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Abstract. Color image segmentation is crucial in image processing and computer vi-
sion. Most traditional segmentation methods simply regard an RGB color image as
the direct combination of the three monochrome images and ignore the inherent color
structures within channels, which contain some key feature information of the image.
To better describe the relationship of color channels, we introduce a quaternion-based
regularization that can reflect the image characteristics more intuitively. Our model
combines the idea of the Mumford-Shah model-based two-stage segmentation method
and the Saturation-Value Total Variation regularization for color image segmentation.
The new strategy first extracts features from the color image and then subdivides the
image in a new color feature space which achieves better performance than meth-
ods in RGB color space. Moreover, to accelerate the optimization process, we use a
new primal-dual algorithm to solve our novel model. Numerical results demonstrate
clearly that the performance of our proposed method is excellent.

AMS subject classifications: 65M10, 78A48

Key words: Color space, pure quaternion, image segmentation, total variation, primal-dual algo-
rithm.

1 Introduction

Color image segmentation is an important and challenging task in image processing and
computer vision. The goal of image segmentation is to divide an image into different
parts with similar characteristics. This process has vast applications in many fields,
such as biomedical imaging [44], object detection [23,50], and astronomical imaging [41],
etc. In the literature, many excellent methods have been proposed for image segmenta-
tion [37, 39, 40, 49, 54]. One of the most effective and significant segmentation models is
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the Mumford-Shah model (MS) [40]. Let Ω⊂R2 be a bounded open connected set, and Γ
be a compact curve in Ω, the MS model can be formulated as

EMS(u,Γ;Ω)=
λ

2

∫
Ω
( f−u)2dx+

µ

2

∫
Ω\Γ
|∇u|2dx+Length(Γ), (1.1)

where λ, µ are positive parameters, f : Ω→R is the degraded image and u : Ω→R is the
ideal image. Here the length of Γ can also be written as H1(Γ), i.e., the 1-dimensional
Hausdorff measure in R2. It is challenging to approximate the solution of Model (1.1)
since it is a nonconvex minimization problem.

Over the years, plenty of methods [1,2,11,12,25,38] have been proposed to minimize
or approximate the Mumford–Shah energy (1.1). Meanwhile, in order to overcome the
computational complexity, numerous models and approaches related to the Mumford-
Shah Model are proposed, such as the famous Chan-Vese Model [16], convex relaxation
approaches [6, 15, 42] and multiphase segmentation algorithms [3, 7, 22, 33, 35, 54], etc.
In [10], a two-stage image segmentation strategy for gray-scale images was proposed
and it performed well on the segmentation task. For this method, the first stage is to find
a smooth image u by minimizing the following energy:

inf
u

{
λ

2

∫
Ω
( f−Au)2dx+

µ

2

∫
Ω
|∇u|2dx+

∫
Ω
|∇u|dx

}
, (1.2)

where A can be the identity operator for noisy observed image f or a blurring operator
for the blurred case. Then the second stage is to segment by thresholding u properly.
Base on the two-stage idea, many novel image segmentation methods [14, 20, 24, 34, 51]
have been proposed. They show the close correlation between image restoration and
segmentation to some extent and all these two-stage methods have achieved good results
in image segmentation.

Conceiving an effective color image segmentation method is not a simple extension of
approaches for gray images, because both the brightness and chrominance information
need to be considered. Most methods are proposed in the usual RGB color space [8, 30,
43,46], but it has been observed that the RGB color space is not suitable for segmentation
since it often fails to reflect features of real-world color images due to the lack of corre-
lation between the three channels of RGB space. In [45], RGB image is converted to the
HSI (Hue, Saturation and Intensity) color space for segmentation. In [4], a segmentation
method for grayscale images is extended to color images in RGB, HSV (hue, saturation
and value) and CB (chroma-brightness) color spaces. It shows that color image in the
HSV color spaces is similar to human color perception, and seems to be grouped more
easily than in RGB color space (see Fig. 2 for illustration). In this paper, we will further
showcase through experiments that image segmentation using features in the HSV space
is valid and effective.

An effective way to represent color images is to use quaternions. Many previous
works [18, 19, 52, 53] employ quaternions to express the color images. Among these
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(a) Color image (b) R channel (c) G channel (d) B channel

Figure 1: From left to right: the color image, the red channel image, the green channel image, and the blue
channel image.

(a) H channel (b) S channel (c) V channel

Figure 2: From left to right: the H channel image, the S channel image, the V channel image.

works, [52] apply the dictionary learning algorithm with quaternions for color image
restoration. They achieve good results by representing color images with the quaternion
matrix and transform their model into the quaternion domain. The quaternions have
been successfully applied in many color image processing problems [17, 55] by using the
quaternion matrix representation. In [29], Jia et al. proposed a new saturation-value color
total variation regularization to restore color image in the HSV color space instead of in
the original RGB color space. As the quaternions can easily represent spatial orientations
and rotations of elements in three-dimensional space, we believe that representing color
images by quaternions can intuitively reflect the structural information between channels
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and is better than simply treat RGB channels as three independent monochrome images.
In this paper, we propose a novel two-stage color image segmentation method based

on the SV-TV regularization. We transform the quaternion-represented color image into
the HSV space to construct a new regularization that focuses on the characteristics of
saturation and value and then propose our two-stage segmentation model based on this
regularization. In the first stage, we represent the color image with a feature extraction
matrix and find a smooth approximation in the color feature domain directly. Followed
by that, we segment the image by thresholding the smooth approximation into different
parts in the second stage. The main contributions of our method are as follows:

• Different from the conventional color image segmentation methods, which treat the
RGB color image as three independent monochrome images, we consider the intrin-
sic connection between multiple channels by introducing the SV-TV regularization
into our model, which reflects that our model considers not only color information
in the RGB space, but also lightness and saturation information in the HSV space.

• We propose an effective two-stage segmentation model based on the SV-TV reg-
ularization for degraded color image (with noise, blur, and missing pixels), and
it overcomes the shortcomings of other traditional segmentation methods that are
less effective in the case of image degradation.

• For the numerical implementation, we design the iterative scheme through a novel
first-order primal-dual algorithm with guaranteed convergence.

The rest of the paper is organized as follows. In Section 2, we review the basic con-
cepts of the quaternions and the SV-TV regularization. We elaborate on our new method
and carefully apply the first-order primal-dual algorithm to solve the optimization model
in Section 3. Experimental results are in Sectionc4. Finally, the conclusion follows in Sec-
tion 5.

2 Quaternion and SV-TV regularization

2.1 Quaternion

Quaternion was first described by Hamilton [26], and recently it is widely used in image
processing as representing color images with quaternions can better preserve the inherent
connection between multiple channels [17]. A function u(x,y) on Ω is defined as

u(x,y)=u0(x,y)+u1(x,y)i+u2(x,y)j+u3(x,y)k, (2.1)

where (x,y)∈Ω, u0(x,y),u1(x,y),u2(x,y),u3(x,y)∈R and i, j, k are imaginary units satis-
fying

i2= j2=k2= ijk=−1.
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For a RGB color image u(x,y), we can represent it by a pure quaternion, i.e., u0(x,y) is
always 0:

u(x,y)=ur(x,y)i+ug(x,y)j+ub(x,y)k, (2.2)

here (x,y) is the pixel location of a color image u, and ur(x,y), ug(x,y), ub(x,y) are the
red, green, and blue (RGB) channels, respectively. The magnitude of u(x,y) is defined by

|u(x,y)|=
√

ur(x,y)2+ug(x,y)2+ub(x,y)2.

2.2 HSV color space and SV-TV regularization

Introduced by [19], a quaternion-represented RGB image u(x,y) described in (2.2) can be
transformed into HSV components (denoted by uh, us, uv, respectively) using quaternion
operations: 

uh(x,y)= tan−1
(
|u(x,y)−µνu(x,y)νµ|
|u(x,y)−νu(x,y)ν|

)
,

us(x,y)=
1
2
|u(x,y)+µu(x,y)µ|,

uv(x,y)=
1
2
|u(x,y)−µu(x,y)µ|,

where µ = 1√
3
(i+j+k) is referred to as the gray-value axis, and ν is an unit and pure

quaternion which is orthogonal to µ. Here i, j, k denote the imaginary units of a quater-
nion and correspond to R, G, B channels respectively in the case of an image. According
to the algebra of quaternions, we have

us(x,y)=
1
3

∥∥∥Cu(x,y)T
∥∥∥

2
, uv(x,y)=

1√
3

∣∣ur(x,y)+ug(x,y)+ub(x,y)
∣∣, (2.3)

where

C=

 2 −1 −1
−1 2 −1
−1 −1 2

, u(x,y)T =

 ur(x,y)
ug(x,y)
ub(x,y)

.

As introduced by Jia et al. [29], we can then define the total variation for saturation chan-
nel and value channel by defining the following norm:

|(∇xu)ij|s =
1
3
‖C(∇xu)ij‖2, (2.4a)

|(∇yu)ij|s =
1
3
‖C(∇yu)ij‖2, (2.4b)

|(∇xu)ij|v =
1√
3
|(∇xur)ij+(∇xug)ij+(∇xub)ij|, (2.4c)

|(∇yu)ij|v =
1√
3
|(∇yur)ij+(∇yug)ij+(∇yub)ij|, (2.4d)
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here we use the first-order backward difference operator with the periodic boundary
condition, i.e., ∇u=(∇xu,∇yu) is defined as

(∇xu)ij =

{
u(i, j)−u(i−1, j), if 1< i≤M, 1≤ j≤N,
u(i, j)−u(M, j), if i=1, 1≤ j≤N,

(∇yu)ij =

{
u(i, j)−u(i, j−1), if 1≤ i≤M, 1< j≤N,
u(i, j)−u(i,N), if 1≤ i≤M, j=1.

Then the SV-TV regularization is expressed as:

SV-TV(u)=
m

∑
i=1

n

∑
j=1

(√
|(∇xu)ij|2s +|(∇yu)ij|2s +α

√
|(∇xu)ij|2v+|(∇yu)ij|2v

)
, (2.5)

where α>0 is the weight of the value component.
To simplify the notations, we let C=PTQP, where

P=



1√
2
−1√

2
0

1√
6

1√
6
−2√

6
1√
3

1√
3

1√
3

, Q=

3 0 0
0 3 0
0 0 0

. (2.6)

We further define
P̂=P⊗I, (2.7)

where I is the identity matrix of appropriate size and denoteq1(i, j)
q2(i, j)
q3(i, j)

= P̂

ur(i, j)
ug(i, j)
ub(i, j)

.

Then the SV-TV(u) can be rewritten as the following form

SV-TV(u)

=
m

∑
i=1

n

∑
j=1

(√√√√ 2

∑
k=1

(∇xqk(i, j))2+(∇yqk(i, j))2+α
√
(∇xq3(i, j))2+(∇yq3(i, j))2

)
. (2.8)

In (2.8), the SV-TV regularization is transformed to some normal total variation terms af-
ter applying the transformation matrix P̂ on u, which indicates that P̂ plays an important
role. The SV-TV regularization takes into account the saturation and brightness informa-
tion of the image, which shows that the transformation P̂ can effectively extract these two
types of image characteristics. Thus in our model, we first apply the P̂-transform on the
given image, which not only can simplify our model but more significantly, allows us to
use more image features than just the image color information for segmentation. The ex-
periments show that using the SV-TV and performing P̂ matrix operation can overcome
the shortcomings of a segmentation method that uses only RGB color information.
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3 Proposed model

3.1 Two-stage SV-TV regularized segmentation

In this paper, we propose a two-stage segmentation method based on Saturation-Value
Total Variation regularization. Similar to other two-stage methods’ structure, the flow of
our method can be concluded as Fig. 3. Cai et al. [10] proposed a Mumford-Shah Model-
based method combining with total variation regularization (1.2) for smoothing the gray
image in the first stage and have achieved good results. For color image segmentation,
Cai et al. [9] add an extra step to transform the smoothed RGB color image to the LAB
color space after the first stage through their SLaT Method. It is very effective for color
segmentation because images in the LAB color space contain some relationships among
the RGB channels. Motivated by this idea, to preserve the structure of a color image and
extract more features, we apply the quaternion-based SV-TV regularization in the first
stage of our model. Combining with the Mumford-Shah model-based method (1.2), our
novel proposed model can be formulated as:

min
u

λ

2
‖f−Au‖2

2+
µ

2
‖∇u‖2

2+SV-TV(u), (3.1)

where A is a given blurring operator,∇u=(∇xu,∇yu), λ and µ are positive parameters.
With the fixed P̂ defined in (2.7), we let Ã=P̂AP̂T, f̃=P̂f. We then reformulate the problem

Figure 3: The flowchart of our method.
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(3.1) as the following form

min
q

λ

2
‖f̃−Ãq‖2

2+
µ

2
‖∇q‖2

2+φSV(q), (3.2)

where

φSV(q)

=
m

∑
i=1

n

∑
j=1

(√√√√ 2

∑
k=1

(∇xqk(i, j))2+(∇yqk(i, j))2+α
√
(∇xq3(i, j))2+(∇yq3(i, j))2

)
, (3.3)

here α>0 is again the weight corresponding to the value component.
After q is obtained, the second stage is to threshold q directly to obtain our segmen-

tation result before transforming it back to an RGB image with the matrix P̂T. Many
clustering method (the K-means method [27], the fuzzy C-means method [5], the convex
K-means method [36], etc.) can be used to find the threshold to segment q into K phases
(K ≥ 2). In this paper, we use the MATLAB ”KMEANS” command to implement our
strategy of choosing thresholds automatically. The selection of thresholds and phases K
is independent of the process of solving q. That is, there is no need to recalculate q when
changing thresholds or K and hence can reduce the runtime.

3.2 Algorithm

For the convex optimization problem (3.2), many algorithms are particularly ade-
quate to solve it, such as the Douglas Rachford algorithm [47], the Chambolle Pock (CP)
algorithm [13], the ADMM algorithm [21] and the proximal point algorithm [56]. In this
paper, we use a first-order primal-dual algorithm introduced by Tran-Dinh et al. [48]
with a guaranteed convergence rate. Unlike existing primal-dual schemes where the pa-
rameters are often fixed, this method adopts the pre-defined and dynamic sequences for
parameters that can achieve a faster convergence rate.

In order to implement the primal-dual method, let

F(q)=
λ

2
‖f̃−Ãq‖2

2, G(∇q)=
µ

2
‖∇q‖2

2+SV-TV(q).

Note that G in fact depends on ∇q only. To solve model (3.2), we first rewrite it into a
min-max setting as follows:

min
q

max
y
〈∇q,y〉+F(q)−G∗(y), (3.4)

where the conjugate function is defined as

G∗(y)=sup
x
〈x,y〉−G(x).
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Algorithm 3.1 New primal-dual algorithm to solve (3.4).

Initialization: Choose q0= f̃ , y0∈Y, ρ0>0, c≥1, and γ∈ (0,1).
1: τ0 :=1, q−1 := q̂0 :=q0, and q̃−1 := ỹ0 := ȳ0 :=y0.
2: for k :=0,1,··· ,kmax do
3: Update ρk := ρ0

τk
, βk := γ

‖∇‖2ρk
, ηk :=(1−γ)ρk, and τk+1 := c

k+c+1 .
4: Update the primal-dual step:

yk+1 :=proxρkG∗

(
ỹk+ρk∇q̂k

)
, solved by (3.10) and (3.11),

qk+1 :=proxβk F

(
q̂k−βk∇>yk+1

)
, solved by (3.13),

q̂k+1 :=qk+1+
τk+1(1−τk)

τk

(
qk+1−qk

)
.

5: Update the intermediate dual step:

ỹk+1 :=ỹk+ηk∇
[
qk+1− q̂k−(1−τk)

(
qk− q̂k−1

)]
+(1−γ)

[
yk+1− ỹk− τk−1(1−τk)

τk

(
yk− ỹk−1

)]
.

6: Update the dual averaging step: ȳk+1 :=(1−τk) ȳk+τkyk+1.
7: end for

Motivated by the primal-dual algorithm in [48], the algorithm for solving (3.4) is sum-
marized in Algorithm 3.1. As introduced by Tran-Dinh et al. in [48], the parameters in
Algorithm 3.1 are updated as follows:

τk :=
c

k+c
, ρk :=

ρ0

τk
, βk :=

γ

‖∇‖2ρk
and ηk :=(1−γ)ρk,

where c≥1, γ∈(0,1), ‖∇‖2≤8 and ρ0>0 are given. The main computations of Algorithm
3.1 are the two proximal operators in Step 4. Next we elaborate on how to solve these
subproblems respectively in Algorithm 3.1.

• y-subproblem

yk+1 :=proxρkG∗

(
ỹk+ρk∇q̂k

)
. (3.5)

To derive the above proximal operator, we first calculate G∗(y) by the definition
of conjugate function. We denote y= (y1,y2,y3), where yk = (y1

k,y2
k) for k = 1,2,3.

Denote y∗=(y1,y2) and thus y=(y∗,y3). To aid the presentation, we introduce the
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following norms to y∗ and y3

|y∗(i, j)|=
√(

y1
1(i, j)

)2
+
(
y2

1(i, j)
)2
+
(
y1

2(i, j)
)2
+
(
y2

2(i, j)
)2, (3.6a)

|y3(i, j)|=
√(

y1
3(i, j)

)2
+
(
y2

3(i, j)
)2, (3.6b)

‖y∗‖∞ =max
i,j
|y∗(i, j)|, ‖y3‖∞ =max

i,j
|y3(i, j)|. (3.6c)

Note that G is separable with respect to each component of y, i.e., G(y)=G1(y∗)+
G2(y3). Given the definition of G, we have

G1(y∗)=
µ

2
‖y∗‖2

2+‖y∗‖1, (3.7)

G2(y3)=
µ

2
‖y3‖2

2+α‖y3‖1. (3.8)

We can then compute the conjugate function of G1,G2 separately. Thus the corre-
sponding conjugate functions are

G∗1 (y∗)=
1

2µ
‖y∗−ΠP1(y∗)‖2

2, (3.9a)

G∗2 (y3)=
1

2µ
‖y3−ΠP2(y3)‖2

2, (3.9b)

where ΠP(·) denotes the projection onto a set P. Here

P1={y∗ :‖y∗‖∞≤1}, P2={y3 :‖y3‖∞≤α}.

One can then derive the iteration of yk+1 by the definition of proximal operator

prox f (x) :=argmin
y

{
f (y)+

1
2
‖y−x‖2

}
.

By solving the corresponding quadratic problems, we get

y∗k+1(i, j)=xk
∗(i, j)

µ

µ+ρk
+

xk
∗(i, j)

max{1,|xk
∗(i, j)|}

ρk

µ+ρk
, (3.10)

where xk
∗(i, j)=(ỹ∗k+ρk∇q̂∗k)(i, j), q∗=(q1,q2), and

y3
k+1(i, j)=xk

3 (i, j)
µ

µ+ρk
+

xk
3 (i, j)

max{α,|xk
3 (i, j)|}

αρk

µ+ρk
, (3.11)

where xk
3 (i, j)=(ỹ3

k+ρk∇q̂3
k)(i, j).
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• q-subproblem

qk+1=proxβk F

(
q̂k−βk∇>yk+1

)
=argmin

q

βλ

2
‖f̃−Ãq‖2

2+
1
2
‖q−(q̂k−βk∇>yk+1)‖2

2. (3.12)

The above problem is a quadratic problem and can be solved analytically as follows:

qk+1=(βkλA>A+ I)−1(q̂k−βk∇>yk+1+βkλf̃). (3.13)

4 Experimental results

To demonstrate the effectiveness of our two-stage segmentation method based on
saturation-value total variation, we present the numerical and visual results in this sec-
tion. We compare the proposed method with some state-of-the-art approaches (FP [46],
SLat [9], SFFCM [31], RSSFCA [28], AFCF [32]). Method [46] uses an ADMM algo-
rithm to solve the piecewise constant Mumford-Shah model with structured Potts priors.
Method [31] uses a fast super-pixel method to pre-process the image before clustering to
improve the efficiency and stability of the segmentation. Method [28,32] are two different
clustering methods that have low memory demand but high performance. Method [9]
converts the RGB color image into the Lab color space before thresholding to obtain more
image information, thus improving the accuracy of segmentation. These methods were
originally designed to work on color images. All the codes are provided by the authors
and the parameters in the codes are chosen empirically to give the best results of each
method. For our model (3.2), we fix µ=1, λ=3, α=1.

All experiments are performed via MATLAB R2018a and Windows 10(×64) on a PC
with Intel Core(TM) i5-8250U CPU 1.60GHz and 8.0GB memory. We present the tests
on the real-world color images given in Fig. 4 (all images are chosen from the Berke-
ley Segmentation Dataset 300). We take three different forms of image degradation into
account: noise, blur, and information loss. The Gaussian noise are all generated using
the MATLAB function ”imnoise”, with mean 0 and variance 0.001 or 0.01. The blurring
kernels were all obtained by horizontal motion-blur with 10 pixels length. For the infor-
mation loss case, we deleted 40% pixel values randomly. In Stage 1 of our method, the
primal-dual Algorithm 3.1 is adopted to solve the model (3.2) and the maximum itera-
tion number is set as 100. In stage 2, given the number of phases K, the thresholds are
calculated automatically by the MATLAB K-means function ”KMEANS”.

4.1 The primal-dual algorithm vs the ADMM algorithm

To illustrate the effectiveness of the new primal-dual algorithm, we compare it with the
widely used ADMM algorithm, using these two algorithms to solve (3.2). In Fig. 5, we
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(i) Pyramid (ii) Island (iii) Bird (iv) Umbrella (v) Path

(vi) Grassland (vii) Corn (viii) Koala (ix) Man (x) Vase

Figure 4: Real-world test images used in our experiment. All images are chosen from BSD300.

Vase (A) (B) (C)

Figure 5: The Segmentation results of different algorithm on ”Vase”. (A): Result of ADMM; (B): Result of the
new primal-dual algorithm; (C): Energy plots of ADMM and the new primal-dual algorithm.

show the energy graph for the test image ”Vase” with Gaussian noise 0.001 added. We ob-
serve that the energy under the new primal-dual algorithm drops to around 3200 within
30 iterations which is faster than ADMM. The segmentation results of ADMM and the
new primal-dual algorithm are shown in Fig. 5. From the results, the segmentation effect
of the new primal-dual algorithm is better than that of ADMM for the same number of
iterations, which also shows that our model is effective.

4.2 Effectiveness of regularization terms

In this subsection, we present an ablation study to demonstrate the effectiveness of the
regularization terms in (3.2). More specifically, We compare the following models:

Model 1: argmin
q

λ

2
‖f̃−Ãq‖2

2+φSV(q), (4.1a)
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Model 2: argmin
q

λ

2
‖f̃−Ãq‖2

2+
µ

2
‖∇q‖2

2, (4.1b)

Proposed: argmin
q

λ

2
‖f̃−Ãq‖2

2+
µ

2
‖∇q‖2

2+φSV(q). (4.1c)

For this experiment, we select the image ”Island” as the test image. We set the number of
phases K to be 2. The results of the compared models are shown in Fig. 6. As shown in the
figure, part of the corners of the image is segmented in the result of Model 1. Without the
squared gradient term, the intermediate result from stage 1 is not sufficiently smoothed
and hence leads to this inaccurate segmentation result. As for Model 2, without the SV-
TV term, the saturation and brightness information is not incorporated. Therefore, the
foreground and background are not properly distinguished. On the contrary, with both
regularization terms, the proposed model successfully performs the task, showcasing the
effectiveness of both the regularization terms.

Original image Model 1 Model 2 Proposed model

Figure 6: Ablation study of the effect of the regularization terms.

4.3 Number of clusters

Most segmentation models require us to determine the number of clusters K in advance,
but the selection of phases K often has a great impact on the segmentation results. We
first study the effect of the choice of K on the compared methods and our method. We
test on the images ”Vase”, ”Island” and ”Bird”. We report the segmentation results with
K=2,3 of the compared methods and our method in Figs. 7–9.

As shown in Fig. 7, when we choose K=3, most methods can separate the vase from
the background, but when we take K=2, a more intuitive choice, other methods do not
perform the segmentation task well. The reason for the poor segmentation when K = 2
is that the color of the vase and the background are relatively similar, which may lead to
confusion when sorting by color only. Our method also takes into account the saturation
and brightness information, which is important to distinguish the foreground and the
background of the image, so we can accurately segment the vase at different values of K.
The same situation happens for the test image ”Island” in Fig. 8, where the value of K has
a large impact on the other methods because the color of the island and the background
are too close to each other. Our method is also effective in classifying multiple targets.
For example, as shown in Fig. 9, we can segment the foreground and the background
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(B2)

(A3)

(B3)

(A4)

(B4)

(A5)

(B5)

(A6)

(B6)

Figure 7: Segmentation at different phases K. (A1)-(A6) and (B1)-(B6): Results of methods [9, 28, 31, 32, 46]
and ours when K=2 and K=3 respectively.

Island

(A1)

(B1)

(A2)

(B2)

(A3)

(B3)

(A4)

(B4)

(A5)

(B5)

(A6)

(B6)

Figure 8: Segmentation at different phases K. (A1)-(A6) and (B1)-(B6): Results of methods [9, 28, 31, 32, 46]
and ours when K=2 and K=3 respectively.

well at K= 2, and further segment the bird and the tree accurately at K= 3, while other
methods cannot achieve such accuracy. Due to the use of SV-TV, our method combines
the features of the image in both RGB and HSV spaces when doing segmentation, thus
our method is very robust and accurate at different values of K.

4.4 Numerical results

In this experiment, we compare our method with five excellent methods (FP [46], SLat [9],
SFFCM [31], RSSFCA [28], AFCF [32]). We compare the methods on 10 real-world color
images for both two-phase and multi-phase segmentation. We consider three cases for
each test image: images with a slight noise, motion blurred images with higher noise,
and images with information loss. The segmentation results are shown in Figs. 10-19. We
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Bird

(A1)
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(B2)
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(B5)

(A6)
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Figure 9: Segmentation at different phases K. (A1)-(A6) and (B1)-(B6): Results of methods [9, 28, 31, 32, 46]
and ours when K=2 and K=3 respectively.

(A) (A1) (A2) (A3) (A4) (A5) (A6)

(B) (B1) (B2) (B3) (B4) (B5) (B6)

(C) (C1) (C2) (C3) (C4) (C5) (C6)

Figure 10: Two-phase pyramid segmentation. (A): Given Gaussian noisy image with mean 0 and noise 0.001;
(B):Given blurry image with Gaussian noise. (C):Given image with 40% information loss; (A1)-(A6), (B1)-(B6)
and (C1)-(C6): Corresponding results of methods [9, 28, 31, 32, 46] and ours in the corresponding cases.

can see from the figures that our method outperforms other competing methods in most
cases, and our results are consistent with the human visual segmentation. In the case of
images with a slight noise, most methods can achieve good segmentation results when
the object is originally well separated from the background. However, in the latter two
cases, the results of the other methods show varying degrees of degradation, especially
for the case of missing pixels, where some methods completely fail to segment the target
object. This suggests that higher noise level, blurring, and missing pixels all have a sig-
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(A) (A1) (A2) (A3) (A4) (A5) (A6)

(B) (B1) (B2) (B3) (B4) (B5) (B6)

(C) (C1) (C2) (C3) (C4) (C5) (C6)

Figure 11: Two-phase island segmentation. (A): Given Gaussian noisy image with mean 0 and noise 0.001;
(B):Given blurry image with Gaussian noise. (C):Given image with 40% information loss; (A1)-(A6), (B1)-(B6)
and (C1)-(C6): Results of methods [9, 28, 31, 32, 46] and ours in the corresponding cases.

(A) (A1) (A2) (A3) (A4) (A5) (A6)

(B) (B1) (B2) (B3) (B4) (B5) (B6)

(C) (C1) (C2) (C3) (C4) (C5) (C6)

Figure 12: Two-phase bird segmentation. (A): Given Gaussian noisy image with mean 0 and noise 0.001;
(B):Given blurry image with Gaussian noise. (C):Given image with 40% information loss; (A1)-(A6), (B1)-(B6)
and (C1)-(C6): Results of methods [9, 28, 31, 32, 46] and ours in the corresponding cases.
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(A) (A1) (A2) (A3) (A4) (A5) (A6)

(B) (B1) (B2) (B3) (B4) (B5) (B6)

(C) (C1) (C2) (C3) (C4) (C5) (C6)

Figure 13: Two-phase umbrella segmentation. (A): Given Gaussian noisy image with mean 0 and noise 0.001;
(B):Given blurry image with Gaussian noise. (C):Given image with 40% information loss; (A1)-(A6), (B1)-(B6)
and (C1)-(C6): Results of methods [9, 28, 31, 32, 46] and ours in the corresponding cases.

nificant impact on most segmentation models. On the other hand, from the experimental
results, our method still maintains good segmentation results in these cases of degraded
images, which is mainly attributed to the good image recovery of our first stage. While
most methods in the RGB space do not work well when the color of the object is similar to
the background color, our method shows good performance due to the use of the SV-TV
regularization in the HSV color space, which can extract the saturation and brightness
information of an image. Furthermore, the CPU time of the methods given in Table 1
shows that our method is the most efficient among variational-based methods.

5 Conclusions

In this paper, we proposed a two-stage color image segmentation method based on SV-
TV regularization. And the SV-TV is constructed by the quaternion-based method which
takes the relationship among RGB channels into account. At the first stage, we find a
smooth approximation q of the P-transformed RGB image, and the minimization prob-
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(A) (A1) (A2) (A3) (A4) (A5) (A6)

(B) (B1) (B2) (B3) (B4) (B5) (B6)

(C) (C1) (C2) (C3) (C4) (C5) (C6)

Figure 14: Three-phase path segmentation. (A): Given Gaussian noisy image with mean 0 and noise 0.001; (B):
Given blurry image with Gaussian noise. (C): Given image with 40% information loss; (A1)-(A6), (B1)-(B6)
and (C1)-(C6): Results of methods [9, 28, 31, 32, 46] and ours in the corresponding cases.

(A) (A1) (A2) (A3) (A4) (A5) (A6)

(B) (B1) (B2) (B3) (B4) (B5) (B6)

(C) (C1) (C2) (C3) (C4) (C5) (C6)

Figure 15: Two-phase grassland segmentation. (A): Given Gaussian noisy image with mean 0 and noise 0.001;
(B): Given blurry image with Gaussian noise. (C):Given image with 40% information loss; (A1)-(A6), (B1)-(B6)
and (C1)-(C6): Results of methods [9, 28, 31, 32, 46] and ours in the corresponding cases.
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(A) (A1) (A2) (A3) (A4) (A5) (A6)

(B) (B1) (B2) (B3) (B4) (B5) (B6)

(C) (C1) (C2) (C3) (C4) (C5) (C6)

Figure 16: Two-phase grassland segmentation. (A): Given Gaussian noisy image with mean 0 and noise 0.001;
(B):Given blurry image with Gaussian noise. (C):Given image with 40% information loss; (A1)-(A6), (B1)-(B6)
and (C1)-(C6): Results of methods [9, 28, 31, 32, 46] and ours in the corresponding cases.

(A) (A1) (A2) (A3) (A4) (A5) (A6)

(B) (B1) (B2) (B3) (B4) (B5) (B6)

(C) (C1) (C2) (C3) (C4) (C5) (C6)

Figure 17: Three-phase koala segmentation. (A): Given Gaussian noisy image with mean 0 and noise 0.001;
(B):Given blurry image with Gaussian noise. (C):Given image with 40% information loss; (A1)-(A6), (B1)-(B6)
and (C1)-(C6): Results of methods [9, 28, 31, 32, 46] and ours in the corresponding cases.
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(A) (A1) (A2) (A3) (A4) (A5) (A6)

(B) (B1) (B2) (B3) (B4) (B5) (B6)

(C) (C1) (C2) (C3) (C4) (C5) (C6)

Figure 18: Three-phase man segmentation. (A): Given Gaussian noisy image with mean 0 and noise 0.001;
(B):Given blurry image with Gaussian noise. (C):Given image with 40% information loss; (A1)-(A6), (B1)-(B6)
and (C1)-(C6): Results of methods [9, 28, 31, 32, 46] and ours in the corresponding cases.

lem is designed to be solved by a new primal-dual algorithm with guaranteed conver-
gence. Then the segmentation results can be obtained by thresholding in the second

Table 1: The CPU time of methods [9, 28, 31, 32, 46] and ours in seconds.

Methods Clustering methods Variational-based methods
Method [32] Method [31] Method [28] Method [46] Method [9] Ours

Pyramid 2.32 1.69 49.42 6.54 10.08 6.13
Island 2.86 1.82 46.64 7.06 16.61 6.29
Bird 2.65 1.77 49.56 9.53 14.20 6.21

Umbrella 2.94 2.32 46.37 7.13 16.66 6.34
Path 2.48 1.86 49.96 6.77 13.31 5.97

Grassland 2.36 1.75 47.77 5.68 16.57 5.62
Corn 2.41 2.13 48.57 6.87 19.95 6.12
Koala 2.67 1.98 47.25 7.78 20.77 6.68
Man 2.57 1.77 47.78 6.25 12.17 6.09
Vase 2.34 1.97 48.37 6.73 15.18 6.31
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(A) (A1) (A2) (A3) (A4) (A5) (A6)
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(C) (C1) (C2) (C3) (C4) (C5) (C6)

Figure 19: Two-phase vase segmentation. (A): Given Gaussian noisy image with mean 0 and noise 0.001;
(B):Given blurry image with Gaussian noise. (C):Given image with 40% information loss; (A1)-(A6), (B1)-(B6)
and (C1)-(C6): Results of methods [9, 28, 31, 32, 46] and ours in the corresponding cases.

stage. The new two-stage method has the ability to segment images corrupted by noise,
blur, or pixel information loss. Experimental results demonstrate that our method gives
much better segmentation results for images with degradation than some state-of-the-art
segmentation models both in terms of quality and stability. Further research on the reg-
ularization which describes the intrinsic connection among multiple channels would be
concerned in the future.
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