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Abstract. The classical formulation of the Kirchhoff-Love theory of nonlinearly
elastic shallow shells consists of a system of nonlinear partial differential equa-
tions and boundary conditions whose unknowns are the Cartesian components
of the displacement field of the middle surface of the shell subjected to ap-
plied forces. We show that this system is equivalent to a system whose sole
unknowns are the bending moments and stress resultants inside the middle
surface of the shell. This system thus provides a direct method for computing
the stresses appearing in such a shell, without any recourse to the displacement
field. To this end, we first establish specific compatibility conditions of Saint-
Venant type for the bending moments and stress resultants; we then identify
the boundary conditions that these fields must satisfy.
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1 Introduction

A shallow shell is a thin shell whose middle surface is “almost planar”, in the
sense that the principal curvatures of the middle surface of the shell are of the
order of its thickness (the precise definition is given in Section 2).
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If a shallow shell is made of an elastic material and is subjected to external
forces, the shell will undergo a deformation to reach an equilibrium state, where
the corresponding internal stresses are given in terms of the displacement field
and its partial derivatives by means of the constitutive equation of the elastic ma-
terial from which the shell is made. The displacement field then satisfies a specific
boundary value problem formed by a system of partial differential equations and
boundary conditions defined over a three dimensional domain representing the
reference configuration of the shell.

The classical Kirchhoff-Love theory for nonlinearly elastic shallow shells pro-
vides a way to compute the internal stresses and the displacement field inside
a shallow shell by solving a boundary value problem defined over a two-dimen-
sional domain, whose unknown is the vector field formed by the Cartesian com-
ponents of the displacement field of the middle surface of the reference configu-
ration of the shell.

More specifically, the classical formulation of the Kirchhoff-Love theory com-
putes the internal stresses in the deformed shallow shell in two stages: First, the
displacement field of the middle surface of the shallow shell is computed by solv-
ing a specific boundary value problem (Section 2); Second, the internal stresses
are computed in terms of this displacement field by using the constitutive equa-
tion of the elastic material constituting the shell.

The objective of this paper is to provide a simpler way to compute the internal
stresses in the deformed shallow shell by means of an intrinsic formulation, the
main feature of which is to entirely eliminate the need of computing the displace-
ment field. This is done by introducing a new boundary value problem whose
sole unknowns are the two-dimensional stresses, or equivalently the strains, of
the middle surface of the shell and by proving that the two-dimensional stresses
found in this way coincide with those found by solving the classical boundary
value problem of Kirchhoff-Love (Theorems 4.1 and 4.2).

More specifically, we show that the bending moments and stress resultants of
the middle surface of the deformed shell are the symmetric tensor fields (all the
notation used in this introduction is defined in Section 2)

(Mαβ) : ω→S
2, (Nαβ) : ω→S

2

that satisfy the following boundary value problem (see Theorem 4.1):

−∂βNαβ= pα in ω,

−∂αβMαβ−∂α

(

Nαβ[∂βζ3+ε∂βh]
)

= p3+∂αqα in ω,

Nαβνβ=Mαβνανβ=0 on γ1,

Nαβνα(∂βζ3+ε∂βh)+(∂α Mαβ)νβ+∂τ(Mαβνατβ)=−qανα on γ1,
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∂αFβσ−∂βFασ =0 in ω,

∂αβEστ+∂στEαβ−∂ασEβτ−∂βτEασ

=FασFβτ−FαβFστ+ε
(

∂ασhFβτ+∂βτhFασ−∂αβhFστ−∂στhFαβ

)

in ω,

Eαβτατβ=∂σEαβτα(τβνσ−2τσνβ)−κEαβνανβ=Fαβτβ=0 on γ0,

where

bαβστ :=
1

8µ
(δασδβτ+δατδβσ)−

λ

4µ(3λ+2µ)
δστδαβ

denote the components of the inverse of the two-dimensional elasticity tensor of
the shell, and

Eαβ :=
1

ε
bαβστ Nστ , Fαβ :=−

3

ε3
bαβστ Mστ

denote the components of the strain tensors inside the middle surface of the shell.
The above system constitute our intrinsic formulation of the Kirchhoff-Love

theory of a nonlinearly elastic shallow shell.
The components ζi : ω → R of the displacement field of the middle surface

of the shell found in the classical formulation of the same theory can then be
recovered a posteriori from the solution of our intrinsic formulation above by
solving the system

1

2

(

∂αζβ+∂βζα+ε(∂αh∂βζ3+∂βh∂αζ3)+∂αζ3∂βζ3

)

=Eαβ in ω,

∂αβζ3=Fαβ in ω,

ζi =∂νζ3=0 on γ0.

The main objective of this paper thus consists in showing that the intrinsic the-
ory of elasticity, whose origin goes back to the founding papers of Chien [3,4] and
Antman [2], can also be applied to nonlinearly elastic shallow shells, thus comple-
menting earlier works where it has been shown to apply to three-dimensional lin-
early elastic bodies [7], three-dimensional nonlinearly elastic bodies [9], linearly
elastic plates [10], nonlinearly elastic plates [8, 12], and linearly elastic shells [11].

2 The classical formulation of the Kirchhoff-Love

theory of a nonlinearly elastic shallow shell

We briefly describe here the classical Kirchhoff-Love theory for nonlinearly elastic
shallow shells. For more details, see, e.g., Ciarlet [5].
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In all that follows, Greek indices vary in the set {1,2}, save in the notations ∂τ

and ∂ν which respectively designate the tangential and normal derivative opera-
tors along the boundary of a domain ω⊂R2, Latin indices vary in the set {1,2,3},
and the summation convention for repeated Greek or Latin indices is used. Vec-
tors and vector-valued functions are denoted by boldface letters.

The notations E3, ·, ∧, and |·|, respectively designate the three-dimensional
Euclidean space, the inner product in E

3, the vector product in E
3, and the Eu-

clidean norm in E3. The notation ei designate the i-th vector of a Cartesian basis
in E3. A generic point in the “horizontal” plane spanned by the vectors eα is de-
noted y=(yα) and the variable along the “vertical” vector e3 is denoted x3. Partial
derivative operators are denoted ∂α := ∂/∂yα, ∂3 := ∂/∂x3, and ∂αβ := ∂2/∂yα∂yβ.

The space of all real 2×2 symmetric matrices is denoted S2.
We adopt the definition of a shallow shell from Ciarlet and Miara [13] ex-

pressed in Cartesian coordinates (other definitions are possible, for instance us-
ing curvilinear coordinates as in, e.g., Ciarlet [6]). A shallow shell is a three-
dimensional body whose reference configuration is the closure of a set of the form

Ω̂ :=
{

θ(y)+x3a3(y); y∈ω, x3∈]−ε,ε[
}

,

where ω is a bounded and connected open subset of R2, ε>0, h∈C2(ω),

θ(y) :=
(

y1,y2,εh(y)
)

for all y=(y1,y2)∈ω,

a3(y) :=
∂1θ(y)∧∂2θ(y)

|∂1θ(y)∧∂2θ(y)|
for all y∈ω.

The set θ(ω) is called the middle surface of the shell and 2ε>0 is the thickness;
note that, at each y∈ω, a3(y) is a unit vector, normal to the middle surface at the
point θ(y).

We consider a shallow shell made of a homogeneous and isotropic nonlinearly
elastic material whose reference configuration is a natural state (i.e., stress-free).
Thus the two-dimensional constitutive equation relating the strains and stresses
inside the middle surface of the deformed shell is governed by two Lamé con-
stants λ≥ 0 and µ> 0 by means of the two-dimensional elasticity tensor whose
components are defined by

aαβστ :=
4λµ

λ+2µ
δστδαβ+2µ(δασδβτ+δατδβσ),

where the notation δαβ designates the Kronecker symbol.
We assume that the shallow shell under consideration is kept fixed on the

subset
Γ̂0 :=

{

θ(y)+x3a3(y); y∈γ0, x3∈]−ε,ε[
}
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of its lateral face, where γ0 is a relatively open subset of the boundary γ of ω, and
that the shell is subjected to applied body and surface forces whose densities per

unit volume and per unit area are respectively denoted by f̂iei ∈ L2(Ω̂;E3) and
ĝiei ∈L2(Γ̂−∪Γ̂+;E3), where

Γ̂− :=
{

θ(y)−εa3(y); y∈ω
}

,

Γ̂+ :=
{

θ(y)+εa3(y); y∈ω
}

,

respectively denote the lower and upper faces of the shallow shell. Then the
resulting two-dimensional forces and momentums along the middle surface of
the shallow shell are defined by their densities piei∈L2(ω;E3) and qαeα∈L2(ω;E3)
per unit area along ω, where

pi(y) :=
∫ ε

−ε
fi(y,x3)dx3+gi(y,ε)+gi(y,−ε),

qα(y) :=
∫ ε

−ε
x3 fα(y,x3)dx3+ε

(

gα(y,ε)−gα(y,−ε)
)

for all y∈ω, with

fi(y,x3) := a(y,x3) f̂i

(

θ(y)+x3a3(y)
)

,

gi(y,x3) := a(y,x3)ĝi

(

θ(y)+x3a3(y)
)

,

a(y,x3) :=
∣

∣

(

∂1θ(y)+x3∂1a3(y)
)

∧
(

∂2θ(y)+x3∂2a3(y)
)
∣

∣

for all y∈ω and x3∈]−ε,ε[.
Under the above assumptions, the classical Kirchhoff-Love theory (so named

after Kirchhoff [16] and Love [17]) asserts that the Cartesian components ζ=(ζi)
of the unknown displacement field ζiei :ω→E3 of the middle surface of the shal-
low shell is a solution to the following minimization problem:

ζ∈V(ω) and J(ζ)= inf
{

J(η); η∈V(ω)
}

,

where

V(ω) :=
{

η=(ηi)∈H1(ω)×H1(ω)×H2(ω); ηi =∂νη3=0 on γ0

}

,

J(η) :=
∫

ω

(

ε

2
aαβστ Êστ(η)Êαβ(η)+

ε3

6
aαβστ∂στη3∂αβη3−piηi+qα∂αη3

)

dy,

and

Êαβ(η) :=
1

2

(

∂αηβ+∂βηα+ε(∂αh∂βη3+∂βh∂αη3)+∂αη3 ∂βη3

)

.
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The space V(ω) is thus spanned by the Cartesian components ηi of the ad-
missible displacement fields ηiei of the middle surface of the shell, the func-
tional J represents the total energy of the shallow shell, and the functions Êαβ(η)
and ∂αβη3 denote the Cartesian components of the strain tensor fields associated
with the displacement field ηiei of the middle surface of the shallow shell, where
η=(ηi)∈V (ω).

The equations of the Kirchhoff-Love theory of a nonlinearly elastic shallow
shell are the Euler-Lagrange equations (e.g., [14, 15]) associated with the above
minimisation problem. These Euler-Lagrange equations can be recast as a bound-
ary value problem of partial differential equations and boundary conditions if the
boundary of the set ω and the minimiser ζ are sufficiently smooth.

More specifically, assume that ω is locally on only one side of its boundary
γ :=∂ω and that γ is a Lipschitz-continuous boundary in sense of Adams [1], and
that ζ=(ζi)∈C2(ω)×C2(ω)×C4(ω). Since for all η=(ηi)∈V (ω),

Êαβ(ζ+η)= Êαβ(ζ)+
1

2

(

∂αηβ+∂βηα+ε(∂αh∂βη3+∂βh∂αη3)

+∂αζ3∂βη3+∂βζ3∂αη3

)

+
1

2
∂αη3∂βη3,

one deduces that the Gâteaux derivative of J at ζ (it is easily seen that J :V (ω)→R

is Fréchet differentiable) in the direction η is given by

J′(ζ)(η)=
∫

ω
N̂αβ(ζ)∂βηαdy+

∫

ω
N̂αβ(ζ)(∂βζ3+ε∂βh)∂αη3dy

−
∫

ω
M̂αβ(ζ)∂αβη3dy−

∫

ω
piηidy+

∫

ω
qα∂αη3dy,

where

N̂αβ(ζ) := εaαβστ Êστ(ζ), M̂αβ(ζ) :=−
ε3

3
aαβστ∂στζ3.

Note that the functions N̂αβ(ζ) and M̂αβ(ζ), which respectively represent the
stress resultants and the bending moments of the middle surface of the deformed
shallow shell associated with the displacement field ζiei, satisfy the symmetry
conditions

N̂αβ(ζ)= N̂βα(ζ), M̂αβ(ζ)= M̂βα(ζ).

Consequently, if ζ∈V(ω) is a minimiser of J over V(ω), then it must satisfies the
Euler-Lagrange equations

J′(ζ)(η)=0 for all η∈V (ω).
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Let (να) denote the Cartesian coordinates of the unit inner normal vector field
along γ, let (τα) denote the Cartesian coordinates of the unit tangent vector field
along γ defined by

τ1 :=ν2 and τ2 :=−ν1 on γ,

and let ∂ν:=να∂α and ∂τ :=τα∂α respectively denote the normal derivative operator
and the tangent derivative operator along γ. Then the above Euler-Lagrange equ-
ations are equivalent to the boundary value problem

−∂βN̂αβ(ζ)= pα in ω,

−∂αβ M̂αβ(ζ)−∂α

(

N̂αβ(ζ)[∂βζ3+ε∂βh]
)

= p3+∂αqα in ω,

ζi =∂νζ3=0 on γ0,

N̂αβ(ζ)νβ =0 on γ1,

M̂αβ(ζ)νανβ=0 on γ1,

N̂αβ(ζ)[∂βζ3+ε∂βh]να+
(

∂αM̂αβ(ζ)
)

νβ+∂τ

(

M̂αβ(ζ)νατβ

)

=−qανα on γ1.

This equivalence is a straightforward consequence of the integration by parts for-
mula and of the fundamental theorem in the calculus of variations.

3 Nonlinear Saint-Venant equations and boundary

conditions for the stress resultants and bending

moments

Given any smooth enough vector field η=(ηi) : ω→R3, the corresponding stress
resultants and bending moments are defined by the functions (Section 2)

N̂αβ(η) := εaαβστ Êστ(η), M̂αβ(η) :=−
ε3

3
aαβστ∂στη3,

where

aαβστ :=
4λµ

λ+2µ
δστδαβ+2µ(δασδβτ+δατδβσ),

Êαβ(η) :=
1

2

(

∂αηβ+∂βηα+ε(∂αh∂βη3+∂βh∂αη3)+∂αη3 ∂βη3

)

.

The next theorem shows that the functions N̂αβ(η) and M̂αβ(η) characterise
a vector field η belonging to the space V(ω) appearing in the definition of the clas-
sical Kirchhoff-Love theory for nonlinearly elastic shallow shells (see Section 2).
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Theorem 3.1. Let ω⊂R
2 be a connected open set with a Lipschitz-continuous boundary

γ, let γ0 be a non-empty relatively open subset of γ, and let h∈C2(ω). Define the space

V(ω) :=
{

η=(ηi)∈H1(ω)×H1(ω)×H2(ω); ηi =∂νη3=0 on γ0

}

.

Then the following assertions hold:

(i) If η,ζ∈H1(ω)×H1(ω)×H2(ω) satisfy

M̂αβ(η)= M̂αβ(ζ) and N̂αβ(η)= N̂αβ(ζ) in L2(ω),

then

Êαβ(η)= Êαβ(ζ) and ∂αβη3=∂αβζ3 in L2(ω).

(ii) If η,ζ∈H1(ω)×H1(ω)×H2(ω) satisfy

Êαβ(η)= Êαβ(ζ) and ∂αβη3=∂αβζ3 in L2(ω),

then there exist six constants a1,a2,a3,b,d1,d2∈R such that

ζ1(y)=η1(y)−d1η3(y)+a1−by2−
d1

2
(d1y1+d2y2)−εd1h(y),

ζ2(y)=η2(y)−d2η3(y)+a2+by1−
d2

2
(d1y1+d2y2)−εd2h(y),

ζ3(y)=η3(y)+a3+(d1y1+d2y2)

for almost all y=(y1,y2)∈ω.

(iii) If η,ζ∈V(ω) satisfy

Êαβ(η)= Êαβ(ζ) and ∂αβη3=∂αβζ3 in ω,

then η=ζ.

Proof. If two symmetric tensor fields (Sαβ) and (Tαβ) satisfy

Tαβ= aαβστSαβ,

then the definition of the functions aαβστ implies that

Tαβ=
4λµ

λ+2µ
Sσσδαβ+4µSαβ.
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In particular then,

Tσσ =

(

8λµ

λ+2µ
+4µ

)

Sσσ.

Therefore, replacing Sσσ by this expression in the previous relation yields

Tαβ=
λ

3λ+2µ
Tσσδαβ+4µSαβ,

or equivalently,

Sαβ =bαβστTστ ,

where

bαβστ :=
1

8µ
(δασδβτ+δατδβσ)−

λ

4µ(3λ+2µ)
δστδαβ.

Assertion (i) is proved by replacing the pair (Sαβ ,Tαβ) in the above relations

successively by the pairs (Êαβ(η),N̂αβ(η)), (Êαβ(ζ),N̂αβ(ζ)), (∂αβη3,M̂αβ(η)), and

(∂αβζ3,M̂αβ(ζ)).

To prove assertion (ii) let η and ζ be two vector fields in H1(ω)×H1(ω)×
H2(ω) satisfying

Êαβ(η)= Êαβ(ζ) and ∂αβη3=∂αβζ3 in ω.

Since ω is connected, the last relations imply that there exist constants a3,d1,d2

∈R such that

ζ3(y)=η3(y)+a3+(d1y1+d2y2) for all y=(yα)∈ω.

Define the vector field ξ :=(ξi) : ω→R3 by

ξα(y) := ζα(y)+εdαh(y), ξ3(y) := ζ3(y), y∈ω.

Then the relations Êαβ(η)= Êαβ(ζ) imply that

1

2
(∂αηβ+∂βηα+∂αη3∂βη3)=

1

2
(∂αξβ+∂βξα+∂αξ3 ∂βξ3) in ω.

By a theorem due to Ciarlet and Mardare (see [8, Theorem 4.2]; the theorem is

stated in ibid. for simply-connected domains, but the proof mentions that the one

conclusion used here holds in fact under the weaker assumption that ω is only

connected, like here), there then exist constants a1,a2,b∈R such that

ξ1(y)=η1(y)−d1η3(y)+a1−by2−
d1

2
(d1y1+d2y2),

ξ2(y)=η2(y)−d2η3(y)+a2+by1−
d2

2
(d1y1+d2y2)
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for almost all y=(y1,y2)∈ω. Consequently,

ζ1(y)=η1(y)−d1η3(y)+a1−by2−
d1

2
(d1y1+d2y2)−εd1h(y),

ζ2(y)=η2(y)−d2η3(y)+a2+by1−
d2

2
(d1y1+d2y2)−εd2h(y),

ζ3(y)=η3(y)+a3+(d1y1+d2y2)

for almost all y=(y1,y2)∈ω.

Assertion (iii) is a consequence of assertion (ii) together with the boundary

conditions appearing in the definition of the space V(ω). To see this, let η,ζ ∈
V(ω) be such that

Êαβ(η)= Êαβ(ζ) and ∂αβη3=∂αβζ3 in ω.

Then assertion (ii) shows that there exist constants a1,a2,a3,b,d1,d2 ∈R such that

the above relations hold.

Furthermore, the assumption that the vector fields η and ζ belong to the space

V(ω) implies in particular that their components satisfy boundary conditions

∂αζ3=∂αη3=0 and ζ3=η3=0 on γ0.

Since γ0 is non-empty by assumption, this implies dα=0 and a3=0.

Besides, the assumption that the vector fields η and ζ belong to the space V(ω)
implies that their components satisfy boundary conditions

ζα =ηα=0 on γ0.

Therefore a1= a2=b=0. The proof is complete.

The next theorem shows that the stress resultants and bending moments

N̂αβ(η) := εaαβστ Êστ(η), M̂αβ(η) :=−
ε3

3
aαβστ∂στη3,

or equivalently the components

Êαβ(η) :=
1

ε
bαβστ N̂στ(η), ∂αβη3 :=−

3

ε3
bαβστ M̂στ(η)

of the strain tensor fields necessarily satisfy specific compatibility conditions of
Saint-Venant type, and that these conditions become sufficient if the set ω is
simply-connected.
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Theorem 3.2. (i) Let ω⊂R
2 be a connected open set, let ε>0, let h∈C2(ω), and let

η=(ηi)∈H1(ω)×H1(ω)×H2(ω).

Then the functions

Eαβ :=
1

2

(

∂αηβ+∂βηα+ε(∂αh∂βη3+∂βh∂αη3)+∂αη3∂βη3

)

∈L2(ω),

Fαβ :=∂αβη3∈L2(ω)

satisfy the relations

Eαβ=Eβα in L2(ω),

Fαβ =Fβα in L2(ω),

∂αFβσ =∂βFασ in H−1(ω),

∂αβEστ+∂στEαβ−∂ασEβτ−∂βτEασ

=Fασ Fβτ−FαβFστ+ε
(

∂ασhFβτ+∂βτhFασ−∂αβhFστ−∂στhFαβ

)

in H−2(ω).

(ii) Let ω⊂R2 be a simply-connected open set, let ε>0, let h∈C2(ω), and let Eαβ ∈

L2(ω) and Fαβ ∈L2(ω) be such that

Eαβ=Eβα in L2(ω),

Fαβ =Fβα in L2(ω),

∂αFβσ =∂βFασ in H−1(ω),

∂αβEστ+∂στEαβ−∂ασEβτ−∂βτEασ

=Fασ Fβτ−FαβFστ+ε(∂ασhFβτ+∂βτhFασ−∂αβhFστ−∂στhFαβ) in H−2(ω).

Then there exists a vector field η=(ηi)∈H1(ω)×H1(ω)×H2(ω) such that

Eαβ=
1

2

(

∂αηβ+∂βηα+ε(∂αh∂βη3+∂βh∂αη3)+∂αη3∂βη3

)

in L2(ω),

Fαβ =∂αβη3 in L2(ω).

Proof. (i) Given any vector field η=(ηi)∈H1(ω)×H1(ω)×H2(ω), let

Aαβ :=
1

2
(∂αηβ+∂βηα+∂αη3∂βη3) in L2(ω),

Bαβ :=∂αβη3 in L2(ω).
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Then, by [8, Theorem 4.1], the functions Aαβ ∈ L2(ω) and Bαβ ∈ L2(ω) satisfy the

compatibility conditions

Aαβ =Aβα in L2(ω),

Bαβ=Bβα in L2(ω),

∂αBβσ=∂βBασ in H−1(ω),

∂αβ Aστ+∂στ Aαβ−∂ασ Aβτ−∂βτ Aασ

=BασBβτ−BαβBστ in H−2(ω).

Next, the definition of the functions Eαβ and Fαβ in assertion (i) implies that

Aαβ=Eαβ−
ε

2
(∂αh∂βη3+∂βh∂αη3) in L2(ω),

Bαβ=Fαβ in L2(ω).

Replacing the functions Aαβ and Bαβ by these expressions in the above compat-

ibility conditions yields the compatibility conditions for Eαβ and Fαβ stated in

assertion (i).

(ii) Let Eαβ ∈ L2(ω) and Fαβ ∈ L2(ω) be functions that satisfy the compatibility

conditions stated in assertion (ii). In particular then

Fαβ =Fβα in L2(ω),

∂αFβσ =∂βFασ in H−1(ω).

Since ω is simply-connected, [8, Theorem 4.2] shows that there exists a function

η3∈H2(ω) such that

Fαβ =∂αβη3 in L2(ω).

Define the functions

Aαβ :=Eαβ−
ε

2
(∂αh∂βη3+∂βh∂αη3) in L2(ω).

Then replacing the functions Eαβ by (Aαβ+
ε
2(∂αh∂βη3+∂βh∂αη3)) in the compat-

ibility conditions stated in assertion (ii) shows that the functions Aαβ and Fαβ

satisfy the relations

Aαβ=Aβα in L2(ω),

Fαβ =Fβα in L2(ω),
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∂αFβσ =∂βFασ in H−1(ω),

∂αβ Aστ+∂στ Aαβ−∂ασ Aβτ−∂βτ Aασ

=FασFβτ−FαβFστ in H−2(ω).

Consequently, since ω is simply-connected, [8, Theorem 4.2] can again be applied

to prove the existence of functions ηα∈H1(ω) such that

Aαβ=
1

2
(∂αηβ+∂βηα+∂αη3 ∂βη3) in L2(ω).

Thus the vector field η=(ηi)∈ H1(ω)×H1(ω)×H2(ω) found in this fashion

satisfies

Eαβ=
1

2
(∂αηβ+∂βηα+ε(∂αh∂βη3+∂βh∂αη3)+∂αη3∂βη3) in L2(ω),

Fαβ =∂αβη3 in L2(ω).

The proof is complete.

The next theorem shows that if a smooth enough vector field η=(ηi) : ω→R3

satisfies the boundary conditions

ηi =∂νη3=0 on γ0,

then the stress resultants and bending moments

N̂αβ(η) := εaαβστ Êστ(η), M̂αβ(η) :=−
ε3

3
aαβστ∂στη3,

or equivalently the strain tensor fields

Êαβ(η) :=
1

ε
bαβστ N̂στ(η), ∂αβη3 :=−

3

ε3
bαβστ M̂στ(η)

necessarily satisfy specific boundary conditions.

Theorem 3.3. Let ω⊂R2 be a connected open set with a boundary γ of class C2, let γ0

be a non-empty relatively open subset of γ, and let h∈C2(ω). Let (ηi)∈C2(ω;R3) be

a vector field that satisfies the boundary conditions

ηi =∂νη3=0 on γ0.
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Then the functions

Eαβ :=
1

2

(

∂αηβ+∂βηα+ε(∂αh∂βη3+∂βh∂αη3)+∂αη3∂βη3

)

=Eβα ∈C1(ω),

Fαβ :=∂αβη3=Fβα ∈C0(ω)

satisfy the boundary conditions

Eαβτατβ=∂σEαβτα(τβνσ−2τσνβ)−κEαβνανβ=0 on γ0,

Fαβτβ=0 on γ0,

where (να) denotes the inner normal unit vector field along γ, τ1 :=ν2, τ2 :=−ν1, and

κ :=να ·∂ττα

denotes the signed curvature of the planar curve γ.

Proof. Let η=(ηi)∈C2(ω;R3) be such that

ηi =∂νη3=0 on γ0.

Then [10, Theorem 4.1] implies that the functions

cαβ :=
1

2
(∂αηβ+∂βηα)∈C1(ω), Fαβ :=∂αβη3∈C0(ω)

satisfy the boundary conditions

cαβτατβ=∂σcαβτα(τβνσ−2τσνβ)−κcαβνανβ=0 on γ0, (3.1a)

Fαβτατβ=Fαβτανβ=0 on γ0. (3.1b)

The relation (3.1b), the definition of the vector fields (να) and (τα), and the

symmetries Fαβ =Fβα in ω, together imply that

Fαβτβ=0 on γ0

on the one hand.

The boundary conditions η3=∂νη3=0 on γ0 imply that

∂αη3=0 on γ0,

∂σ(∂αη3∂βη3)=∂σαη3∂βη3 +∂αη3∂σβη3=0 on γ0.
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Then the definition of the functions

Eαβ := cαβ+
ε

2
(∂αh∂βη3+∂βh∂αη3)+

1

2
(∂αη3∂βη3) in ω

implies that

Eαβ= cαβ and ∂σEαβ=∂σcαβ on γ0.

Therefore,

Eαβτατβ= cαβτατβ=0 on γ0,

∂σEαβτα(τβνσ−2τσνβ)−κEαβνανβ

=∂σcαβτα(τβνσ−2τσνβ)−κcαβνανβ=0 on γ0

on the other hand. The proof is complete.

The next theorem shows that the converse of Theorem 3.3 holds under the
additional assumption that γ0 is connected.

Theorem 3.4. Let ω⊂R2 be a connected open set with a boundary γ of class C2, let γ0

be a non-empty, connected and relatively open subset of γ, and let h∈C2(ω).
Let functions Eαβ ∈C1(ω) and Fαβ ∈C0(ω) satisfy the following properties: There

exists a vector field (ηi)∈C2(ω;R3) such that

Eαβ=
1

2

(

∂αηβ+∂βηα+ε(∂αh∂βη3+∂βh∂αη3)+∂αη3∂βη3

)

in ω,

Fαβ =∂αβη3 in ω,

and the following boundary conditions are satisfied:

Eαβτατβ=∂σEαβτα(τβνσ−2τσνβ)−κEαβνανβ=0 on γ0,

Fαβτβ=0 on γ0,

where (να) denote the inner normal unit vector field along the planar curve γ, τ1 := ν2,

τ2 :=−ν1 and κ :=να ·∂ττα.

Then there exist constants a1,a2,a3,b,d1,d2 ∈R such that the vector field ζ = (ζi) :

ω→R3, defined by

ζ1(y) :=η1(y)−d1η3(y)+a1−by2−
d1

2
(d1y1+d2y2)−εd1h(y),

ζ2(y) :=η2(y)−d2η3(y)+a2+by1−
d2

2
(d1y1+d2y2)−εd2h(y),

ζ3(y) :=η3(y)+a3+(d1y1+d2y2), y=(y1,y2)∈ω
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satisfies

1

2

(

∂αζβ+∂βζα+ε(∂αh∂βζ3+∂βh∂αζ3)+∂αζ3∂βζ3

)

=Eαβ in ω,

∂αβζ3=Fαβ in ω,

ζi =∂νζ3=0 on γ0.

Proof. Let functions Eαβ and Fαβ satisfy the assumptions of the theorem. In par-

ticular then

Fαβτβ=0 on γ0.

Consequently,

∂τ(∂αη3)=Fαβτβ=0 on γ0,

which means that the tangential derivative of each function (∂αη3) vanishes along

the connected curve γ0; hence there exist two constants d1,d2∈R such that

∂αη3(y)+dα =0 for all y∈γ0.

Define the vector field (ξi)∈C2(ω;R3) by

ξ1(y) :=η1(y)−d1η3(y)−
d1

2
(d1y1+d2y2)−εd1h(y),

ξ2(y) :=η2(y)−d2η3(y)−
d2

2
(d1y1+d2y2)−εd2h(y),

ξ3(y) :=η3(y)+(d1y1+d2y2), y=(y1,y2)∈ω.

Then

1

2

(

∂αξβ+∂βξα+ε(∂αh∂βξ3+∂βh∂αξ3)+∂αξ3∂βξ3

)

=Eαβ in ω,

∂αβξ3=Fαβ in ω,

∂αξ3=∂αη3+dα=0 on γ0,

∂σ(∂αξ3∂βξ3)=∂σαξ3∂βξ3 +∂αξ3∂σβξ3=0 on γ0.

Define the functions cαβ∈C1(ω) by

cαβ :=
1

2
(∂αξβ+∂βξα).

Then, combining the relations

cαβ=Eαβ−
ε

2
(∂αh∂βξ3+∂βh∂αξ3)−

1

2
∂αξ3∂βξ3
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with the above boundary conditions satisfied by ξ3, we infer that

cαβ=Eαβ and ∂σcαβ=∂σEαβ on γ0.

Consequently, the boundary conditions for the functions Eαβ and Fαβ appear-

ing in the statement of the theorem imply that the functions cαβ := 1
2(∂αξβ+∂βξα)

and Fαβ := ∂αβξ3 associated with the vector field (ξi) satisfy the boundary condi-

tions

cαβτατβ=∂σcαβτα(τβνσ−2τσνβ)−κcαβνανβ=0 on γ0,

Fαβτατβ=Fαβτανβ=0 on γ0.

Then a theorem due to Ciarlet & Mardare (see [10, Theorem 4.1]) implies that

there exists constants a1,a2,a3,b∈R such that

ζi =∂νζ3=0 on γ0,

where

ζ1(y) := ξ1(y)+a1−by2, y=(yα)∈ω,

ζ2(y) := ξ2(y)+a2+by1, y=(yα)∈ω,

ζ3(y) := ξ3(y)+a3, y=(yα)∈ω.

This proves that the vector field ζ = (ζi)∈ C2(ω;R3) satisfies all the announced

properties. The proof is complete.

4 New intrinsic formulation of the Kirchhoff-Love

theory of a nonlinearly elastic shallow shell

We are now in a position to introduce our new intrinsic formulation of the Kirch-
hoff-Love theory of a nonlinearly elastic shallow shell and to justify it by prov-
ing its equivalence to the classical formulation of the same equations, cf. Theo-
rems 4.1 and 4.2 below.

An intrinsic formulation of the Kirchhoff-Love theory for a nonlinearly elastic
shallow shell consists in replacing the unknown displacement field appearing in
the classical approach by new unknowns, which are in effect either “measures
of strain” or “measures of stress” inside the deformed shell, with the property
that the displacement field can be recovered a posteriori from them, once the
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problem is solved in its intrinsic formulation. As we already proved in Section 3
that the displacement field can be recovered uniquely from the stress resultants
and bending moments of the middle surface of the deformed shell, it remains to
find the equations satisfied by these new unknowns. This is the object of the next
theorem.

Recall that λ≥ 0 and µ> 0 denote the Lamé constants of the elastic material
constituting the shell,

aαβστ :=
4λµ

λ+2µ
δστδαβ+2µ(δασδβτ+δατδβσ)

denote the components of the corresponding two-dimensional elasticity tensor,
2ε>0 denotes the thickness of the shell, and h∈C2(ω) denotes the function defin-
ing the middle surface of the shell as the graph of the function

x3= εh(y), y∈ω, ω⊂R
2.

The stress resultants and bending moments associated with a displacement
field ζ=(ζi)∈C

2(ω;R3) of the middle surface of the shell are respectively denoted
and defined by

N̂αβ(ζ) := εaαβστ Êστ(ζ), M̂αβ(ζ) :=−
ε3

3
aαβστ∂στζ3,

where

Êαβ(ζ) :=
1

2

(

∂αζβ+∂βζα+ε(∂αh∂βζ3+∂βh∂αζ3)+∂αζ3∂βζ3

)

.

Theorem 4.1. Let ω⊂R2 be an open and connected set with a boundary γ of class C2,

let γ0 be a nonempty relatively open subset of γ, let γ1 :=γ\γ0, and let h∈C2(ω).
Assume that a vector field ζ=(ζi)∈C2(ω;R3) satisfies the boundary value problem

−∂βN̂αβ(ζ)= pα in ω, (4.1a)

−∂αβ M̂αβ(ζ)−∂α(N̂αβ(ζ)[∂βζ3+ε∂βh])= p3+∂αqα in ω, (4.1b)

N̂αβ(ζ)νβ = M̂αβ(ζ)νανβ=0 on γ1, (4.1c)

N̂αβ(ζ)να(∂βζ3+ε∂βh)+(∂α M̂αβ(ζ))νβ

+∂τ(M̂αβ(ζ)νατβ)=−qανα on γ1, (4.1d)

ζi =∂νζ3=0 on γ0. (4.1e)

Then the functions

Eαβ := Êαβ(ζ), Fαβ :=∂αβζ3, Mαβ := M̂αβ(ζ), Nαβ := N̂αβ(ζ)
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satisfy the boundary value problem

−∂βNαβ = pα in ω, (4.2a)

−∂αβ Mαβ−∂α(Nαβ[∂βζ3+ε∂βh])= p3+∂αqα in ω, (4.2b)

Nαβνβ=Mαβνανβ=0 on γ1, (4.2c)

Nαβνα(∂βζ3+ε∂βh)+(∂α Mαβ)νβ+∂τ(Mαβνατβ)=−qανα on γ1, (4.2d)

∂αFβσ−∂βFασ =0 in ω, (4.2e)

∂αβEστ+∂στEαβ−∂ασEβτ−∂βτEασ

=FασFβτ−FαβFστ+ε(∂ασhFβτ+∂βτhFασ−∂αβhFστ−∂στhFαβ) in ω, (4.2f)

Eαβτατβ=∂σEαβτα(τβνσ−2τσνβ)−κEαβνανβ=Fαβτβ=0 on γ0. (4.2g)

Proof. Let ζ =(ζi)∈C2(ω;R3) be a vector field that satisfies the boundary value

problem (4.1). Then

i) Eqs. (4.2a)-(4.2d) are deduced from Eqs. (4.1a)-(4.1d) by using the definition

of the functions Mαβ := M̂αβ(ζ) and Nαβ := N̂αβ(ζ).

ii) Eqs. (4.2e) and (4.2f) are satisfied thanks to the definition of the functions

Eαβ := Êαβ(ζ) and Fαβ :=∂αβζ3 combined with Theorem 3.2 (i).

iii) Eq. (4.2g) was shown to hold in Theorem 3.3.

The proof is complete.

The next theorem shows that the converse of Theorem 4.1 holds under the ad-
ditional assumptions that ω is simply-connected and that γ0 is connected. Recall
that

bαβστ :=
1

8µ
(δασδβτ+δατδβσ)−

λ

4µ(3λ+2µ)
δστδαβ

are the components of the inverse of the two-dimensional elasticity tensor with
components aαβστ .

Theorem 4.2. Let ω⊂R2 be an open and simply-connected set with a boundary γ of class

C2, let γ0 be a nonempty connected and relatively open subset of γ, and let h∈C2(ω).
Let γ1 :=γ\γ0.

Assume that symmetric tensor fields (Mαβ)∈C
0(ω;S2) and (Nαβ)∈C

1(ω;S2) satisfy

the boundary value problem



564 P.G. Ciarlet and C. Mardare / Commun. Math. Anal. Appl., 1 (2022), pp. 545-567

−∂βNαβ= pα in ω, (4.3a)

−∂αβ Mαβ−∂α

(

Nαβ[∂βζ3+ε∂βh]
)

= p3+∂αqα in ω, (4.3b)

Nαβνβ=Mαβνανβ=0 on γ1, (4.3c)

Nαβνα(∂βζ3+ε∂βh)+(∂α Mαβ)νβ+∂τ(Mαβνατβ)=−qανα on γ1, (4.3d)

∂αFβσ−∂βFασ =0 in ω, (4.3e)

∂αβEστ+∂στEαβ−∂ασEβτ−∂βτEασ

=Fασ Fβτ−FαβFστ+ε
(

∂ασhFβτ+∂βτhFασ−∂αβhFστ−∂στhFαβ

)

in ω, (4.3f)

Eαβτατβ=∂σEαβτα(τβνσ−2τσνβ)−κEαβνανβ=Fαβτβ=0 on γ0, (4.3g)

where

Eαβ :=
1

ε
bαβστ Nστ , Fαβ :=−

3

ε3
bαβστ Mστ .

Then there exists a unique vector field ζ=(ζi)∈C2(ω;R3) such that

Mαβ= M̂αβ(ζ) in ω,

Nαβ= N̂αβ(ζ) in ω,

ζi =∂νζ3=0 on γ0.

Consequently, the vector field ζ satisfies the boundary value problem

−∂βN̂αβ(ζ)= pα in ω, (4.4a)

−∂αβ M̂αβ(ζ)−∂α

(

N̂αβ(ζ)[∂βζ3+ε∂βh]
)

= p3+∂αqα in ω, (4.4b)

N̂αβ(ζ)νβ = M̂αβ(ζ)νανβ=0 on γ1, (4.4c)

N̂αβ(ζ)να(∂βζ3+ε∂βh)+
(

∂αM̂αβ(ζ)
)

νβ

+∂τ

(

M̂αβ(ζ)νατβ

)

=−qανα on γ1, (4.4d)

ζi =∂νζ3=0 on γ0. (4.4e)

Proof. Let (Nαβ) ∈ C1(ω;S2) and (Mαβ) ∈ C0(ω;S2) be tensor fields satisfying

Eqs. (4.3). In particular then, the functions

Eαβ :=
1

ε
bαβστ Nστ , Fαβ :=−

3

ε3
bαβστ Mστ

satisfy the compatibility conditions

∂αFβσ−∂βFασ =0 in ω,

∂αβEστ+∂στEαβ−∂ασEβτ−∂βτEασ

=Fασ Fβτ−FαβFστ+ε(∂ασhFβτ+∂βτhFασ−∂αβhFστ−∂στhFαβ) in ω,
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which are precisely the nonlinear Saint-Venant compatibility conditions appear-

ing in Theorem 3.2 (ii) established in Section 3. Hence, there exists a vector field

η=(ηi)∈H1(ω)×H1(ω)×H2(ω) such that

Êαβ(η)=Eαβ and ∂αβη3=Fαβ in ω.

Furthermore, η3∈C2(ω) since Mαβ∈C
0(ω) by assumption. Then the definition

of the functions Êαβ(η) given at the beginning of this section and the assumption

that Nαβ∈C1(ω) together imply that the functions

cαβ :=
1

2
(∂αηβ+∂βηα)

belong to the space C1(ω). Consequently, ηα∈C2(ω) since

∂αβησ=∂αcασ+∂βcβσ−∂σcαβ.

The functions

Eαβ = Êαβ(η), Fαβ =∂αβη3

satisfy in particular the boundary conditions (see Eq. (4.3g))

Eαβτατβ=∂σEαβτα(τβνσ−2τσνβ)−κEαβνανβ=Fαβτβ=0 on γ0.

Then Theorem 3.4 implies that there exist constants a1,a2,a3,b,d1,d2∈R such that

the vector field ζ=(ζi)∈C2(ω;R3), defined for each y=(y1,y2)∈ω by

ζ1(y) :=η1(y)−d1η3(y)+a1−by2−
d1

2
(d1y1+d2y2)−εd1h(y),

ζ2(y) :=η2(y)−d2η3(y)+a2+by1−
d2

2
(d1y1+d2y2)−εd2h(y),

ζ3(y) :=η3(y)+a3+(d1y1+d2y2)

satisfies the boundary conditions

ζi =∂νζ3=0 on γ0.

Besides, Theorem 3.4 shows that

Eαβ=
1

2

(

∂αζβ+∂βζα+ε(∂αh∂βζ3+∂βh∂αζ3)+∂αζ3∂βζ3

)

in ω,

Fαβ =∂αβζ3 in ω,
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which in turn implies that

M̂αβ(ζ) :=−
1

3
ε3aαβστ∂στζ3=−

1

3
ε3aαβστ Fστ =Mαβ in ω,

N̂αβ(ζ) := εaαβστ Êστ(ζ)= εaαβστ Eστ =Nαβ in ω.

Then Eqs. (4.4a)-(4.4d) follow from Eqs. (4.3a)-(4.3d). The proof is complete.
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