the qualitative theory of differential equations to mathe-
matically analyze the nonlinear heat transfer model for a fin and its relation to an
associated linear model. Our consideration is made in the Banach space of continu-
ous functions T (x) on [0, L]. First, we prove that a solution of the BVP exists and
is unique. To accomplish this, we reduce the solution of the BVP to the a fixed
point for an equivalent integral operator equation and use Schauder’s fixed point
theorem. The uniqueness is proved by a careful mathematical analysis of the prob-
lem. We also prove that if the natural physical assumption that the temperature of
the base Tb is higher than the temperature of the surrounding medium T∞. Then,
at any point x of the fin, T∞ ≤ T (x) ≤ Tb. Moreover, it is proved mathematically
(see Theorem 2.2 above) that the temperature dissipates, i.e. T ′(x) ≤ 0 through
the fin as is expected physically, and the temperature in the fin decreases to the
temperature of the surrounding medium (see Remark 2.1). Since the temperatures
Tb and T∞ are given, the last inequality suggests the possibility to control a solution
found by numerical or asymptotic methods.
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Monotonicity of the temperature along the fin is summarized in Theorem 2.2.
The integral equations for the temperatures, along with the inequality T (x) ≤ Tb
result in the continuous dependence of the temperature on the Stefan–Boltzmann
constant. This result allows us to find an estimate for the maximal difference
between the temperatures as determined by the nonlinear model and the linear
model. The examples of two (optimal) fins are discussed. It is shown that the fins
found in [2, 10, 11] satisfy the condition (1.5). Hence, the aforementioned results
(existence, uniqueness, monotonicity, estimates) hold for these fins.
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