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Abstract. We consider a hyperbolic version of three-dimensional anisotropic
Navier-Stokes equations in a thin strip and its hydrostatic limit that is a hy-
perbolic Prandtl type equations. We prove the global-in-time existence and
uniqueness for the two systems and the hydrostatic limit when the initial data
belong to the Gevrey function space with index 2. The proof is based on a direct
energy method by observing the damping effect in the systems.
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1 Introduction and the main result

There have been extensive studies on the well-posedness of the Prandtl type
equations, while most of them are concerned with the local-in-time existence and
uniqueness. Compared with the local theory, the global in time property is far
from being well investigated. Here, we mention Xin-Zhang’s work [51] on global
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weak solutions and some recent papers [1, 23, 36, 41–43, 50] on global analytic
or Gevrey solutions. Note the above results are obtained mainly in the two-di-
mensional setting so that the global well-posedness of the three-dimensional case
remains open.

In this paper, we aim to establish global well-posedness theories for some
Prandtl type equations in the three-dimensional (3D) setting. Precisely, we will
investigate the global-in-time existence and uniqueness of the hyperbolic ver-
sion of 3D anisotropic Navier-Stokes equations and 3D hydrostatic Navier-Stokes
equations. The proof relies on an observation that the vertical diffusion leads to
a damping effect and the argument is a direct energy method. Note that this ar-
gument does not apply to the classical Prandtl equation because of the lack of
Poincaré inequality in the half-space.

The system of hydrostatic Navier-Stokes equations plays an important role in
the atmospheric and oceanic sciences and it describes the large scale motion of
geophysical flow as a limit of Navier-Stokes equations in a thin domain where
the vertical scale is significantly smaller than the horizontal one. By a proper
rescaling (cf. [14, 43, 46] for instance and references therein), the 3D anisotropic
Navier-Stokes equations in a thin domain read







(
∂t+uε ·∂x+vε∂y−ε2∆x−∂2

y

)
uε+∂x pε =0, (x,y)∈R

2×]0,1[,

ε2
(
∂t+uε ·∂x+vε∂y−ε2∆x−∂2

y

)
vε+∂ypε =0, (x,y)∈R

2×]0,1[,

∂x ·uε+∂yvε =0, (x,y)∈R
2×]0,1[,

(1.1)

where uε,vε stand for tangential and normal components of the velocity field re-
spectively, and the viscosity coefficient is denoted by ε2. In this paper, the above
system is considered with the following no-slip Dirichlet boundary condition:

uε|y=0,1=0, vε|y=0,1=0.

By letting ε → 0, the first order approximation yields the following hydrostatic
Navier-Stokes equations:







(
∂t+u·∂x+v∂y−∂2

y

)
u+∂x p=0, (x,y)∈R

2×]0,1[,

∂yp=0, (x,y)∈R
2×]0,1[,

∂x ·u+∂yv=0, (x,y)∈R
2×]0,1[,

u|y=0,1=0, v|y=0,1=0, x∈R
2,

u|t=0=uH
0 , (x,y)∈R

2×]0,1[.

(1.2)

Here, v is a scalar function and u=(u1,u2) is vector-valued, standing for the nor-
mal and the tangential velocity fields respectively. Compared with the Navier-
Stokes equations, there is no time evolution equation for the normal velocity v
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and the loss of tangential derivative property occurs in the non-local term v. This
is the main degeneracy feature of the Prandtl type equations. Note that the clas-
sical Prandtl equations are considered in the half-space







(
∂t+u·∂x+v∂y−∂2

y

)
u+∂x p=0, (x,y)∈R

2×]0,+∞[,

∂x ·u+∂yv=0, (x,y)∈R
2×]0,+∞[,

u|y=0=0, v|y=0=0, lim
y→+∞

u=U, x∈R
2,

u|t=0=uP
0 , (x,y)∈R

2×]0,+∞[,

(1.3)

where p and U are given by the trace of the Euler flow on the boundary.
Other Prandtl type equations include hydrostatic Euler equations and MHD

boundary layer system. The former is an inviscid form of (1.2) and the latter is
a system of Prandtl type equations on velocity and magnetic fields. For Prandtl
type equations without structural assumption, there are results showing that
either analyticity or Gevrey regularity is sufficient for the well-posedness, cf.
[10, 21, 24, 30, 43, 48] and references therein. In particular, the Gevrey 2 function
space is optimal for classical Prandtl equation [12], while the optimal index for
MHD boundary layer system remains unknown. On the other hand, the analytic-
ity is necessary for the well-posedness of the hydrostatic Navier-Stokes equations
(1.2), cf. [46].

Recently, Aarach [1] and Paicu-Zhang [42] studied the hyperbolic version of
2D hydrostatic Navier-Stokes equations and established global solutions in an-
alytic and Gevrey class 2, respectively. This shows the hyperbolic feature yields
some stabilizing effect. Note that the hyperbolic version of the hydrostatic Navier-
Stokes equations can be derived as a hydrostatic limit of the hyperbolic Navier-
Stokes equations that was proposed by Cattaneo [5] to avoid the non-physical
property of infinite propagation speed. There have been many results on the
hyperbolic Navier-Stokes equations, cf. [2, 4, 8, 40, 44, 45]. By performing proper
change of scales as in [42] we have the following hyperbolic version of the aniso-
tropic Navier-Stokes equations (1.1):







(
∂2

t +∂t+uε ·∂x+vε∂y−ε2∆x−∂2
y

)
uε+∂x pε =0, (x,y)∈R

2×]0,1[,

ε2
(
∂2

t +∂t+uε ·∂x+vε∂y−ε2∆x−∂2
y

)
vε+∂ypε =0, (x,y)∈R

2×]0,1[,

∂x ·uε+∂yvε=0, (x,y)∈R
2×]0,1[,

uε|y=0,1=0, vε|y=0,1=0, x∈R
2,

(uε,vε)|t=0=
(
uε

0,vε
0

)
, (∂tu,∂tv)|t=0=

(
uε

1,vε
1

)
, (x,y)∈R

2×]0,1[.

(1.4)

Letting ε→0 in the above system (1.4) gives
(
∂2

t +∂t+u·∂x+v∂y−∂2
y

)
u+∂x p=0, (x,y)∈R

2×]0,1[, (1.5a)
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∂yp=0, (x,y)∈R
2×]0,1[, (1.5b)

∂x ·u+∂yv=0, (x,y)∈R
2×]0,1[, (1.5c)

u|y=0,1=0, v|y=0,1=0, x∈R
2, (1.5d)

u|t=0=u0, ∂tu|t=0=u1, (x,y)∈R
2×]0,1[, (1.5e)

which is a hyperbolic version of the hydrostatic Navier-Stokes equations (1.2).
For this system, according to the recent work of Paicu-Zhang [42], we have well-
posedness in Gevrey function space rather than analytic space. This is different
from its parabolic version because analyticity is necessary for well-posedness of
the hydrostatic Navier-Stokes equations without any structural assumption.

Before stating the main result on the global well-posedness for the hyperbolic
version of the hydrostatic Navier-Stokes system (1.5), we briefly review some
previous related works on the Prandtl type equations as follows.

1.1 Classical Prandtl equation

The well-posedness theory of Prandtl equation (1.3) has been well investigated,
cf. [3, 6, 10–13, 18–20, 25, 26, 29, 32, 33, 35, 51–54] and the references therein. For the
2D case, under Oleinik’s monotonicity condition the well-posedness theory in
Sobolev space was justified in the pioneer work by Oleinik [39]. This classical re-
sult was revisited in two independent work of Alexandre et al. [3] and Masmoudi
and Wong [38] by using energy method. However, the Sobolev well-posedness of
3D Prandtl equation under suitable structure condition remains unsolved despite
some attempts like Liu et al. [33]. If Oleinik’s monotonicity condition is violated,
the ill-posedness and the related instability phenomena were well investigated,
cf. [7, 9, 11, 12, 15–17, 32] and the references therein. Without any structural as-
sumption, it is now well-understood that the Prandtl equation is well-posed in
Gevrey class with optimal Gevrey index less or equal to 2 by the instability anal-
ysis of Dietert and Gérard-Varet [10] and the work on well-posedness by Dietert
and Gérard-Varet [10] and Li et al. [24]. This generalizes the classical result of
Sammartino and Caflisch [48] in the analytic framework. Similar well-posedness
properties of hyperbolic Prandtl equations in Gevrey class were proven in [27].

On the other hand, in the fully nonlinear regime, Prandtl type system can be
derived from the MHD system. In this regime, the tangential magnetic field has
stabilizing effort as shown in the 2D case by Liu et al. [34] (see also [28, 31] for
the further generalization), where the Sobolev well-posedness theory was estab-
lished without Oleinik’s monotonicity condition on the velocity field provided
the tangential magnetic field dominates. Without any structural assumption, the
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Gevrey well-posedness was studied in [30] with Gevrey index less or equal to 3
2

that is not known to be optimal.

As for global-in-time existence of the classical Prandtl equation, there is an
early work on weak solution by Xin and Zhang [51], and work on analytic solu-
tion by Paicu and Zhang [41], cf. also some other related work [19, 52, 54]. Re-
cently, in [50] the authors also proved the global well-posedness property in
Gevrey class 2. On the other hand, the global analytic solution to MHD bound-
ary layer system was obtained by Liu and Zhang [36] and Li and Xie [23]. Note
that all these global-in-time existence results are in 2D setting and some suitable
structural condition on the initial data is required. Hence, the global property of
these systems in 3D setting remains unknown.

1.2 Hydrostatic Navier-Stokes equations and related models

Compared with Prandtl equation, the hydrostatic Navier-Stokes equations (1.2) is
less being well understood. In fact, the Sobolev well-posedness of the hydrostatic
Navier-Stokes equations is still unclear. Under the convex assumption, only the
Gevrey well-posedness has been obtained, cf. the recent work by Gérard-Varet et
al. [14] with Gevrey index up to 9

8 that seems not to be optimal. On the other hand,
Masmoudi and Wong [37] proved that the convex condition is sufficient for the
Sobolev well-posedness of hydrostatic Euler equations which is the inviscid form
of hydrostatic Navier-Stokes equations. And Renardy [47] obtained the classical
solutions to hydrostatic MHD equations provided the horizontal component of
the magnetic field is not degenerate.

Furthermore, the global well-posedness property of the hydrostatic Navier-
Stokes equations (1.2) was investigated by Paicu et al. [43] in analytic function
space. In addition, the global well-posedness theory of the hyperbolic version of
2D hydrostatic Navier-Stokes equations (1.5) was established recently by Aarach
[1] and Paicu and Zhang [42] in analytic and Gevrey function spaces respectively.

1.3 Statement of the main results

In this paper, we study the global Gevrey well-posedness of the hyperbolic ver-
sion (1.5) for 3D hydrostatic Navier-Stokes system. For this, we first list some
notations to be used.

Notation. In the following, we will use ‖·‖L2 and (·,·)L2 to denote the norm and
inner product of L2 = L2(R2×[0,1]) and use the notation ‖·‖L2

x
and ‖·,·‖L2

x
when

the variable x is specified. Similar notation will be used for L∞. In addition, we
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use

L
p
x

(
L

q
y

)
=Lp

(
R

2;Lq([0,1])
)

for the classical Sobolev space. For a vector-valued function A=(A1,A2,. . .,An),
we used the convention that

‖A‖2
L2 = ∑

1≤j≤n

‖Aj‖
2
L2 .

In the following discussion, we only require the Gevrey regularity in the tangen-
tial variable x∈R

2. Precisely, the Gevrey function spaces are defined as follows.

Definition 1.1. The space Xρ of (partial) Gevrey functions consists of all smooth (scalar

or vector-valued) functions h(t,x) such that the norm |h(t)|Xρ(t)
<+∞, where

|h|2Xρ
=

2

∑
j=1

+∞

∑
m=0

L2
ρ,m

(∥
∥∂t∂

m
xj

h
∥
∥2

L2+
∥
∥∂y∂m

xj
h
∥
∥2

L2+
∥
∥∂m

xj
h
∥
∥2

L2

)

with

Lρ,m =
ρm+1(m+1)7

(m!)2
, m≥0, ρ>0. (1.6)

In the following discussion, ρ depends on time but we only write it as ρ for simplicity of

notations. On the other hand, if h is independent of t, then we use the notation

|h|2Xρ∗
=

2

∑
j=1

+∞

∑
m=0

L2
ρ∗ ,m

(∥
∥∂y∂m

xj
h
∥
∥2

L2+
∥
∥∂m

xj
h
∥
∥2

L2

)

with ρ∗ being a real number.

Remark 1.1. The norm |h|Xρ
defined above is equivalent to the standard Gevrey

norm

‖h‖2
ρ = ∑

α≥0

L2
ρ,|α|

(∥
∥∂t∂

α
xh
∥
∥

2

L2+
∥
∥∂y∂α

xh
∥
∥

2

L2+
∥
∥∂α

xh
∥
∥

2

L2

)

,

in the sense that
1

2
‖h‖2

ρ/2 ≤|h|2Xρ
≤‖h‖2

ρ,

where the last inequality is trivial and the first inequality follows from the fact

that

∀α∈Z
2
+,

∥
∥∂α

xu
∥
∥

2

L2 ≤
∥
∥∂

|α|
x1

u
∥
∥

2

L2+
∥
∥∂

|α|
x2

u
∥
∥

2

L2 . (1.7)
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Note the initial data u0,u1 of (1.5) satisfy the following compatibility condi-
tion:

∀x∈R
2, u0|y=0,1=u1|y=0,1=0,

∫ 1

0
∂x ·u0(x,y)dy=

∫ 1

0
∂x ·u1(x,y)dy=0. (1.8)

The main results of this paper can now be stated as follows.

Theorem 1.1 (Global well-posedness of system (1.5)). Let (Xρ,‖·‖Xρ) be given in

Definition 1.1. If the initial data u0,u1∈X2ρ0
for some ρ0>0 satisfying the compatibility

(1.8) and

|u0|X2ρ0
+|u1|X2ρ0

≤ ε0

for some small ε0 >0, then the hyperbolic version of 3D hydrostatic Navier-Stokes equa-

tions (1.5) admit a unique global-in-time solution u∈C([0,+∞[,Xρ) provided ε0 is suf-

ficiently small. Moreover,

∀t≥0, |u(t)|Xρ(t)
≤4ε0e−

t
32 ,

where and throughout the paper

ρ(t)=
ρ0

2
+

ρ0

2
e−at, a=

1

96
. (1.9)

If in addition ∂yu0 ∈ X2ρ0
with |∂yu0|X2ρ0

≤ ε0, then ∂tu ∈ C([0,+∞[,Xρ) and ∂yu ∈

C([0,+∞[,Xρ(t)/2). Moreover, there exists a constant C, depending only on the Sobolev

embedding constant, such that

∀t≥0, |∂tu(t)|Xρ(t)
+
∣
∣∂yu(t)

∣
∣

Xρ(t)/2
≤Cε0e−

t
32 .

Theorem 1.2 (Global well-posedness of system (1.4)). Suppose the initial data in

(1.4) satisfy that (uε
j ,εvε

j)∈ X2ρ0
, j = 0,1, for some ρ0 > 0, compatible to the boundary

conditions in (1.4). Then the anisotropic hyperbolic Navier-Stokes equations (1.4) admit

a unique global-in-time solution (uε, εvε)∈C([0,+∞[,Xρ), provided

∣
∣
(
uε

0, εvε
0

)∣
∣
X2ρ0

+
∣
∣
(
uε

1, εvε
1

)∣
∣
X2ρ0

≤δ0

with δ0 sufficiently small. Moreover,

∀t≥0,
∣
∣
(
uε(t), εvε(t)

)∣
∣
Xρ(t)

≤4δ0e−
t

32 ,

where ρ is defined by (1.9).
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Theorem 1.3 (Hydrostatic limit). Suppose all the assumptions in Theorems 1.1 and

1.2 hold, that is, the initial data of (1.5) and (1.4) satisfy

|u0|X2ρ0
+|u1|X2ρ0

+|∂yu0|X2ρ0
≤ ε0,

and
∣
∣
(
uε

0, εvε
0

)∣
∣
X2ρ0

+
∣
∣
(
uε

1, εvε
1

)∣
∣
X2ρ0

≤δ0

for some small constants ε0 and δ0. Let u and (uε,vε) be given in Theorems 1.1 and 1.2

that solve (1.5) and (1.4), respectively. Then there exists a constant C, depending only

on the constants ε0,δ0,ρ0 and the Sobolev embedding constant but independent of ε, such

that

sup
t≥0

|uε(t)−u(t)|Xρ(t)/2
≤C

(
∣
∣uε

0−u0

∣
∣
X2ρ0

+
∣
∣uε

1−u1

∣
∣
X2ρ0

+ε

)

.

Remark 1.2. The following analysis implies that the global well-posedness prop-

erty holds for Gevrey function space with the Gevrey index less or equal to 2.

Remark 1.3. The proof given in this paper is based on a direct energy method that

is substantially different from the elegant and subtle arguments used in [1,42] that

involve the Littlewood-Paley decomposition.

2 Global well-posedness of hydrostatic system

In this section, we will prove Theorem 1.1 that is based on the proof of a priori
estimates so that the existence and uniqueness follow by a standard argument. In
fact, a self-contained proof consists of two parts. The first part is about the con-
struction of approximate solutions that follows from the standard parabolic and
hyperbolic theories. And then the uniform estimate on approximate solutions
can be derived following a priori estimates. Hence, for brevity we only present
the proof of a priori estimates for Gevrey solutions. Precisely, we will prove the
following theorem.

Theorem 2.1 (A priori estimate). If u∈C([0,+∞[,Xρ) solves the hyperbolic version

(1.5) of the hydrostatic Navier-Stokes equations with the initial data satisfying

|u0|X2ρ0
+|u1|X2ρ0

≤ǫ0 (2.1)

for some small ǫ0>0, then

∀t≥0, |u(t)|Xρ(t)
≤4ε0e−

t
32 , (2.2)
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where the function ρ is defined by (1.9). Moreover, suppose

|∂yu0|X2ρ0
≤ ε0,

and ∂tu ∈ C([0,+∞[,Xρ),∂yu ∈ C([0,+∞[,Xρ/2). Then there exists a constant C de-

pending only on ρ0 and the Sobolev embedding constant such that

∀t≥0, |∂tu(t)|Xρ(t)
≤Cε0e−

t
32 , (2.3)

∀t≥0,
∣
∣∂yu(t)

∣
∣

Xρ(t)/2
≤Cε0e−

t
32 . (2.4)

We will use a bootstrap principle to prove the above a priori estimate. To do
so, we first recall an abstract version of the bootstrap principle given in [49].

Proposition 2.1 ([49, Proposition 1.21]). Let I be a time interval, and for each t ∈ I

we have two statements, a “hypothesis” H(t) and a “conclusion” C(t). Suppose we can

verify the following four statements:

(i) If H(t) is true for some time t∈ I then C(t) is also true for the time t.

(ii) If C(t) is true for some t∈ I then H(t′) holds for all t′ in a neighborhood of t.

(iii) If t1,t2,. . . is a sequence of times in I which converges to another time t ∈ I and

C(tn) is true for all tn, then C(t) is true.

(iv) H(t) is true for at least one time t∈ I.

Then C(t) is true for all t∈ I.

The rest of the section is to apply this bootstrap principle to obtain the a priori
estimate in Theorem 2.1. The Gevrey class enables us to overcome the loss of
tangential derivatives by shrinking the radius ρ. For this, we can either apply
the abstract Cauchy-Kowalewski theorem (cf. [24, 29, 48] for instance) or use an
auxiliary norm |·|Yρ as in [22]. Here we will make use of the latter approach.
Define

|h|2Yρ
=

2

∑
j=1

+∞

∑
m=0

L2
ρ,m

[
m+1

ρ

(∥
∥∂t∂

m
xj

h
∥
∥2

L2+
∥
∥∂y∂m

xj
h
∥
∥2

L2

)

+
(m+1)3

ρ3

∥
∥∂m

xj
h
∥
∥2

L2

]

(2.5)

for (scalar or vector-valued) functions h, where Lρ,m is given by (1.6).
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2.1 Proof of Theorem 2.1: The first assertion

In this part we will present in details the proof of the first assertion (2.2). To
simplify the notation, we assume without loss of generality that ρ0 ≤ 1. In the
following discussion, we will omit the time dependence of ρ in the notation, and
denote by ρ′ and ρ′′ the first and the second order time derivatives respectively.
Note that

∀t≥0,
ρ0

2
≤ρ(t)≤ρ0 , ρ′(t)≤ρ′3(t)≤0. (2.6)

For each t∈ [0,+∞[, let H(t) be the statement

∀s∈ [0,t], |u(s)|Xρ(s)
≤8ε0e−

s
32 , (2.7)

and let C(t) be the statement

∀s∈ [0,t], |u(s)|Xρ(s)
≤4ε0e−

s
32 . (2.8)

Statements (ii)-(iv) in Proposition 2.1 follow from the continuity of t 7→ |u(t)|Xρ(t)

and the condition (2.1). Then by Proposition 2.1, C(t) holds for all t∈ [0,+∞[ if
we can show the following statement:

H(t) is true for some time t∈ [0,∞[ =⇒

C(t) is also true for the same time t. (2.9)

We now turn to prove (2.9). In the following argument, we assume (2.7) holds
with some fixed time t. Applying ∂m

xj
, j=1,2 to Eq. (1.5a) gives

(
∂2

t +∂t−∂2
y

)
∂m

xj
u

=−∂x∂m
xj

p−
m

∑
k=0

(
m

k

)[(
∂k

xj
u·∂x

)
∂m−k

xj
u+
(
∂k

xj
v
)
∂m−k

xj
∂yu
]

de f
= Hm. (2.10)

Taking the L2 inner product with ∂m
xj

u and ∂t∂
m
xj

u, respectively, on both sides of

(2.10) and observing u|y=0,1=0, we obtain

1

2

d

dt

[
d

dt

∥
∥∂m

xj
u
∥
∥

2

L2+
∥
∥∂m

xj
u
∥
∥

2

L2

]

+
∥
∥∂y∂m

xj
u
∥
∥

2

L2 =
(

Hm, ∂m
xj

u
)

L2+
∥
∥∂t∂

m
xj

u
∥
∥

2

L2 , (2.11)

d

dt

(∥
∥∂t∂

m
xj

u
∥
∥

2

L2+
∥
∥∂y∂m

xj
u
∥
∥

2

L2

)

+2
∥
∥∂t∂

m
xj

u
∥
∥

2

L2 =2
(

Hm, ∂t∂
m
xj

u
)

L2 . (2.12)
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This yields by taking the summation of (2.11) and (2.12)

1

2

d

dt

[

2
∥
∥∂t∂

m
xj

u
∥
∥2

L2+2
∥
∥∂y∂m

xj
u
∥
∥2

L2+
d

dt

∥
∥∂m

xj
u
∥
∥2

L2+
∥
∥∂m

xj
u
∥
∥2

L2

]

+
∥
∥∂t∂

m
xj

u
∥
∥

2

L2+
∥
∥∂y∂m

xj
u
∥
∥

2

L2

=
(

Hm, ∂m
xj

u+2∂t∂
m
xj

u
)

L2 .

The above equality and the Poincaré inequality in the interval [0,1]

1

4

∥
∥∂m

xj
u
∥
∥

2

L2 ≤
∥
∥∂y∂m

xj
u
∥
∥

2

L2

because u|y=0,1=0 give

1

2

d

dt

[

2
∥
∥∂t∂

m
xj

u
∥
∥2

L2+2
∥
∥∂y∂m

xj
u
∥
∥2

L2+
d

dt

∥
∥∂m

xj
u
∥
∥2

L2+
∥
∥∂m

xj
u
∥
∥2

L2

]

+
1

8

∥
∥∂m

xj
u
∥
∥

2

L2+
∥
∥∂t∂

m
xj

u
∥
∥

2

L2+
1

2

∥
∥∂y∂m

xj
u
∥
∥

2

L2

≤
(

Hm, ∂m
xj

u+2∂t∂
m
xj

u
)

L2
.

Thus, by multiplying the above inequality by L2
ρ,m and observing

d

dt
L2

ρ,m =2ρ′
m+1

ρ
L2

ρ,m,

taking summation over m gives

1

2

d

dt

+∞

∑
m=0

L2
ρ,m

(

2
∥
∥∂t∂

m
xj

u
∥
∥

2

L2+2
∥
∥∂y∂m

xj
u
∥
∥

2

L2+
d

dt

∥
∥∂m

xj
u
∥
∥

2

L2+
∥
∥∂m

xj
u
∥
∥

2

L2

)

+
1

8

+∞

∑
m=0

L2
ρ,m

(∥
∥∂m

xj
u
∥
∥

2

L2+
∥
∥∂t∂

m
xj

u
∥
∥

2

L2+
∥
∥∂y∂m

xj
u
∥
∥

2

L2

)

≤
+∞

∑
m=0

ρ′
m+1

ρ
L2

ρ,m

(

2
∥
∥∂t∂

m
xj

u
∥
∥2

L2+2
∥
∥∂y∂m

xj
u
∥
∥2

L2+
d

dt

∥
∥∂m

xj
u
∥
∥2

L2+
∥
∥∂m

xj
u
∥
∥2

L2

)

+
+∞

∑
m=0

L2
ρ,m

(

Hm, ∂m
xj

u+2∂t∂
m
xj

u
)

L2

≤
+∞

∑
m=0

ρ′
m+1

ρ
L2

ρ,m

(∥
∥∂t∂

m
xj

u
∥
∥2

L2+
∥
∥∂y∂m

xj
u
∥
∥2

L2

)

+
+∞

∑
m=0

ρ′
m+1

ρ
L2

ρ,m

∥
∥∂t∂

m
xj

u
∥
∥2

L2
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+
+∞

∑
m=0

ρ′
m+1

ρ
L2

ρ,m
d

dt

∥
∥∂m

xj
u
∥
∥2

L2+
+∞

∑
m=0

L2
ρ,m

∣
∣
(

Hm, ∂m
xj

u
)

L2

∣
∣

+2
+∞

∑
m=0

L2
ρ,m

∣
∣
(

Hm, ∂t∂
m
xj

u
)

L2

∣
∣, (2.13)

where the last inequality holds because of ρ′≤0. Moreover, for the second sum-
mation term on the right hand side of (2.13), by noting ρ′≤0, we have

ρ′
m+1

ρ
L2

ρ,m

∥
∥∂t∂

m
xj

u
∥
∥2

L2

=ρ′
m+1

ρ

∥
∥∂t

(
Lρ,m∂m

xj
u
)∥
∥

2

L2+ρ′3
(m+1)3

ρ3
L2

ρ,m

∥
∥∂m

xj
u
∥
∥

2

L2

−2ρ′2
(m+1)2

ρ2

(

∂t

(
Lρ,m∂m

xj
u
)
, Lρ,m∂m

xj
u
)

L2

≤ρ′3
(m+1)3

ρ3
L2

ρ,m

∥
∥∂m

xj
u
∥
∥2

L2−ρ′2
(m+1)2

ρ2

d

dt

∥
∥Lρ,m∂m

xj
u
∥
∥2

L2 .

Here, the last term can be written as

−ρ′2
(m+1)2

ρ2

d

dt

∥
∥Lρ,m∂m

xj
u
∥
∥

2

L2

=−
d

dt

(

ρ′2
(m+1)2

ρ2
L2

ρ,m

∥
∥∂m

xj
u
∥
∥2

L2

)

+2ρ′
(

ρ′′−
ρ′2

ρ

)
(m+1)2

ρ2
L2

ρ,m

∥
∥∂m

xj
u
∥
∥2

L2

≤−
d

dt

(

ρ′2
(m+1)2

ρ2
L2

ρ,m

∥
∥∂m

xj
u
∥
∥

2

L2

)

,

where the last inequality holds because

ρ′′−
ρ′2

ρ
=

ρ0a2e−at

2(1+e−at)
≥0. (2.14)

Combining the above inequalities yields

ρ′
m+1

ρ
L2

ρ,m

∥
∥∂t∂

m
xj

u
∥
∥

2

L2

≤ρ′3
(m+1)3

ρ3
L2

ρ,m

∥
∥∂m

xj
u
∥
∥2

L2−
d

dt

(

ρ′2
(m+1)2

ρ2
L2

ρ,m

∥
∥∂m

xj
u
∥
∥2

L2

)

.
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For the third summation term on the right-hand side of (2.13), direct computation
gives

ρ′
m+1

ρ
L2

ρ,m
d

dt

∥
∥∂m

xj
u
∥
∥2

L2

=
d

dt

(

ρ′
m+1

ρ
L2

ρ,m

∥
∥∂m

xj
u
∥
∥

2

L2

)

−

(

ρ′′−
ρ′2

ρ

)
m+1

ρ
L2

ρ,m

∥
∥∂m

xj
u
∥
∥

2

L2

−2ρ′2
(m+1)2

ρ2
L2

ρ,m

∥
∥∂m

xj
u
∥
∥

2

L2

≤
d

dt

(

ρ′
m+1

ρ
L2

ρ,m

∥
∥∂m

xj
u
∥
∥

2

L2

)

−2ρ′2
(m+1)2

ρ2
L2

ρ,m

∥
∥∂m

xj
u
∥
∥

2

L2 ,

where (2.14) is also used in the last inequality. Now we substitute the above two
estimates into (2.13) to have

1

2

d

dt

+∞

∑
m=0

L2
ρ,m

(

2
∥
∥∂t∂

m
xj

u
∥
∥

2

L2+2
∥
∥∂y∂m

xj
u
∥
∥

2

L2+
d

dt

∥
∥∂m

xj
u
∥
∥

2

L2+
∥
∥∂m

xj
u
∥
∥

2

L2

)

+
d

dt

+∞

∑
m=0

L2
ρ,m

∥
∥∂m

xj
u
∥
∥

2

L2

(

ρ′2
(m+1)2

ρ2
−ρ′

m+1

ρ

)

+
1

8

+∞

∑
m=0

L2
ρ,m

(∥
∥∂m

xj
u
∥
∥

2

L2+
∥
∥∂t∂

m
xj

u
∥
∥

2

L2+
∥
∥∂y∂m

xj
u
∥
∥

2

L2

)

+2
+∞

∑
m=0

ρ′2
(m+1)2

ρ2
L2

ρ,m

∥
∥∂m

xj
u
∥
∥2

L2

≤ρ′
+∞

∑
m=0

m+1

ρ
L2

ρ,m

(∥
∥∂t∂

m
xj

u
∥
∥2

L2+
∥
∥∂y∂m

xj
u
∥
∥2

L2

)

+ρ′3
+∞

∑
m=0

(m+1)3

ρ3
L2

ρ,m

∥
∥∂m

xj
u
∥
∥2

L2

+
+∞

∑
m=0

L2
ρ,m

∣
∣
(

Hm, ∂m
xj

u
)

L2

∣
∣+2

+∞

∑
m=0

L2
ρ,m

∣
∣
(

Hm, ∂t∂
m
xj

u
)

L2

∣
∣

≤ρ′3
+∞

∑
m=0

L2
ρ,m

[
m+1

ρ

(∥
∥∂t∂

m
xj

u
∥
∥

2

L2+
∥
∥∂y∂m

xj
u
∥
∥

2

L2

)

+
(m+1)3

ρ3

∥
∥∂m

xj
u
∥
∥

2

L2

]

+
+∞

∑
m=0

L2
ρ,m

∣
∣
(

Hm, ∂m
xj

u
)

L2

∣
∣+2

+∞

∑
m=0

L2
ρ,m

∣
∣
(

Hm, ∂t∂
m
xj

u
)

L2

∣
∣, (2.15)

where (2.6) is used in the last inequality. We claim that there exists a constant C
depending only on the Sobolev embedding constant such that
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2

∑
j=1

+∞

∑
m=0

L2
ρ,m

∣
∣
(

Hm, ∂m
xj

u
)

L2

∣
∣+2

2

∑
j=1

+∞

∑
m=0

L2
ρ,m

∣
∣
(

Hm, ∂t∂
m
xj

u
)

L2

∣
∣

≤Cρ−2 |u|Xρ
|u|2Yρ

(2.16)

with |u|Yρ
defined by (2.5) and |u|Xρ

in Definition 1.1.

For brevity of presentation, the proof of the statement (2.16) is postponed to
the end of this section. We combine (2.16) with the fact that

ρ′3
2

∑
j=1

+∞

∑
m=0

L2
ρ,m

[
m+1

ρ

(∥
∥∂t∂

m
xj

u
∥
∥

2

L2+
∥
∥∂y∂m

xj
u
∥
∥

2

L2

)

+
(m+1)3

ρ3

∥
∥∂m

xj
u
∥
∥

2

L2

]

=ρ′3 |u|2Yρ

to conclude for any s ∈ [0,t] with the same time t given in (2.7), the following
estimate holds:

ρ′(s)3
2

∑
j=1

+∞

∑
m=0

L2
ρ(s),m

×

[
m+1

ρ(s)

(∥
∥∂t∂

m
xj

u(s)
∥
∥

2

L2+
∥
∥∂y∂m

xj
u(s)

∥
∥

2

L2

)

+
(m+1)3

ρ(s)3

∥
∥∂m

xj
u(s)

∥
∥

2

L2

]

+
2

∑
j=1

+∞

∑
m=0

L2
ρ(s),m

∣
∣
(

Hm(s), ∂m
xj

u(s)
)

L2

∣
∣

+2
2

∑
j=1

+∞

∑
m=0

L2
ρ,m

∣
∣
(

Hm(s), ∂t∂
m
xj

u(s)
)

L2

∣
∣

≤
(

ρ′(s)3+Cρ(s)−2 |u(s)|Xρ(s)

)

|u(s)|2Yρ(s)

≤−

(
ρ3

0a3

8
−32ε0Cρ−2

0

)

e−
s

32 |u(s)|2Yρ(s)
≤0,

where the last inequality follows from the condition (2.7) and the property (2.6)
by choosing ε0 in (2.7) to be sufficiently small. As the result, we take summation
on both sides of (2.15) for j=1,2 to obtain

1

2

d

dt

2

∑
j=1

+∞

∑
m=0

L2
ρ,m

(

2
∥
∥∂t∂

m
xj

u
∥
∥2

L2+2
∥
∥∂y∂m

xj
u
∥
∥2

L2+
d

dt

∥
∥∂m

xj
u
∥
∥2

L2+
∥
∥∂m

xj
u
∥
∥2

L2

)

+
d

dt

2

∑
j=1

+∞

∑
m=0

L2
ρ,m

∥
∥∂m

xj
u
∥
∥2

L2

(

ρ′2
(m+1)2

ρ2
−ρ′

m+1

ρ

)
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+
1

8

2

∑
j=1

+∞

∑
m=0

L2
ρ,m

(∥
∥∂m

xj
u
∥
∥2

L2+
∥
∥∂t∂

m
xj

u
∥
∥2

L2+
∥
∥∂y∂m

xj
u
∥
∥2

L2

)

+2
2

∑
j=1

+∞

∑
m=0

ρ′2
(m+1)2

ρ2
L2

ρ,m

∥
∥∂m

xj
u
∥
∥2

L2 ≤0.

Thus, multiplying the both sides by e
t

16 gives

1

2

d

dt
e

t
16

2

∑
j=1

+∞

∑
m=0

L2
ρ,m

(

2
∥
∥∂t∂

m
xj

u
∥
∥

2

L2+2
∥
∥∂y∂m

xj
u
∥
∥

2

L2+
d

dt

∥
∥∂m

xj
u
∥
∥

2

L2+
∥
∥∂m

xj
u
∥
∥

2

L2

)

+
d

dt
e

t
16

2

∑
j=1

+∞

∑
m=0

L2
ρ,m

∥
∥∂m

xj
u
∥
∥2

L2

(

ρ′2
(m+1)2

ρ2
−ρ′

m+1

ρ

)

+A≤0 (2.17)

with

A=−
1

32
e

t
16

2

∑
j=1

+∞

∑
m=0

L2
ρ,m

(

2
∥
∥∂t∂

m
xj

u
∥
∥

2

L2+2
∥
∥∂y∂m

xj
u
∥
∥

2

L2+
d

dt

∥
∥∂m

xj
u
∥
∥

2

L2+
∥
∥∂m

xj
u
∥
∥

2

L2

)

−
1

16
e

t
16

2

∑
j=1

+∞

∑
m=0

L2
ρ,m

∥
∥∂m

xj
u
∥
∥

2

L2

(

ρ′2
(m+1)2

ρ2
−ρ′

m+1

ρ

)

+
1

8
e

t
16

2

∑
j=1

+∞

∑
m=0

L2
ρ,m

(∥
∥∂m

xj
u
∥
∥2

L2+
∥
∥∂t∂

m
xj

u
∥
∥2

L2+
∥
∥∂y∂m

xj
u
∥
∥2

L2

)

+2e
t

16

2

∑
j=1

+∞

∑
m=0

ρ′2
(m+1)2

ρ2
L2

ρ,m

∥
∥∂m

xj
u
∥
∥2

L2 .

By noting that
2|ρ′|(m+1)

ρ
≤1+

ρ′2(m+1)2

ρ2

and

1

4

(∥
∥∂t∂

m
xj

u
∥
∥

2

L2+
∥
∥∂y∂m

xj
u
∥
∥

2

L2+
∥
∥∂m

xj
u
∥
∥

2

L2

)

≤2
∥
∥∂t∂

m
xj

u
∥
∥

2

L2+2
∥
∥∂y∂m

xj
u
∥
∥

2

L2+
d

dt

∥
∥∂m

xj
u
∥
∥

2

L2+
∥
∥∂m

xj
u
∥
∥

2

L2

≤3
(∥
∥∂t∂

m
xj

u
∥
∥

2

L2+
∥
∥∂y∂m

xj
u
∥
∥

2

L2+
∥
∥∂m

xj
u
∥
∥

2

L2

)

, (2.18)

we have A≥0.
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We now integrate both sides of (2.17) over [0,s] for all s ≤ t. By the above
inequality, (2.18) and the fact that ρ′≤0, we obtain

e
s

16

2

∑
j=1

+∞

∑
m=0

L2
ρ(s),m

(∥
∥∂m

xj
u(s)

∥
∥2

L2+
∥
∥∂t∂

m
xj

u(s)
∥
∥2

L2+
∥
∥∂y∂m

xj
u(s)

∥
∥2

L2

)

≤12
(

|u0|
2
Xρ0

+|u1|
2
Xρ0

)

+8
2

∑
j=1

+∞

∑
m=0

L2
ρ0,m

∥
∥∂m

xj
u0

∥
∥

2

L2

(

ρ′(0)2 (m+1)2

ρ2
0

−ρ′(0)
m+1

ρ0

)

≤16
(

|u0|
2
X2ρ0

+|u1|
2
X2ρ0

)

, (2.19)

that is, by Definition 1.1 and (2.1),

∀s∈ [0,t], |u(s)|Xρ(s)
≤4e−

s
32

(

|u0|X2ρ0
+|u1|X2ρ0

)

≤4ε0e−
s

32 .

Then we have (2.9). Hence, C(t) in (2.8) holds for all t≥ 0 by Proposition 2.1 so
that (2.2) holds. We have proven the first assertion (2.2) in Theorem 2.1.

Now it remains to prove (2.16) as follows.

Proof. Recall Hm given by (2.10). We first estimate the terms involving the pres-

sure function. Firstly, note that the following compatibility condition for the so-

lution u to (1.5) holds:

∀x∈R
2,

∫ 1

0
∂x ·u(x,y)dy=0. (2.20)

Then integrating by parts gives
∣
∣
(
∂x∂m

xj
p, ∂m

xj
u
)

L2

∣
∣=
∣
∣
(
∂m

xj
p, ∂m

xj
∂x ·u

)

L2

∣
∣=
∣
∣
(
∂m

xj
p, ∂y∂m

xj
v
)

L2

∣
∣=0, (2.21)

where the last equality follows from integration by parts and the fact that ∂yp=0.

The above equality also holds when ∂m
xj

u is replaced by ∂t∂
m
xj

u. That is,

∣
∣
(
∂x∂m

xj
p, ∂m

xj
u
)

L2

∣
∣+
∣
∣
(
∂x∂m

xj
p, ∂t∂

m
xj

u
)

L2

∣
∣=0. (2.22)

It remains to estimate the other terms in Hm and show that

+∞

∑
m=0

L2
ρ,m

∣
∣
∣
∣
∣

(
m

∑
k=0

m!

k!(m−k)!

[(
∂k

xj
u·∂x

)
∂m−k

xj
u+
(
∂k

xj
v
)
∂m−k

xj
∂yu
]

, ∂t∂
m
xj

u

)

L2

∣
∣
∣
∣
∣

+
+∞

∑
m=0

L2
ρ,m

∣
∣
∣
∣
∣

(
m

∑
k=0

m!

k!(m−k)!

[(
∂k

xj
u·∂x

)
∂m−k

xj
u+
(
∂k

xj
v
)
∂m−k

xj
∂yu
]

, ∂m
xj

u

)

L2

∣
∣
∣
∣
∣

≤C|u|Xρ
|u|2Yρ

. (2.23)
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To prove (2.23), we write

+∞

∑
m=0

L2
ρ,m

∣
∣
∣
∣
∣

(
m

∑
k=0

m!

k!(m−k)!

[(
∂k

xj
u·∂x

)
∂m−k

xj
u+
(
∂k

xj
v
)
∂m−k

xj
∂yu
]

, ∂t∂
m
xj

u

)

L2

∣
∣
∣
∣
∣

≤S1+S2, (2.24)

where






S1=
+∞

∑
m=0

m

∑
k=0

L2
ρ,m

m!

k!(m−k)!

∥
∥
(
∂k

xj
u·∂x

)
∂m−k

xj
u
∥
∥

L2

∥
∥∂t∂

m
xj

u
∥
∥

L2 ,

S2=
+∞

∑
m=0

m

∑
k=0

L2
ρ,m

m!

k!(m−k)!

∥
∥
(
∂k

xj
v
)
∂y∂m−k

xj
u
∥
∥

L2

∥
∥∂t∂

m
xj

u
∥
∥

L2 .

(2.25)

We first estimate S1 as follows.

S1≤
+∞

∑
m=0

[m
2 ]

∑
k=0

L2
ρ,m

m!

k!(m−k)!

∥
∥∂k

xj
u
∥
∥

L∞

∥
∥∂x∂m−k

xj
u
∥
∥

L2

∥
∥∂t∂

m
xj

u
∥
∥

L2

+
+∞

∑
m=0

m

∑
k=[m

2 ]+1

L2
ρ,m

m!

k!(m−k)!

∥
∥∂k

xj
u
∥
∥

L2

∥
∥∂x∂m−k

xj
u
∥
∥

L∞

∥
∥∂t∂

m
xj

u
∥
∥

L2

=: S1,1+S1,2, (2.26)

where [m
2 ] stands for the largest integer ≤ m

2 . To estimate S1,1 and S1,2, we will

use the following inequalities that follow from straightforward calculation. If

0≤ k≤ [m
2 ], then

m!

k!(m−k)!

Lρ,m

Lρ,k+2Lρ,m−k+1

=
m!

k!(m−k)!

[(k+2)!]2

ρk+3(k+3)7

[(m−k+1)!]2

ρm−k+2(m−k+2)7

ρm+1(m+1)7

(m!)2

≤C
k!(m−k+1)!(m−k+1)

m!(k+3)ρ4
≤C

(m−k+1)m

(k+1)ρ4

≤
C

ρ2

1

k+1

(m+1)
1
2

ρ
1
2

(m−k+2)
3
2

ρ
3
2

. (2.27)

On the other hand, if [m
2 ]+1≤ k≤m, then

m!

k!(m−k)!

Lρ,m

Lρ,kLρ,m−k+3
≤

C

ρ4

1

m−k+1
. (2.28)
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Recalling S1,1 given in (2.26), by (2.27) and the definition of |·|Yρ
in (2.5), we have

S1,1=
+∞

∑
m=0

[m
2 ]

∑
k=0

m!

k!(m−k)!

Lρ,m

Lρ,k+2Lρ,m−k+1

(

Lρ,k+2

∥
∥∂k

xj
u
∥
∥

L∞

)

×
(

Lρ,m−k+1

∥
∥∂x∂m−k

xj
u
∥
∥

L2

)

Lρ,m

∥
∥∂t∂

m
xj

u
∥
∥

L2

≤
C

ρ2

+∞

∑
m=0

[m
2 ]

∑
k=0

Lρ,k+2

∥
∥∂k

xj
u
∥
∥

L∞

k+1

(

(m−k+2)
3
2

ρ
3
2

Lρ,m−k+1

∥
∥∂x∂m−k

xj
u
∥
∥

L2

)

×

(

(m+1)
1
2

ρ
1
2

Lρ,m

∥
∥∂t∂

m
xj

u
∥
∥

L2

)

≤
C

ρ2






+∞

∑
m=0





[m
2 ]

∑
k=0

Lρ,k+2

∥
∥∂k

xj
u
∥
∥

L∞

k+1
×
(m−k+2)

3
2

ρ
3
2

Lρ,m−k+1

∥
∥∂x∂m−k

xj
u
∥
∥

L2





2





1
2

|u|Yρ

≤
C

ρ2

∞

∑
k=0

Lρ,k+2

∥
∥∂k

xj
u
∥
∥

L∞

k+1

[
+∞

∑
m=0

(m+2)3

ρ3
L2

ρ,m+1

∥
∥∂x∂m

xj
u
∥
∥

2

L2

] 1
2

|u|Yρ
, (2.29)

where we have used Young’s inequality for discrete convolution. Moreover, it

follows from (1.7) that

[
+∞

∑
m=0

(m+2)3

ρ3
L2

ρ,m+1

∥
∥∂x∂m

xj
u
∥
∥

2

L2

] 1
2

≤

[
+∞

∑
m=0

(m+1)3

ρ3
L2

ρ,m

(∥
∥∂m

x1
u
∥
∥2

L2+
∥
∥∂m

x2
u
∥
∥2

L2

)
] 1

2

≤|u|Yρ
.

It follows from the Sobolev embedding inequality

‖F‖L∞ ≤C
(

‖F‖H2
x (L2

y)
+‖∂yF‖H2

x(L2
y)

)

and (1.7) that

∞

∑
k=0

Lρ,k+2

∥
∥∂k

xj
u
∥
∥

L∞

k+1

≤C
∞

∑
k=0

1

k+1
Lρ,k+2

(

‖∂k
xj

u‖H2
x(L2

y)
+
∥
∥∂y∂k

xj
u
∥
∥

H2
x(L2

y)

)
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≤C

[
∞

∑
k=0

L2
ρ,k+2

(∥
∥∂k

xj
u
∥
∥

2

H2
x(L2

y)
+
∥
∥∂y∂k

xj
u
∥
∥

2

H2
x(L2

y)

)
] 1

2

≤C|u|Xρ
.

Hence, combining the above estimates with (2.29) yields

S1,1≤Cρ−2 |u|Xρ
|u|2Yρ

.

Similarly, by using (2.28), we have

S1,2≤Cρ−2 |u|Xρ
|u|2Yρ

.

Substituting the estimates on S1,1 and S1,2 into (2.26) yields

S1≤Cρ−2 |u|Xρ
|u|2Yρ

.

The term S2 in (2.25) can be estimated similarly and we omit the details for

brevity, that is,

S2≤Cρ−2 |u|Xρ
|u|2Yρ

.

In summary, in view of (2.24) we have

+∞

∑
m=0

L2
ρ,m

∣
∣
∣
∣
∣

(
m

∑
k=0

m!

k!(m−k)!

[(
∂k

xj
u·∂x

)
∂m−k

xj
u+
(
∂k

xj
v
)
∂m−k

xj
∂yu
]

, ∂t∂
m
xj

u

)

L2

∣
∣
∣
∣
∣

≤Cρ−2 |u|Xρ
|u|2Yρ

.

Similarly,

+∞

∑
m=0

L2
ρ,m

∣
∣
∣
∣
∣

(
m

∑
k=0

m!

k!(m−k)!

[(
∂k

xj
u·∂x

)
∂m−k

xj
u+
(
∂k

xj
v
)
∂m−k

xj
∂yu
]

, ∂m
xj

u

)

L2

∣
∣
∣
∣
∣

≤Cρ−2 |u|Xρ
|u|2Yρ

.

Therefore, the statement (2.16) holds.

2.2 Proof of Theorem 2.1: The second assertion

Since the argument is similar to the one used in the previous section, we now
sketch the proof of (2.3) in Theorem 2.1 for brevity. In fact, using the notation

U=(u,∂tu), Hm =(Hm, ∂tHm)
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with Hm defined in (2.10), we have by applying ∂t∂
m
xj

to (1.5),

(
∂2

t +∂t−∂2
y

)
∂m

xj
U=Hm. (2.30)

Similar to (2.16), we conclude

2

∑
j=1

+∞

∑
m=0

L2
ρ,m

∣
∣
(
Hm, ∂m

xj
U
)

L2

∣
∣+2

2

∑
j=1

+∞

∑
m=0

L2
ρ,m

∣
∣
(
Hm, ∂t∂

m
xj
U
)

L2

∣
∣

≤Cρ−2 |U |Xρ
|U |2Yρ

. (2.31)

In fact, as (2.21), the equations
(
∂t∂x∂m

xj
p, ∂m

xj
u
)

L2 =
(
∂t∂x∂m

xj
p, ∂t∂

m
xj

u
)

L2 =
(
∂t∂x∂m

xj
p, ∂2

t ∂m
xj

u
)

L2 =0

also hold. Hence,
(
∂t∂x∂m

xj
p, ∂m

xj
U+2∂t∂

m
xj
U
)

L2 =0.

As a result, (2.31) follows by repeating the argument for obtaining (2.16).
We now take the inner product with ∂m

xj
U+2∂t∂

m
xj
U on both sides of Eq. (2.30),

and then repeat the argument for proving (2.2) with ∂m
xj

u replaced by ∂m
xj
U . By

(2.31), we have the following estimate that is similar to (2.19):

e
t

16 |U (t)|2Xρ
= e

t
16

2

∑
j=1

+∞

∑
m=0

L2
ρ(t),m

(∥
∥∂m

xj
U (t)

∥
∥

2

L2+
∥
∥∂t∂

m
xj
U (t)

∥
∥

2

L2+
∥
∥∂y∂m

xj
U (t)

∥
∥

2

L2

)

≤12
2

∑
j=1

+∞

∑
m=0

L2
ρ0,m

(∥
∥∂m

xj
U|t=0

∥
∥

2

L2+
∥
∥∂t∂

m
xj
U|t=0

∥
∥

2

L2+
∥
∥∂y∂m

xj
U|t=0

∥
∥

2

L2

)

+8
2

∑
j=1

+∞

∑
m=0

L2
ρ0,m

∥
∥∂m

xj
U|t=0

∥
∥2

L2

(

ρ′(0)2 (m+1)2

ρ2
0

−ρ′(0)
m+1

ρ0

)

≤C
(

|u0|
2
X2ρ0

+|u1|
2
X2ρ0

)

+12
2

∑
j=1

+∞

∑
m=0

L2
ρ0,m

∥
∥∂2

t ∂m
xj

u|t=0

∥
∥

2

L2 , (2.32)

where we have used the fact in the last inequality

U|t=0=(u0,u1), ∂yU|t=0=
(
∂yu0,∂yu1

)
, ∂tU|t=0=

(
u1,∂2

t u|t=0

)
.

It remains to estimate the last term on the right hand side of (2.32). For this, when
t=0, Eq. (1.5a) gives

∂2
t u|t=0=−u1−(u0 ·∂x)u0−v0∂yu0+∂2

yu0−∂x p|t=0, v0=−
∫ y

0
∂x ·u0 dỹ. (2.33)
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By applying the divergence operator to Eq. (1.5) and using the compatibility con-
dition (2.20), we have the elliptic equation

∆x p=−∂x ·
∫ 1

0

[
(u·∂x)u+(∂x ·u)u

]
dy+∂x ·

∫ 1

0
∂2

yudy, x∈R
2 (2.34)

for the pressure function. The standard elliptic theory implies that

∞

∑
m=0

L2
ρ0 ,m

∥
∥∂m

xj
∂x p|t=0

∥
∥

2

L2
x
≤C

(

|u0|
4
X2ρ0

+
∣
∣∂yu0

∣
∣2

X2ρ0

)

. (2.35)

This together with (2.33) yields

∞

∑
m=0

L2
ρ0,m

∥
∥∂2

t ∂m
xj

u|t=0

∥
∥

2

L2 ≤C
(

|u0|
4
X2ρ0

+
∣
∣∂yu0

∣
∣2

X2ρ0
+|u1|

2
X2ρ0

)

. (2.36)

For completeness, we give the proof of (2.35) and (2.36) in Appendix A. Combin-
ing the above estimate with (2.32) gives the second assertion in Theorem 2.1.

2.3 Proof of Theorem 2.1: The third assertion

It remains to prove (2.4). We take the L2 inner product with ∂m
xj

∂2
yu on both sides

of the equation

(
∂2

t +∂t−∂2
y

)
∂m

xj
u=−∂x∂m

xj
p−

m

∑
k=0

(
m

k

)[(
∂k

xj
u·∂x

)
∂m−k

xj
u+
(
∂k

xj
v
)
∂m−k

xj
∂yu
]

︸ ︷︷ ︸

de f
= Qm

,

and then multiply by L2
ρ/2,m before taking summation for m. This gives

+∞

∑
m=0

L2
ρ/2,m

∥
∥∂2

y∂m
xj

u
∥
∥

2

L2

≤
+∞

∑
m=0

L2
ρ/2,m

(∥
∥∂2

t ∂m
xj

u
∥
∥

L2+
∥
∥∂t∂

m
xj

u
∥
∥

L2

)∥
∥∂2

y∂m
xj

u
∥
∥

L2

+
+∞

∑
m=0

L2
ρ/2,m

∥
∥Qm

∥
∥

L2

∥
∥∂2

y∂m
xj

u
∥
∥

L2+
+∞

∑
m=0

L2
ρ/2,m

∥
∥∂m

xj
∂x p
∥
∥

L2
x

∥
∥∂2

y∂m
xj

u
∥
∥

L2 .

Thus

+∞

∑
m=0

L2
ρ/2,m

∥
∥∂2

y∂m
xj

u
∥
∥2

L2 ≤C
(

|∂tu|
2
Xρ/2

+|u|2Xρ/2

)
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+4
+∞

∑
m=0

L2
ρ/2,m

∥
∥Qm

∥
∥

L2

∥
∥∂2

y∂m
xj

u
∥
∥

L2+2
+∞

∑
m=0

L2
ρ/2,m

∥
∥∂m

xj
∂x p
∥
∥2

L2
x
. (2.37)

Using a similar argument as in (A.1) of Appendix A gives

+∞

∑
m=0

L2
ρ/2,m

∥
∥Qm

∥
∥

L2

∥
∥∂2

y∂m
xj

u
∥
∥

L2

≤C|u|2Xρ

(
+∞

∑
m=0

L2
ρ/2,m

∥
∥∂2

y∂m
xj

u
∥
∥

2

L2

) 1
2

≤
1

8

+∞

∑
m=0

L2
ρ/2,m

∥
∥∂2

y∂m
xj

u
∥
∥

2

L2+C|u|4Xρ
.

We use the elliptic theory for (2.34) and a similar computation as in (2.35) to con-
clude

+∞

∑
m=0

L2
ρ/2,m

∥
∥∂m

xj
∂x p
∥
∥2

L2
x

≤C|u|4Xρ
+C

+∞

∑
m=0

L2
ρ/2,m

∥
∥∂y∂m

xj
u
∥
∥2

L2
xL∞

y

≤
1

8

+∞

∑
m=0

L2
ρ/2,m

∥
∥∂2

y∂m
xj

u
∥
∥

2

L2+C
(

|u|4Xρ
+|u|2Xρ

)

.

Here, in the last inequality, we have used the fact that

∀r∈ [0,1],
(
∂yu(r)

)2
=
∫ r

ξ
∂y

(
∂yu(y)

)2
dy=2

∫ r

ξ

(
∂2

yu(y)
)

∂yu(y)dy

with ξ∈ [0,1] satisfying

∂yu(ξ)=
∫ 1

0
∂yudy=0

because of the boundary condition u|y=0,1 = 0. Substituting the above estimates
into (2.37) yields

+∞

∑
m=0

L2
ρ/2,m

∥
∥∂2

y∂m
xj

u
∥
∥

2

L2 ≤C
(

|u|2Xρ
+|u|4Xρ

+|∂tu|
2
Xρ

)

.

Observe
∣
∣∂yu

∣
∣2

Xρ/2
≤

+∞

∑
m=0

L2
ρ/2,m

∥
∥∂2

y∂m
xj

u
∥
∥2

L2+|u|2Xρ/2
+|∂tu|

2
Xρ/2

,

so that (2.4) follows. The proof of Theorem 2.1 is complete.
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3 Global well-posedness of original system

We will prove Theorem 1.2 about the global well-posedness of the anisotropic
hyperbolic Navier-Stokes system (1.4) in this section. The argument is similar to
the one used in the previous section so that we only sketch the proof.

Sketch of the proof of Theorem 1.2. We apply ∂xj
to the evolution equations of

uε and vε in (1.4) to obtain
(
∂2

t +∂t−ε2∆x−∂2
y

)
∂m

xj
uε

=−∂x∂m
xj

pε−
m

∑
k=0

(
m

k

)[(
∂k

xj
uε ·∂x

)
∂m−k

xj
uε+

(
∂k

xj
vε
)
∂m−k

xj
∂yuε

]
de f
= Tε

m, (3.1)

and

ε2
(
∂2

t +∂t−ε2∆x−∂2
y

)
∂m

xj
vε

=−∂y∂m
xj

pε−ε2
m

∑
k=0

(
m

k

)[(
∂k

xj
uε ·∂x

)
∂m−k

xj
vε+

(
∂k

xj
vε
)
∂m−k

xj
∂yvε

]
de f
= Nε

m. (3.2)

It follows from the divergence-free condition that
(
∂x∂m

xj
pε, ∂m

xj
uε
)

L2+
(
∂y∂m

xj
pε, ∂m

xj
vε
)

L2

=
(
∂x∂m

xj
pε, ∂t∂

m
xj

uε
)

L2+
(
∂y∂m

xj
pε, ∂t∂

m
xj

vε
)

L2 =0.

Let Tε
m,Nε

m be in (3.1) and (3.2). Then by using the above equality instead of (2.22)

and following the argument in the proof of (2.16), we conclude

2

∑
j=1

+∞

∑
m=0

L2
ρ,m

(
Tε

m, ∂m
xj

uε+2∂t∂
m
xj

uε
)

L2

+
2

∑
j=1

+∞

∑
m=0

L2
ρ,m

(
Nε

m, ∂m
xj

vε+2∂t∂
m
xj

vε
)

L2

≤Cρ−2 |(uε, εvε)|Xρ
|(uε, εvε)|2Yρ

,

where |(uε,εvε)|Xρ
and |(uε,εvε)|Yρ

are given by Definition 1.1 and (2.5). Then we

take the L2 inner product with ∂m
xj

uε+2∂t∂
m
xj

uε in (3.1) and with ∂m
xj

vε+2∂t∂
m
xj

vε in

(3.2). The following a priori estimate for the system (1.4) can be obtained by using

the argument in the previous section:

∀t≥0,
∣
∣
(
uε(t), εvε(t)

)∣
∣
Xρ(t)

≤4δ0e−
t

32 ,
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provided that the initial data satisfy
∣
∣
(
uε

0, εvε
0

)∣
∣
X2ρ0

+
∣
∣
(
uε

1, εvε
1

)∣
∣
X2ρ0

≤δ0

with δ0 being sufficiently small. Hence, the proof of Theorem 1.2 is complete.

4 Hydrostatic limit

In the final section, we will prove Theorem 1.3 about the hydrostatic limit from
(1.4) to (1.5) as ε→0.

Suppose the assumptions in Theorem 1.3 hold. Let (uε,vε,pε) and (u,p) solve
the anisotropic hyperbolic Navier-Stokes system (1.4) and the hyperbolic hydro-
static Navier-Stokes system (1.5), respectively. In the following discussion, we
use the notation

Uε =uε−u, Vε=vε−v, Pε= pε−p,

where

v(t,x,y)=−
∫ y

0
∂x ·u(t,x,ỹ)dỹ.

Then it follows from (1.4) and (1.5) that






(
∂2

t +∂t−ε2∆x−∂2
y

)
Uε+∂xPε= ε2∆xu+Rε,

ε2
(
∂2

t +∂t−ε2∆x−∂2
y

)
Vε+∂yPε =−ε2

(
∂2

t +∂t+u·∂x+v∂y−ε2∆x−∂2
y

)
v+Sε,

∂x ·U
ε+∂yVε=0,

Uε|y=0,1=0, Vε|y=0,1=0,

(Uε,Vε)|t=0=
(
uε

0−u0,vε
0−v0

)
,
(
∂tU

ε,∂tV
ε
)
|t=0=

(
uε

1−u1,vε
1−v1

)
,

where

vj=−
∫ y

0
∂x ·uj(t,x,ỹ)dỹ, j=0,1,

and

Rε =−(Uε ·∂x)u
ε−(u·∂x)U

ε−Vε∂yuε−v∂yUε,

Sε =−ε2(Uε ·∂x)v
ε−ε2(u·∂x)V

ε−ε2Vε∂yvε−ε2v∂yVε.

In the following, we will use C to denote a generic constant depending only on
ρ0 and the Sobolev embedding constant but independent of ε. Similar to the ar-
gument used in Section 2, we have

+∞

∑
m=0

L2
ρ/2,m

(
∂m

xj
Rε, ∂m

xj
Uε+2∂t∂

m
xj

Uε
)

L2 ≤C
(
|uε|Xρ

+|u|Xρ

)
|Uε|2Yρ/2

, (4.1)
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and

+∞

∑
m=0

L2
ρ/2,m

(
∂m

xj
Sε, ∂m

xj
Vε+2∂t∂

m
xj

Vε
)

L2

≤C|εvε|Xρ
|Uε|2Yρ/2

+C
(
|εvε|Xρ

+|uε|Xρ
+|u|Xρ

)
|εVε|2Yρ/2

, (4.2)

where |·|Yρ/2
is defined in (2.5). Please refer to Appendix A for the detailed proof.

Moreover, direct calculation gives

+∞

∑
m=0

L2
ρ/2,m

(
ε2∂m

xj
∆xu, ∂m

xj
Uε+2∂t∂

m
xj

Uε
)

L2 ≤Cε2 |u|Xρ
|Uε|Xρ/2

,

and

+∞

∑
m=0

L2
ρ/2,m

(

−ε2∂m
xj

(
∂2

t +∂t+u·∂x+v∂y−ε2∆x−∂2
y

)
v, ∂m

xj
Vε+2∂t∂

m
xj

Vε
)

L2

≤Cε
(

|u|Xρ
+|u|2Xρ

+|∂tu|Xρ

)

|εVε|Xρ/2
, (4.3)

where we used the relation

∂2
t v=−

∫ y

0
∂2

t ∂x ·u(t,x,ỹ)dỹ

(see Appendix A for details). By using the argument in Section 2, we can derive
estimates on Uε and εVε as those given in (2.15). Hence, by using the estimates in
Theorems 1.1 and 1.2, we conclude that

sup
t≥0

(

|Uε(t)|2Xρ(t)/2
+|εVε(t)|2Xρ(t)/2

)

+
∫ +∞

0

(

|Uε(s)|2Xρ(s)/2
+|εVε(s)|2Xρ(s)/2

)

ds

≤C
(

|uε
0−u0|

2
Xρ0

+|uε
1−u1|

2
Xρ0

+ε|vε
0−v0|

2
Xρ0

+ε|vε
1−v1|

2
Xρ0

)

+ε2C
∫ +∞

0

(

|u|Xρ
+|u|2Xρ

+|∂tu|Xρ

)2
ds

≤C
(

|uε
0−u0|

2
X2ρ0

+|uε
1−u1|

2
X2ρ0

)

+ε2C,

where we have used Theorem 1.1 in the last inequality. Then this completes the
proof of Theorem 1.3.
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Appendix A. Some computation

We now present the proof of the estimates (4.1)-(4.3) and (2.35)-(2.36).

Proof of (4.1) and (4.2). In the proof C denotes a generic constant depending only

on ρ0 and the Sobolev embedding constant but independent of ε. To estimate the

first term on the right of

Rε =−(Uε ·∂x)u
ε−(u·∂x)U

ε−Vε∂yuε−v∂yUε,

we use the estimate

∀k≥0,
m!

k!(m−k)!

Lρ/2,m

Lρ,k+3Lρ/2,m−k
≤27−k(k+3)6ρ−4

to compute

+∞

∑
m=0

L2
ρ/2,m

∣
∣
(
∂m

xj
((Uε ·∂x)u

ε), ∂m
xj

Uε+2∂t∂
m
xj

Uε
)

L2

∣
∣

≤
+∞

∑
m=0

m

∑
k=0

m!

k!(m−k)!

Lρ/2,m

Lρ,k+3Lρ/2,m−k
Lρ,k+3

∥
∥∂x∂k

xj
uε
∥
∥

L∞

×
(

Lρ/2,m−k

∥
∥∂m−k

xj
Uε
∥
∥

L2

)

×
(

Lρ/2,m

∥
∥∂m

xj
Uε+2∂t∂

m
xj

Uε
∥
∥

L2

)

≤Cρ−4





+∞

∑
m=0

(
m

∑
k=0

2−kk6Lρ,k+2

∥
∥∂x∂k

xj
uε
∥
∥

L∞ Lρ/2,m−k

∥
∥∂m−k

xj
Uε
∥
∥

L2

)2




1
2

|Uε|Xρ/2

≤
C

ρ4

∞

∑
k=0

2−kk6Lρ,k+3

∥
∥∂x∂k

xj
uε
∥
∥

L∞

[
+∞

∑
m=0

L2
ρ/2,m

∥
∥∂m

xj
Uε
∥
∥2

L2

] 1
2

|Uε|Xρ/2

≤
C

ρ4
|uε|Xρ

|Uε|2Xρ/2
≤C|uε|Xρ

|Uε|2Yρ/2
, (A.1)

where we have used Young’s inequality for discrete convolution in the third in-

equality and the fact that
ρ0
2 ≤ρ≤ρ0 in the last line. Similarly,

+∞

∑
m=0

L2
ρ/2,m

∣
∣
(
∂m

xj
(v∂yUε), ∂m

xj
Uε+2∂t∂

m
xj

Uε
)

L2

∣
∣≤C|u|Xρ

|Uε|2Yρ/2
.

As for the third term in Rε, we use the fact

Vε=−
∫ y

0
∂x ·U

ε(t,x,ỹ)dỹ
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to write
+∞

∑
m=0

L2
ρ/2,m

∣
∣
(
∂m

xj
(Vε∂yuε), ∂m

xj
Uε+2∂t∂

m
xj

Uε
)

L2

∣
∣≤ J1+ J2

with

J1=
+∞

∑
m=0

[m
2 ]

∑
k=0

m!

k!(m−k)!

Lρ/2,m

Lρ/2,k+2Lρ/2,m−k+1

(

Lρ/2,k+2

∥
∥∂k

xj
∂yuε

∥
∥

L∞
x L2

y

)

×
(

Lρ/2,m−k+1

∥
∥∂x∂m−k

xj
Uε
∥
∥

L2

)

×
(

Lρ/2,m

∥
∥∂m

xj
Uε+2∂t∂

m
xj

Uε
∥
∥

L2

)

,

J2=
+∞

∑
m=0

m

∑
k=[m

2 ]+1

m!

k!(m−k)!

Lρ/2,m

Lρ,k+2Lρ/2,m−k+1

(

Lρ,k+2

∥
∥∂k

xj
∂yuε

∥
∥

L∞
x L2

y

)

×
(

Lρ/2,m−k+1

∥
∥∂x∂m−k

xj
Uε
∥
∥

L2

)

×
(

Lρ/2,m

∥
∥∂m

xj
Uε+2∂t∂

m
xj

Uε
∥
∥

L2

)

.

Repeating the computation in (2.29) yields

J1≤C|uε|Xρ/2
|Uε|2Yρ/2

.

Moreover, by observing

∀k≥
[m

2

]

+1,
m!

k!(m−k)!

Lρ/2,m

Lρ,k+2Lρ/2,m−k+1
≤27−k(k+2)6ρ−4,

and by using a similar argument as in (A.1), we conclude

J2≤C|uε|Xρ
|Uε|2Yρ/2

.

Thus,

+∞

∑
m=0

L2
ρ/2,m

∣
∣
(
∂m

xj
(Vε∂yuε), ∂m

xj
Uε+2∂t∂

m
xj

Uε
)

L2

∣
∣≤C|uε|Xρ

|Uε|2Yρ/2
.

Similarly, we have

+∞

∑
m=0

L2
ρ/2,m

∣
∣
(
∂m

xj
((u·∂x)U

ε), ∂m
xj

Uε+2∂t∂
m
xj

Uε
)

L2

∣
∣≤C|u|Xρ

|Uε|2Yρ/2
.

In summary, we have (4.1).

Next we prove (4.2). Recall

Sε =−ε2(Uε ·∂x)v
ε−ε2(u·∂x)V

ε−ε2Vε∂yvε−ε2v∂yVε.
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Following the argument used in (A.1) with slight modification, we can show that

+∞

∑
m=0

L2
ρ/2,m

∣
∣
(
∂m

xj
(ε2(Uε ·∂x)v

ε), ∂m
xj

Vε+2∂t∂
m
xj

Vε
)

L2

∣
∣

≤C|εvε|Xρ
|Uε|Xρ/2

|εVε|Xρ/2
≤C|εvε|Xρ

|Uε|2Yρ/2
+C|εvε|Xρ

|εVε|2Yρ/2
.

Similarly, by observing ∂yvε=−∂x ·uε, we have

+∞

∑
m=0

L2
ρ/2,m

∣
∣
(
∂m

xj
(ε2Vε∂yvε), ∂m

xj
Vε+2∂t∂

m
xj

Vε
)

L2

∣
∣

≤C|uε|Xρ
|εVε|2Xρ/2

≤C|uε|Xρ
|εVε|2Yρ/2

.

Using a similar computation as in (2.29) and (A.1) gives

+∞

∑
m=0

L2
ρ/2,m

∣
∣
(
∂m

xj
(ε2(u·∂x)V

ε), ∂m
xj

Vε+2∂t∂
m
xj

Vε
)

L2

∣
∣≤C|u|Xρ

|εVε|2Yρ/2
.

Finally,

+∞

∑
m=0

L2
ρ/2,m

∣
∣
(
∂m

xj
(ε2v∂yVε), ∂m

xj
Vε+2∂t∂

m
xj

Vε
)

L2

∣
∣≤C|u|Xρ

|εVε|2Yρ/2
.

Combining the above estimates yields (4.2).

Proof of (4.3). Observe that

∂2
t v=−

∫ y

0
∂2

t ∂x ·udỹ.

Then it follows from Definition 1.1 that

+∞

∑
m=0

L2
ρ/2,m

∥
∥∂m

xj
∂2

t v
∥
∥2

L2 ≤
+∞

∑
m=0

L2
ρ/2,m

L2
ρ,m+1

L2
ρ,m+1

∥
∥∂m

xj
∂2

t v
∥
∥2

L2

≤C
+∞

∑
m=0

m+1

2m+1ρ
L2

ρ,m+1

∥
∥∂x∂m

xj
∂2

t u
∥
∥

2

L2 ≤C|∂tu|
2
Xρ

.

Similarly, using again the relation ∂yv=−∂x ·u, we have

+∞

∑
m=0

L2
ρ/2,m

(∥
∥∂m

xj
∂tv
∥
∥2

L2+
∥
∥∂m

xj
∆xv

∥
∥2

L2+
∥
∥∂m

xj
∂2

yv
∥
∥2

L2

)
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≤C
+∞

∑
m=0

L2
ρ,m+1

(∥
∥∂x∂m

xj
∂tu
∥
∥2

L2+
∥
∥∂x∂m

xj
∂yu
∥
∥2

L2

)

+C
+∞

∑
m=0

L2
ρ,m+3

∥
∥∂x∂m

xj
∆xu

∥
∥2

L2 ≤C|u|2Xρ
.

Combining the above estimates gives

+∞

∑
m=0

L2
ρ/2,m

(

−ε2∂m
xj

(
∂2

t +∂t−ε2∆x−∂2
y

)
v, ∂m

xj
Vε+2∂t∂

m
xj

Vε
)

L2

≤Cε
(
|u|Xρ

+|∂tu|Xρ

)
|εVε|Xρ/2

.

Moreover, using a similar computation as in (A.1) yields

+∞

∑
m=0

L2
ρ/2,m

(

−ε2∂m
xj
(u·∂x+v∂y)v, ∂m

xj
Vε+2∂t∂

m
xj

Vε
)

L2
≤Cε|u|2Xρ

|εVε|Xρ/2
.

Thus the estimate (4.3) follows.

Proof of (2.35) and (2.36). Letting t= 0 in (2.34) and then applying ∂m
xj

to the both

sides of the equation, we obtain by standard elliptic theory that

∥
∥∂m

xj
∂x p|t=0

∥
∥2

L2
x
≤
(∥
∥∂m

xj

[
(u0 ·∂x)u0+(∂x ·u0)u0

]∥
∥

L2+
∥
∥∂m

xj
∂2

yu0

∥
∥

L2

)

×
∥
∥∂m

xj
∂x p|t=0

∥
∥

L2
x
.

Then using a similar computation as in (A.1) gives

∞

∑
m=0

L2
ρ0 ,m

∥
∥∂m

xj
∂x p|t=0

∥
∥2

L2
x

≤C
(

|u0|
2
X2ρ0

+
∣
∣∂yu0

∣
∣
Xρ0

)
(

∞

∑
m=0

L2
ρ0 ,m

∥
∥∂m

xj
∂x p|t=0

∥
∥

2

L2
x

) 1
2

.

Thus (2.35) follows. Similar argument holds for (2.36).
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