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Abstract

In this paper, we discuss the nonlinear minimax problems with inequality constraints.

Based on the stationary conditions of the discussed problems, we propose a sequential

systems of linear equations (SSLE)-type algorithm of quasi-strongly sub-feasible directions

with an arbitrary initial iteration point. By means of the new working set, we develop a

new technique for constructing the sub-matrix in the lower right corner of the coefficient

matrix of the system of linear equations (SLE). At each iteration, two systems of linear

equations (SLEs) with the same uniformly nonsingular coefficient matrix are solved. Under

mild conditions, the proposed algorithm possesses global and strong convergence. Finally,

some preliminary numerical experiments are reported.

Mathematics subject classification: 90C30, 90C47, 65K05.

Key words: Inequality constraints, Minimax problems, Method of quasi-strongly sub-

feasible directions, SSLE-type algorithm, Global and strong convergence.

1. Introduction

The minimax optimization may occur in engineering design [1], control system design [2],

portfolio optimization [3], or as subproblems of algorithms for in semi-infinite minimax problems

[4]. In this work, we discuss the nonlinear minimax problem with inequality constraints of the

form
min F (x)

s.t. fi(x) ≤ 0, i ∈ J = {m+ 1, · · · ,m+ l}, (1.1)

where F (x) = max{fi(x), i ∈ I} with I = {1, 2, · · · ,m}, and fi(x)(i ∈ I ∪ J) : Rn → R.

Since the objective function of this minimax problem is continuous but non-differentiable, the

classical methods of smooth nonlinear programming cannot be used directly to solve the prob-

lem. Fortunately, by introducing an additional variable, a minimax problem can be equivalently

reformulated as a smooth nonlinear programming, and many algorithms have been proposed,
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such as the sequential quadratic programming type methods [5–7], the interior point algorith-

m [8], the exponential smoothing algorithm [9], the trust-region method [10] and the sequential

quadratically constrained quadratic programming algorithm [11].

It is known that the SSLE method (also call QP-free algorithm) is one of the effective

methods for solving smooth nonlinear constrained optimization. In 1988, based on the KKT

conditions, Panier, Tits and Herskovits [12] proposed a feasible QP-free algorithm for inequality

constrained optimization, where two linear systems with a same coefficient matrix and a least

squares subproblem need to be solved at each iteration. To overcome the calculation of the

least squares subproblem, Yang, Li and Qi [13] proposed a feasible SSLE algorithm, where

three reduced linear systems need to be solved at each iteration. Furthermore, to improve the

convergence properties and numerical performance, many efforts have been made for research

on SSLE-type (or QP-free) algorithms, in Refs. [14–18]. In fact, a feasible point is required

to initialize the algorithm for the methods of feasible direction [6, 11–15], to overcome such

kind of difficulty in a more general context, Jian and his collaborators proposed a method of

strongly sub-feasible directions (MSSFD), see [18–20] and [21, Chapter 2]. The main features

of the MSSFD can be described as follows: the initial point can be chosen arbitrarily without

using any penalty parameters or penalty functions; the operations of initialization (Phase I)

and optimization (Phase II) can be well unified automatically; the feasibility of a constraint

is maintained through the iterations once it is reached, and therefore the number of feasible

constraints is nondecreasing.

Recently, by improving the MSSFD, Jian et al. [22] presented the method of quasi-strongly

sub-feasible directions (MQSSFD), the main characteristic is that the request I−(xk) ⊆ I−(xk+1)

in MSSFD is relaxed by |I−(xk)| ≤ |I−(xk+1)|, where |I−(xk)| means the number of functions

satisfying the inequality constraints at xk, thus the step size yielded by MQSSFD is larger

than MSSFD. Furthermore, combining the idea of MQSSFD, Ma and Jian [16] presented a new

QP-free algorithm for inequality constrained optimization with an arbitrary initial iteration

point. At each iteration, this algorithm solves only two SLEs with a same uniformly nonsingu-

lar coefficient matrix to obtain the search direction. And the QP-free algorithm possesses nice

theoretical properties and numerical results. In addition, the superiority of numerical perfor-

mance for MQSSFD has also been verified by norm-relaxed sequential quadratic programming

method in [23].

In this work, motivated by the idea of MQSSFD and QP-free algorithm for nonlinear in-

equality constrained optimization in Ref. [16], and based on the stationary point conditions of

the nonlinear minimax problems with inequality constraints, we propose a SSLE-type algorithm

of quasi-strongly sub-feasible directions for solving problem (1.1), in which the initial point is

arbitrary. And our algorithm possesses the following features:

• A new technique for constructing the submatrix F̄k in the lower right corner of the

coefficient matrix is presented, thus the coefficient matrix possesses good sparsity;

• A new working set technique is introduced, then only functions indexed by working sets

are considered, which can reduce the scale of the subproblems;

• At each iteration, two SLEs with a same uniformly nonsingular coefficient matrix need

to be solved, which further reduce the computation cost;

• Under mild conditions, the proposed algorithm has global and strong convergence.

The paper is organized as follows. The next section describes the algorithm. Section 3 dis-

cusses the convergence analysis. Section 4 contains numerical experiments. Finally, a conclusion

is given in Section 5.
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2. Description of Algorithm

For convenience of discussion, we introduce the notations for the discussed problem (1.1) as

follows.

ϕ(x) := max{0, fi(x), i ∈ J}, X := {x : fi(x) ≤ 0, i ∈ J}, I(x) := {i ∈ I : fi(x) = F (x)},
lx := min{i : i ∈ I(x)}, J+(x) := {i ∈ J : fi(x) > 0}, J−(x) := {i ∈ J : fi(x) ≤ 0 },
J(x) := {i ∈ J : fi(x) = 0 or fi(x) = ϕ(x)}, L(x) := I(x) ∪ J(x),

Fk := F (xk), ϕk := ϕ(xk), fki := fi(x
k), gki := gi(x

k) = ∇fi(xk), i ∈ I ∪ J.

A point x ∈ Rn is said to be a stationary point of the problem (1.1) with a multiplier vector

λI∪J if the following relations hold{ ∑
i∈I∪J

λi∇fi(x) = 0,
∑
i∈I

λi = 1; λi ≥ 0, λi(F (x)− fi(x)) = 0, i ∈ I;

λi ≥ 0, λifi(x) = 0, i ∈ J ; ϕ(x) = 0.
(2.1)

To construct our search direction, the following basic assumption is necessary.

Assumption 2.1. (i) The functions fi (i ∈ I ∪J) are all first order continuously differentiable

over Rn; (ii) For each x ∈ Rn, the gradient vectors {∇fi(x)−∇flx(x), i ∈ I(x)\{lx};∇fi(x), i ∈
J(x)} are linearly independent.

Remark 2.1. As mentioned in Ref. [6], it is not difficult to show that Assumption 2.1 (ii) is

really equivalent to: for each t ∈ I(x), the vectors {∇fi(x)−∇ft(x), i ∈ I(x)\{t};∇fi(x), i ∈
J(x)} are linearly independent.

For the current iteration point xk ∈ Rn, and a given suitable positive parameter εk > 0,

then we generate the working set Lk,

Jk := {i ∈ J−(xk) : fki ≥ −δk} ∪ {i ∈ J+(xk) : fki − ϕk ≥ −δk}, (2.2)

Ik := {i ∈ I : −δk ≤ fki − Fk}, lk := lxk , I0
k := Ik\{lk}, Lk := I0

k ∪ Jk, (2.3)

where

δ0 = ε0, δk = min{εk, ρk−1}, k ≥ 1, (2.4)

and the optimal identification value ρk−1 is associated with the previous iterate xk−1. The

detailed computation of ρk−1 is shown in formula (2.17) below.

Based on the working set Lk, as well as I(xk) ⊆ Ik and J(xk) ⊆ Jk, relations (2.1) are

equivalent to the following stationary conditions with a multiplier vector λkLk
∑
i∈I0k

λki (gki − gklk) +
∑
i∈Jk

λki g
k
i = −gklk , λklk := 1−

∑
j∈I0k

λki ≥ 0;

λki ≥ 0, λki (Fk − fki ) = 0, i ∈ I0
k ; λki ≥ 0, λki f

k
i = 0, i ∈ Jk; ϕk = 0.

(2.5)

In order to derive a suitable coefficient matrix in our SLEs, let us define

Ak := ALk(xk) = (ḡi(x
k), i ∈ Lk), ḡki := ḡi(x

k) :=

{
gki − gklk , i ∈ I0

k ;

gki , i ∈ Jk,
(2.6)

F̄k := diag(F̄ki, i ∈ Lk), F̄ki =

{
0, if det(ATkAk) ≥ εk;

f̄ki , if det(ATkAk) < εk,
(2.7)
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and

f̄ki := f̄i(x
k) :=


Fk − fki , i ∈ I0

k ;

ϕk − fki , i ∈ J+(xk) ∩ Jk;

−fki , i ∈ J−(xk) ∩ Jk.
(2.8)

Therefore, (2.5) implies, if (xk, λkLk) is a stationary pair, that (0, λkLk) is a solution to the SLE(
Hk Ak
ATk −F̄k

)(
0

λkLk

)
=

(
−gklk

0

)
, (2.9)

where Hk is an n× n matrix.

Based on the analysis above, we introduce the coefficient matrix in our SLEs as follows

Vk := V (xk, Hk, Lk) :=

(
Hk Ak
ATk − F̄k

)
. (2.10)

Next, in order to guarantee the non-singularity of the coefficient matrix Vk, the matrix Hk needs

to satisfy the general hypothesis, and it is given in the following Lemma 2.1 (or Assumption

3.1). Then the invertibility of the coefficient matrix Vk constructed above is proved below.

Lemma 2.1. Suppose that Assumption 2.1 holds, and the matrix Hk is positive definite on the

null space NSk := {d ∈ Rn : (ḡki )T d = 0, i ∈ L(xk)\{lk}}. Then the matrix Vk yielded by (2.10)

is invertible.

Proof. It is sufficient to show that the system of equations Vk(uT , vT )T = 0 has the unique

solution zero. Taking into account (2.7), we consider the following two cases, i.e., det(ATkAk) <

εk and det(ATkAk) ≥ εk.

(i) If det(ATkAk) < εk, then F̄ki = f̄ki . We have from (2.10)

Hku+Akv = 0, (2.11)

ATk u− F̄kv = 0, i.e., (ḡki )Tu− f̄ki vi = 0, i ∈ Lk. (2.12)

Multiplying (2.11) by uT from left-hand side and combing with (2.12), we obtain

0 = uTHku+ uTAkv = uTHku+ vT F̄kv.

For i ∈ L(xk)\{lk} ⊆ Lk, it follows that f̄ki = 0 from (2.8). Further, from (2.12), we

get (ḡki )Tu = 0, which implies that u ∈ NSk. Then 0 ≤ uTHku = −vT F̄kv ≤ 0. So, taking into

account the positive definiteness of Hk, it follows that u = 0. Again, (2.11) and (2.12) can be

simplified as

Akv = 0, f̄ki vi = 0, i ∈ Lk. (2.13)

For i ∈ Lk and f̄ki 6= 0, by (2.13), one has vi = 0. Then, based on the first equation of (2.13),

one gets ∑
i∈Lk, f̄ki =0

viḡ
k
i = 0.

This together with Assumption 2.1 shows that vi = 0 for i ∈ Lk and f̄ki = 0. Therefore, u = 0

and v = 0, and Vk is invertible.

(ii) If det(ATkAk) ≥ εk, then matrix Ak is full-column rank and F̄k = 0. According to the

definition (2.10), we have

Hku+Akv = 0, ATk u = 0. (2.14)
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Multiplying the first equation of (2.14) by uT from left-hand side and combing with the second

equation of (2.14), one knows uTHku = 0. In addition, the second equation of (2.14) implies

that u ∈ NSk. Consequently, one knows u = 0 from the positive definiteness of Hk. Further,

one has Akv = 0. This, together with full-column rank of Ak, shows that v = 0.

According to the analysis above, the system of equations Vk(uT , vT )T = 0 has the unique

solution zero, so Vk is invertible. The proof is completed. �

Based on the analysis and preparation above, we introduce the main idea of our method.

First, taking into account the stationary conditions (2.5), as well as (2.9) and Lemma 2.1, if we

ignore the non-negativity request of the multiplier vector, then the form of the SLE that need

to be solved in our algorithm are as follows:

Vk

(
d

λLk

)
=

(
−gklk

0

)
. (2.15)

Let (dk0, λk0
Lk

) be a solution to the SLE (2.15). In order to check whether or not the current

iteration xk is a stationary point of the problem (1.1), we define

ωk :=
∑
i∈Lk

max{−λk0
i , λ

k0
i f̄

k
i }, λk0

lk
:= 1−

∑
i∈I0k

λk0
i , ω̄k := max{−λk0

lk
, 0}, (2.16)

ρk :=
|(gklk)T dk0|+ ωk + ω̄2

k + ϕk

1 + |(ek)Tλk0
Lk
|

, (2.17)

where ek = (1, 1, · · · , 1)T ∈ R|Lk|.
Second, if xk is not a stationary point of the problem (1.1), this along with that the solution

dk0 of the SLE (2.15) may not be an improved direction since (ḡki )T dk0 = 0 for i ∈ (I(xk)\{lk})∪
J(xk). Hence, in order to yield improved search direction with global and strong convergence,

our algorithm will solve an additional SLE by perturbing the right-hand side vector of (2.15)

with the same coefficient matrix as follows:

Vk

(
d

λLk

)
=

(
0

µk

)
, (2.18)

where the vector µk = (µki , i ∈ Lk) with elements

µki (i ∈ I0
k) :=

{
ρξk(−1− ρk)− rϕk + ρξkω̄k, if λk0

i < 0;

ρξk(f̄ki − ρk)− rϕk + ρξkω̄k, if λk0
i ≥ 0,

(2.19a)

µki (i ∈ Jk) :=

{
ρξk(−1− ρk)− rϕk, if λk0

i < 0;

ρξk(f̄ki − ρk)− rϕk, if λk0
i ≥ 0,

(2.19b)

and the parameters ξ, r > 0. Let (dk1, λk1
Lk

) be a solution to SLE (2.18). In order to obtain

nice theoretical properties of the main search direction and improve the numerical performance

of our proposed algorithm, the main search direction dk is yielded by a convex combination of

ρξkd
k0 and dk1:

dk = (1− σ)ρξkd
k0 + σdk1, (2.20)

where the parameter σ ∈ (0, 1
2 ). Based on the constructions above, it is not difficult to verify

the following lemma.
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Lemma 2.2. Suppose that the conditions stated in Lemma 2.1 hold. Then

(i) (gklk)T dk1 = −
∑
i∈Lk

λk0
i µ

k
i ;

(ii) (gklk)T dk0 ≤ −(dk0)THkd
k0 ≤ 0, dk0 ∈ NSk;

(iii) xk is a stationary point of problem (1.1) if and only if ρk = 0; and

(iv) the following estimates of inequalities hold:

(gklk)T dk ≤ −σρ1+ξ
k + σϕk(ρξk + r

∑
i∈Lk

λk0
i ), (2.21)

(gki )T dk ≤ −σρ1+ξ
k + σϕk(ρξk + r

∑
i∈Lk

λk0
i ) + rkiF̄ki + σρξkf̄

k
i , ∀ i ∈ I0

k , (2.22)

(gki )T dk ≤ −σρ1+ξ
k + σϕk(ρξk + r

∑
i∈Lk

λk0
i ), ∀ i ∈ I(xk), (2.23)

(gki )T dk ≤ −σ(ρ1+ξ
k + rϕk) + rkiF̄ki + σρξkf̄

k
i , ∀ i ∈ Jk, (2.24)

(gki )T dk ≤ −σ(ρ1+ξ
k + rϕk), ∀ i ∈ J(xk), (2.25)

where rki := (1− σ)ρξkλ
k0
i + σλk1

i .

Proof. (i) Since (dk0, λk0
Lk

) and (dk1, λk1
Lk

) are solutions to SLE (2.15) and (2.18), respectively,

we have

Hkd
k0 +Akλ

k0
Lk

= −gklk , ATk d
k0 − F̄kλk0

Lk
= 0. (2.26)

Hkd
k1 +Akλ

k1
Lk

= 0, ATk d
k1 − F̄kλk1

Lk
= µk. (2.27)

Multiplying the first equations of (2.26) and (2.27) by (dk1)T and (dk0)T from left-hand side,

respectively, one has

(dk1)THkd
k0 + (dk1)TAkλ

k0
Lk

= −(dk1)T gklk , (dk0)THkd
k1 + (dk0)TAkλ

k1
Lk

= 0.

Therefore, taking into account the symmetric matrix Hk as well as the second equations of

(2.26) and (2.27), we immediately get

(gklk)T dk1 = (dk0)TAkλ
k1
Lk
− (dk1)TAkλ

k0
Lk

= (ATk d
k0)Tλk1

Lk
− (ATk d

k1)Tλk0
Lk

= (F̄kλ
k0
Lk

)Tλk1
Lk
− (F̄kλ

k1
Lk

+ µk)Tλk0
Lk

= (λk0
Lk

)T F̄Tk λ
k1
Lk
− (λk1

Lk
)T F̄Tk λ

k0
Lk
− (µk)Tλk0

Lk

= −(µk)Tλk0
Lk

= −
∑
i∈Lk

λk0
i µ

k
i .

(ii) In view of (2.7) and (2.8), one has F̄ki ≥ 0. This, together with (2.26), shows that

(gklk)T dk0 = −(dk0)THkd
k0 −

∑
i∈Lk

λk0
i (ḡki )T dk0

= −(dk0)THkd
k0 −

∑
i∈Lk

(λk0
i )2F̄ki

≤ −(dk0)THkd
k0.

In addition, for i ∈ (L(xk)\{lk}) ⊆ Lk, from (2.7)–(2.8), one has F̄ki = 0. Further, (ḡki )T dk0 = 0

follows from (2.26), this implies dk0 ∈ NSk. Hence, (gklk)T dk0 ≤ −(dk0)THkd
k0 ≤ 0 holds due

to the positive definiteness of Hk on NSk.
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(iii) If ρk = 0, then from (2.17), one has

(gklk)T dk0 = 0, ωk = 0, ω̄k = 0, ϕk = 0.

Further, in view of the positive definite property of Hk and conclusion (ii), we have dk0 = 0.

Again, from ωk = 0 and ω̄k = 0 as well as (2.16), one gets λk0
Ik∪Jk ≥ 0, λk0

i f̄
k
i = 0, ∀ i ∈ Lk.

Now, from the first equation of (2.26), we have
∑
i∈I0k

λk0
i (gki − gklk) +

∑
i∈Jk

λk0
i g

k
i = −gklk , λk0

lk
= 1−

∑
i∈I0k

λk0
i ≥ 0,

λk0
i ≥ 0, λk0

i (fki − Fk) = 0, i ∈ I0
k ; λk0

i ≥ 0, λk0
i f

k
i = 0, i ∈ Jk.

These, together with ϕk = 0 and (2.5), imply that xk is a stationary point of the problem (1.1).

Conversely, if xk is a stationary point of the problem (1.1) with multiplier vector λ̂k ≥ 0,

then it follows from (2.5) that

ϕk = 0, ; Akλ̂
k
Lk

= −gklk , λ̂ki f̄
k
i = 0, ∀ i ∈ Lk, λ̂klk = 1−

∑
i∈I0k

λki .

Therefore, (
Hk Ak
ATk − F̄k

)(
0

λ̂kLk

)
=

(
−gklk

0

)
.

This implies that (0T , (λ̂kLk)T )T is also a solution to SLE (2.15). Noting that the uniqueness

of solution to the SLE (2.15), one has dk0 = 0, λk0
Lk

= λ̂kLk , λk0
lk

= λ̂klk ≥ 0 and ω̄k = 0. On

the other hand, the conclusion ωk = 0 holds by (2.16). Therefore, it follows from (2.17) that

ρk = 0.

(iv) For i = lk ∈ I(xk), from (2.20) and conclusions (i) and (ii), we get

(gklk)T dk =(1− σ)ρk
ξ(gklk)T dk0 + σ(gklk)T dk1

=(1− σ)ρk
ξ(gklk)T dk0 − σ

∑
i∈Lk

λk0
i µ

k
i . (2.28)

In addition, taking into account

−ω̄kλk0
lk

= ω̄2
k and ω̄k

∑
i∈I0k

λk0
i = ω̄k + ω̄2

k,

together with (2.16), (2.19a) and (2.19b), gives

∑
i∈Lk

λk0
i µ

k
i = −ρξk

(
ρk
∑
i∈Lk

λk0
i − ωk − ω̄2

k − ω̄k

)
− rϕk

∑
i∈Lk

λk0
i . (2.29)

Furthermore, from (2.17) and conclusion (ii), we have

ρk
∑
i∈Lk

λk0
i − ωk − ω̄2

k ≤ |(gklk)T dk0|+ ϕk − ρk = −(gklk)T dk0 + ϕk − ρk. (2.30)
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Now, from (2.28)–(2.30) and (gklk)T dk0 ≤ 0, one obtains

(gklk)T dk = (1− σ)ρk
ξ(gklk)T dk0 + σ{ρξk(ρk

∑
i∈Lk

λk0
i − ωk − ω̄2

k − ω̄k) + rϕk
∑
i∈Lk

λk0
i }

≤ (1− σ)ρk
ξ(gklk)T dk0 + σ{ρξk(−(gklk)T dk0 − ρk + ϕk − ω̄k) + rϕk

∑
i∈Lk

λk0
i }

= (1− 2σ)ρk
ξ(gklk)T dk0 − σρk1+ξ + σϕk(ρξk + r

∑
i∈Lk

λk0
i )− σρξkω̄k

≤ −σρ1+ξ
k + σϕk(ρξk + r

∑
i∈Lk

λk0
i )− σρξkω̄k

≤ −σρ1+ξ
k + σϕk(ρξk + r

∑
i∈Lk

λk0
i ). (2.31)

So, inequality (2.21) holds.

For i ∈ I0
k = Ik\{lk} , from (2.20), the second equations of (2.26) and (2.27), one knows

(gki − gklk)T dk = (1− σ)ρξk(gki − gklk)T dk0 + σ(gki − gklk)T dk1

= (1− σ)ρξkF̄kiλ
k0
i + σ(F̄kiλ

k1
i + µki )

= ((1− σ)ρξkλ
k0
i + σλk1

i )F̄ki + σµki ,

= rkiF̄ki + σµki . (2.32)

Therefore, by using (2.19a)–(2.19b) and the penultimate inequality of (2.31), we have

(gki )T dk = σµki + (gklk)T dk + rkiF̄ki

≤ σ(ρξkf̄
k
i − ρ

1+ξ
k − rϕk + ρξkω̄k) + (gklk)T dk + rkiF̄ki

≤ −σρ1+ξ
k + σρξkω̄k + (gklk)T dk + rkiF̄ki + σρξkf̄

k
i

≤ −σρ1+ξ
k + σρξkω̄k − σρ

1+ξ
k + σϕk(ρξk + r

∑
i∈Lk

λk0
i )− σρξkω̄k + rkiF̄ki + σρξkf̄

k
i

≤ −σρ1+ξ
k + σϕk(ρξk + r

∑
i∈Lk

λk0
i ) + rkiF̄ki + σρξkf̄

k
i . (2.33)

So the assertion (2.22) holds. In particular, for i ∈ (I(xk)\{lk}) ⊆ Ik, from (2.7) and (2.8), one

gets F̄ki = f̄ki = 0, thus the conclusion (2.23) follows from (2.21) and (2.22).

For i ∈ Jk, relation (gki )T dk = rkiF̄ki+σµki follows by a similar analysis to (2.32). So, based

on (2.19b), we further have

(gki )T dk ≤ −σ(ρ1+ξ
k + rϕk) + rkiF̄ki + σρξkf̄

k
i , ∀ i ∈ Jk.

and the assertion (2.24) holds. In particular, for i ∈ J(xk) ⊆ Jk, from (2.7) and (2.8), it is

easy to get F̄ki = f̄ki = 0. This, along with (2.24), shows that conclusion (2.25) holds. And the

proof is completed. �

Now, we give the steps of our algorithm for solving the problem (1.1) as follows.
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Algorithm 2.1. Parameters: α, β ∈ (0, 1), σ ∈ (0, 1
2 ), ε0, ξ, r > 0.

Data: x0 ∈ Rn, an initial symmetric positive matrix H0 ∈ Rn×n.

Step 0 (Initialization). Set k := 0.

Step 1 (Generating the working set). Generate the working set Lk by (2.2)-(2.4).

Step 2 (Computation of the search direction).

Substep 2.1. Obtain (dk0, λk0
Lk

) by solving SLE (2.15). Yield λk0
lk

:= 1−
∑
i∈I0k

λk0
i ≥ 0,

and let λk0 = (λk0
Lk
, λk0

lk
, 0(I∪J)\(Lk∪{lk})), and go to Substep (2.2).

Substep 2.2. Yield ωk, ω̄k and ρk by (2.16)–(2.17).If ρk = 0, then xk is a stationary

point of the problem (1.1), stop; otherwise, generate µk = (µki , i ∈ Lk)

by (2.19a) and (2.19b).

Substep 2.3. Obtain (dk1, λk1
Lk

) by solving the SLE (2.18), compute λk1
lk

:= 1−
∑
i∈I0k

λk1
i .

Let λk1 = (λk1
Lk
, λk1

lk
, 0(I∪J)\(Lk∪{lk})). Generate the main search direction

dk by (2.20), and go to Step 3.

Step 3 (Doing line search). If ϕk > 0 and fi(x
k + dk) ≤ 0 hold for all i ∈ J , then

set tk = 1, and go to Step 4. Otherwise, compute the step size tk which is

the maximum t in the sequence {1, β, β2, β3, · · · } that satisfying the

following inequalities:

F (xk + tdk) ≤ Fk + σt(−αρ1+ξ
k + ϕk(ρξk + r

∑
i∈Lk

λk0
i )), (2.34)

fi(x
k + tdk) ≤ max{0, ϕk − ασt(ρ1+ξ

k + rϕk)}, i ∈ J, (2.35)

|J−(xk)| ≤ |J−(xk + tdk)|. (2.36)

Step 4 (Updating). Let xk+1 := xk + tkd
k, update the parameter εk by

εk+1 :=

{
εk, if det(ATkAk) ≥ εk;
1
2εk, if det(ATkAk) < εk.

(2.37)

Generate a new symmetric positive definite matrix Hk+1, such that matrix Hk+1

is positive definite in the null space NSk+1, set k := k + 1, and go back to Step 1.

Remark 2.2. From inequalities (2.34)–(2.36), it follows that one of the following two cases

must take place:

Case A. There exists an integer s such that ϕ(xs) = 0, i.e., the iteration point xs gets into

the feasible set X. Then one has

fki ≤ 0, ∀ i ∈ J, ϕk = 0; Fk+1 ≤ Fk − σαtkρ1+ξ
k , ∀ k ≥ s; (2.38)

Case B. For any k = 0, 1, 2, · · · , ϕ(xk) > 0. This case implies that

ϕk > 0, ϕk+1 ≤ ϕk − ασtk(ρ1+ξ
k + rϕk) < ϕk, k = 0, 1, · · · . (2.39)

The following lemma shows that Algorithm 2.1 is well-defined.

Lemma 2.3. Suppose that the conditions stated in Lemma 2.1 hold. Then inequalities (2.34)–

(2.36) hold for sufficiently small t > 0, so the line search in Step 3 can be carried out in a finite

number of computations, i.e., Algorithm 2.1 is well-defined.
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Proof. In the whole discussion of this lemma, t always means a positive and sufficiently

small real number.

A1. Analyze the inequality (2.34): the proof can be divided into two cases, i.e., i ∈
I(xk) and i /∈ I(xk).

A1.1. For i ∈ I(xk) , i.e., fki = Fk, using Taylor expansion and (2.23), we have

fi(x
k + tdk)− Fk − σt(−αρ1+ξ

k + ϕk(ρξk + r
∑
i∈Lk

λk0
i ))

= fki + t(gki )T dk − Fk − σt(−αρ1+ξ
k + ϕk(ρξk + r

∑
i∈Lk

λk0
i )) + o(t)

≤ t(−σρ1+ξ
k + σϕk(ρξk + r

∑
i∈Lk

λk0
i ))− σt(−αρ1+ξ

k + ϕk(ρξk + r
∑
i∈Lk

λk0
i )) + o(t)

≤ −(1− α)σtρ1+ξ
k + o(t) ≤ 0.

A1.2. For i ∈ I\I(xk), that is fki < Fk, using Taylor expansion, we obtain

fi(x
k + tdk)− Fk − σt(−αρ1+ξ

k + ϕk(ρξk + r
∑
i∈Lk

λk0
i ))

= fki + t(gki )T dk − Fk − σt(−αρ1+ξ
k + ϕk(ρξk + r

∑
i∈Lk

λk0
i )) + o(t)

≤ fki − Fk +O(t) ≤ 0.

Summarizing the analysis above, we know that inequality (2.34) holds.

A2. Analyze inequalities (2.35) and (2.36). For convenience, denote

aki (t) = fi(x
k + tdk)−max{0, ϕk − ασt(ρ1+ξ

k + rϕk)}. (2.40)

Then it is sufficient to show aki (t) ≤ 0 for t > 0 sufficiently small and for all i ∈ J . Next, we

consider the following four cases:

A2.1. For i ∈ J+(xk) ∩ J(xk), i.e., fki = ϕk, by Taylor expansion, it follows from (2.25)

that

aki (t) ≤ fi(xk + tdk)− ϕk + ασt(ρ1+ξ
k + rϕk)

= fki − ϕk + t(gki )T dk + ασt(ρ1+ξ
k + rϕk) + o(t)

≤ −σt(ρ1+ξ
k + rϕk) + ασt(ρ1+ξ

k + rϕk) + o(t)

= −(1− α)σt(ρ1+ξ
k + rϕk) + o(t) ≤ 0.

A2.2. For i ∈ J+(xk)\J(xk), that is fki < ϕk, from Taylor expansion, we have

aki (t) ≤ fi(xk + tdk)− ϕk + ασt(ρ1+ξ
k + rϕk)

= fki − ϕk + t(gki )T dk + ασt(ρ1+ξ
k + rϕk) + o(t)

= fki − ϕk +O(t) ≤ 0.

A2.3. For i ∈ J−(xk)∩J(xk), that is fki = 0, expanding fi(x
k+tdk) at the current iteration

point xk and combining relation (2.25), we get

aki (t) ≤fi(xk + tdk) = fki + t(gki )T dk + o(t)

≤− σtρ1+ξ
k − σtrϕk + o(t) ≤ −σtρ1+ξ

k + o(t) ≤ 0.

A2.4. For i ∈ J−(xk)\J(xk), i.e., fki < 0, we obtain

aki (t) ≤ fi(xk + tdk) = fki + t(gki )T dk + o(t) = fki +O(t) ≤ 0.
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Therefore, for i ∈ J−(xk), one knows that fi(x
k + tdk) ≤ 0 holds from cases A2.3 and A2.4.

So |J−(xk)| ≤ |J−(xk + tdk)|, i.e., (2.36) holds. Moreover, (2.35) holds for i ∈ J−(xk). From

cases A2.1 and A2.2, it shows that (2.35) holds for i ∈ J+(xk). Therefore, (2.35) holds for all

i ∈ J . And the lemma is proved. �

3. Convergence Analysis

If Algorithm 2.1 stops at the current iteration point xk, from Substep 2.2 and Lemma 2.2

(iii), we know that xk is a stationary point of the problem (1.1). In this section, we assume that

the algorithm yields an infinite iteration sequence {xk} of points, then discuss the global and

strong convergence of Algorithm 2.1. For this purpose, the following assumption is necessary.

Assumption 3.1. The sequences both {xk} and {Hk} are bounded, and there exists a positive

constant a such that dTHkd ≥ a‖d‖2 (∀ d ∈ NSk) holds for k large enough.

The assumption above, together with Lemma 2.2(ii), implies that (for k large enough)

(gklk)T dk0 ≤ −(dk0)THkd
k0 ≤ −a‖dk0‖2. (3.1)

Lemma 3.1. Suppose that Assumptions 2.1 and 3.1 hold. Then

(i) ε := lim
k→∞

εk = inf{εk} > 0, so εk ≥ ε, ∀ k = 0, 1, 2, · · · , and furthermore, there exists

an index ` such that εk = ε`, ∀ k ≥ `;
(ii) det(ATkAk) ≥ εk and F̄k ≡ 0 for all k large enough.

Proof. (i) First, in view of that the whole sequence {εk} being nonincreasing and bounded

as well as positive, we know lim
k→∞

εk = inf{εk} ≥ 0. Second, we show that ε > 0. Suppose by

contradiction that ε = 0. Then there exists an infinite subset K such that εk+1 < εk for k ∈ K.

So, it follows, from the finite choice of lk, Ik and Jk as well as the updating formula (2.37),

that there is an infinite subset K̄ ⊆ K satisfying

lk ≡ l∗, Ik ≡ Ī , Jk ≡ J̄ , L̄ := Ī\{l∗} ∪ J̄ , det(ATkAk) < εk, k ∈ K̄.

In view of the boundedness of the sequence {xk}, without loss of generality, suppose that xk
K̄−→

x∗. Taking into account εk → 0 and (2.3)-(2.3), it follows that l∗ ∈ J(x∗), Ī ⊆ I(x∗), J̄ ⊆ J(x∗).

Let matrix

A∗ := (∇fi(x∗)−∇fl∗(x∗), i ∈ Ī\{l∗}; ∇fi(x∗), i ∈ J̄).

Then, passing to the limit in det(ATkAk) < εk, for k ∈ K̄, one has det(AT∗A∗) = 0, which

contradicts with Assumption 2.1. So, ε > 0 is at hand, and this together with the update (2.37)

implies the second claim in (i) is also at hand.

(ii) From conclusion (i) and (2.37) as well as (2.7), it is easy to get that det(ATkAk) ≥ εk
and F̄k ≡ 0 when k is sufficiently large. So the proof is completed. �

Lemma 3.2. Suppose that Assumptions 2.1 and 3.1 hold. Then

(i) the accumulation point V∗ of {Vk} of matrices is nonsingular, and there exists a positive

constant c, such that ‖V −1
k ‖ ≤ c, ∀ k = 0, 1, 2, · · · ;

(ii) the sequences {(dk0, λk0)}, {(dk1, λk1)} and {(dk, ρk, µk)} are all bounded.
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Proof. (i) Assume that V∗ is a given accumulation point of the sequence {Vk}. Then

exists an infinite index set K̂, such that lim
k∈K̂

Vk = V∗. Further, in view of the finite choice for

sets J+(xk), J−(xk), Ik, Jk, Lk, lk and the boundedness of {(xk, Hk)}K̂ , there exists an

infinite index set K ⊆ K̂, such that

xk
K→ x∗, Hk

K→ H∗, Ik ≡ I ′, Jk ≡ J ′, J+(xk) ≡ J+, J−(xk) ≡ J−,
lk ≡ l′, I0

k ≡ I0′ := I ′\{l′}, Lk ≡ L′ := I0′ ∪ J ′, ∀ k ∈ K.
(3.2)

Then, it follows from (2.10), (3.2) and F̄k = 0 (Lemma 3.1) that

Vk → V∗ :=

(
H∗ A∗
AT∗ 0

)
, k ∈ K,

where

A∗ = (ḡ∗i , i ∈ L′), ḡ∗i =

{
gi(x

∗)− gl′(x∗), i ∈ I0′;

gi(x
∗), i ∈ J ′,

and det(AT∗A∗) ≥ ε > 0.

Next, we prove that V∗ is nonsingular. It is sufficient to show that the system of equations

V∗(y
T , zT )T = 0 has a unique solution zero, and this is equivalent to system

H∗y +A∗z = 0, AT∗ y = 0 (3.3)

has the unique solution zero.

Since A∗ is full-column rank, A∗ can be divided as A∗ = (CT , DT )T , where C is nonsingular.

Dividing the vector y and the matrix Ak in the same way, that is:

y =

(
yC
yD

)
, Ak =

(
Ck
Dk

)
,

Since Ak → A∗, then Ck → C, Dk → D, k ∈ K, and Ck is nonsingular for k ∈ K large enough.

Yield yk by

ykD = yD, ykc = −(C−1
k )TDT

k y
k
D → −(C−1)TDT yD, k ∈ K.

then ATk y
k = 0, yk ∈ NSk. Furthermore, since AT∗ y = 0, one knows that yk → y, k ∈ K.

Therefore, it follows that (yk)THky
k ≥ a‖yk‖2 from Assumption 3.1, and this further implies

that yTH∗y ≥ a‖y‖2.
On the other hand, multiplying the first equation of (3.3) by yT from left-hand side and

combing with the second equation of (3.3), we have 0 = yTH∗y ≥ a‖y‖2. So, y = 0. Further,

from the first equation of (3.3), we get A∗z = 0. And A∗ is full-column rank, one knows z = 0.

Hence, the system of linear equation V∗(y
T , zT )T = 0 has a unique solution zero, and V∗ is

nonsingular. The second claim in part (i) follows from the first one in part (i).

(ii) From conclusion (i), formulas (2.15)-(2.20) and Assumption 3.1, the result (ii) is at hand.

The proof is completed. �

Lemma 3.3. Suppose that Assumptions 2.1 and 3.1 hold. Then

(i) lim
k→∞

tkρ
1+ξ
k = lim

k→∞
tkρ

ξ
k = lim

k→∞
tkϕk = 0; and

(ii) lim
k→∞

‖xk+1 − xk‖ = 0.
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Proof. (i) If Case A in Remark 2.2 takes place, then ϕk ≡ 0, ∀ k ≥ s, and {Fk}k≥s
is decreasing and bounded. So the whole sequence {Fk}k≥s is convergent. Consequently, it

follows from (2.38) that lim
k→∞

tkρ
1+ξ
k = 0. Furthermore,

lim
k→∞

tkρ
ξ
k = lim

k→∞
[tk(tkρ

1+ξ
k )ξ]

1
1+ξ = 0.

If Case B in Remark 2.2 takes place, then {ϕk}k≥0 is decreasing and bounded, and further is

convergent. Therefore, from (2.39) we have

lim
k→∞

tkρ
1+ξ
k = lim

k→∞
tkϕk = 0.

(ii) From (2.19a), (2.19b) and conclusion (i), it follows that lim
k→∞

tkµ
k = 0. In addition,

since (2.18) and Lemma 3.2, one obtains lim
k→∞

tkd
k1 = 0. So,

lim
k→∞

‖xk+1 − xk‖ = lim
k→∞

‖(1− σ)tkρ
ξ
kd
k0 + σtkd

k1‖ = 0.

This completes the proof of the lemma. �

Theorem 3.1. Suppose that Assumptions 2.1 and 3.1 hold, and let x∗ be any accumulation

point of the sequence {xk} generated by Algorithm 2.1. Then

(i) the accumulation point x∗ is a stationary point of the problem (1.1), i.e., Algorithm 2.1

is globally convergent; and

(ii) lim
k→∞

ϕk = lim
k→∞

ϕ(xk) = 0.

Proof. (i) For the given accumulation point x∗, there exists an infinite index set K , such

that xk
K→ x∗. And from Lemma 3.3 (ii), we have xk−1 K→ x∗. In view of the finite choice for

related sets and the boundedness of {(Hk, d
k0, λk0)}, one can assume, without loss of generality,

that the index set K satisfies

dk0 K→ d∗0, Hk
K→ H∗, λ

k0 K→ λ∗0, Ik ≡ I ′, Jk ≡ J ′, J+(xk) ≡ J+, J−(xk) ≡ J−,
lk ≡ l′, I0

k ≡ I0′ := I ′\{l′}, Lk ≡ L′ := I0′ ∪ J ′, L(xk) ≡ L̃, (3.4)

d(k−1)0 K→ d̄∗0, Hk−1
K→ H̄∗, λ

(k−1)0 K→ λ̄∗0, Ik−1 ≡ Ī ′, Jk−1 ≡ J̄ ′, J+(xk−1) ≡ J̄+,

J−(xk−1) ≡ J̄−, lk−1 ≡ l̄′, I0
k−1 ≡ Ī0′ := Ī ′\{l̄′}, Lk−1 ≡ L̄′ := Ī0′ ∪ J̄ ′, L(xk−1) ≡ L̃′. (3.5)

Further, we define

f̄∗i :=


F (x∗)− fi(x∗), i ∈ I0′;

ϕ(x∗)− fi(x∗), i ∈ J+ ∩ J ′;
−fi(x∗), i ∈ J− ∩ J ′,

(3.6)

ω∗ =
∑
i∈L′

max{−λ∗0i , λ∗0i f̄∗i }, λ∗0l′ = 1−
∑
i∈I0′

λ∗0i , ω̄∗ = max{−λ∗0l′ , 0}, (3.7)

ρ∗ =
|gl′(x∗)T d∗0|+ ω∗ + ω̄2

∗ + ϕ(x∗)

1 + |(e∗)Tλ∗0L′ |
, (3.8)

where e∗ = (1, 1, · · · , 1)T ∈ R|L′|. In a similar fashion to the definition of ρ∗, one can also define

ρ̄∗ at the limit x∗ of {xk−1}K corresponding to sets Ī ′, J̄ ′, L̄′ and l̄′.
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Subsequently, suppose by contradiction that x∗ isn’t a stationary point of the problem (1.1).

Then the proof is divided into three steps as follows.

Step A. Show that ρ∗ > 0 and ρ̄∗ > 0. So, for k ∈ K large enough, it follows that

ρk ≥ 0.5ρ∗, δk = min{εk, ρk−1}
K→ δ∗ := min{ε, ρ̄∗} > 0, δk ≥

1

2
δ∗ > 0.

If ρ∗ = 0, then, from (3.8), (3.7), and (3.1), one has
gl′(x

∗)T d∗0 = 0 =⇒ d∗0 = 0,

ω∗ = 0 =⇒ λ∗0i ≥ 0, λ∗0i f̄
∗
i = 0, ∀ i ∈ L′,

ω̄∗ = 0, =⇒ λ∗0l′ = 1−
∑
i∈I0′

λ∗0i ≥ 0,

ϕ(x∗) = 0 =⇒ x∗ ∈ X, i.e.,x∗ is a feasible point.

Again, taking the limit in the first equality of (2.26) for k ∈ K and combining d∗0 = 0, we have∑
i∈I0′

λ∗0i (gi(x
∗)− gl′(x∗)) +

∑
i∈J′

λ∗0i gi(x
∗) = −gl′(x∗),

i.e., ∑
i∈I′

λ∗0i gi(x
∗) +

∑
i∈J′

λ∗0i gi(x
∗) = 0.

Hence, the two relations above show that x∗ is a stationary point of the problem (1.1), and this

is a contradiction. So ρ∗ > 0 is at hand. The analysis for ρ̄∗ > 0 is similar.

Step B. Prove t := inf{tk, k ∈ K} > 0.

It is sufficient to show that inequalities (2.34)-(2.36) are all satisfied for k ∈ K large enough

and real number t > 0 sufficiently small (independent of k). In the remaining analysis, the

statement of “k ∈ K large enough and real number t > 0 sufficiently small” isn’t repeated.

B1. Analyze inequality (2.34). For i ∈ I , the proof is further divided into two cases, i.e.,

i ∈ I(x∗) and i /∈ I(x∗) .

B1.1. For i ∈ I(x∗), one has fki − Fk → fi(x
∗) − F (x∗) = 0 > − 1

2δ∗ > −δk, k ∈ K large

enough, then i ∈ Ik by (2.2). Again, taking into account the differentiability of fi(x) and the

boundedness of {dk}K , and using Taylor expansion, we have

wki(t) : = fi(x
k + tdk)− Fk − σt(−αρ1+ξ

k + ϕk(ρξk + r
∑
i∈Lk

λk0
i ))

= fki + t(gki )T dk + o(t)− Fk − σt(−αρ1+ξ
k + ϕk(ρξk + r

∑
i∈Lk

λk0
i )).

(3.9)

Noting that F̄ki ≡ 0, f̄ki = Fk − fki
K→ F (x∗) − fi(x∗) = 0 for i ∈ I(x∗)\{l′}, we can obtain

from (2.21)-(2.22)

(gki )T dk ≤ −σρ1+ξ
k + σϕk(ρξk + r

∑
i∈Lk

λk0
i ) +O(f̄ki ), i ∈ I(x∗). (3.10)

Substituting (3.10) into (3.9), it follows that

wki(t)≤ fki − Fk − (1− α)σtρ1+ξ
k + tO(f̄ki ) + o(t)

≤ −0.51+ξ(1− α)σtρ1+ξ
∗ + o(t) ≤ 0.
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B1.2. For i ∈ I\I(x∗), one gets fi(x
∗) < F (x∗), and then

wki(t) = fki + tgi(x
k)T dk − Fk − σt(−αρ1+ξ

k + ϕk(ρξk + r
∑
i∈Lk

λk0
i )) + o(t)

= fki − Fk +O(t) ≤ 0.5(fi(x
∗)− F (x∗)) +O(t) ≤ 0.

B2. Analyze inequalities (2.35) and (2.36) via four cases as follows.

B2.1. Consider i ∈ J+(xk) and fi(x
∗) = ϕ(x∗). In view of xk

K→ x∗ and δk ≥ 1
2δ∗ > 0, one

gets i ∈ Jk = J ′ by (2.3). In addition, f̄ki = ϕk − fki → ϕ(x∗)− fi(x∗) = 0, k ∈ K. So, we have

from F̄ki = 0 and (2.24)

gi(x
k)T dk ≤ −σ(ρ1+ξ

k + rϕk) +O(f̄ki ).

Using Taylor expansion, one gets from (2.40)

aki (t)≤ fi(xk + tdk)− ϕk + ασt(ρ1+ξ
k + rϕk)

= fki − ϕk + t(gki )T dk + ασt(ρ1+ξ
k + rϕk) + o(t)

≤ fki − ϕk − (1− α)σtρ1+ξ
k − (1− α)σtrϕk + tO(f̄ki ) + o(t)

≤ −0.51+ξ(1− α)σtρ1+ξ
∗ + o(t) ≤ 0.

B2.2. Consider i ∈ J+(xk) and fi(x
∗) < ϕ(x∗). In view of the boundedness of {(dk, ρk, ϕk)} ,

and using Taylor expansion, we have from (2.40)

aki (t)≤ fi(xk + tdk)− ϕk + ασt(ρ1+ξ
k + rϕk)

= fki − ϕk + t(gki )T dk + ασt(ρ1+ξ
k + rϕk) + o(t)

= fki − ϕk +O(t) ≤ 0.5(fi(x
∗)− ϕ(x∗)) +O(t) ≤ 0.

B2.3. Consider i ∈ J−(xk) and fi(x
∗) = 0. Taking into account δk ≥ 1

2δ∗ > 0, we

have i ∈ Jk = J ′ from (2.3), and it further follows that f̄ki = −fki → −fi(x∗) = 0, k ∈ K.

Therefore, from (2.24) and F̄ki = 0, one has

fi(x
k + tdk) = fki + tgi(x

k)T dk + o(t)

≤ fki − σt(ρ
1+ξ
k + rϕk) + tO(f̄ki ) + o(t)

≤ fki − σtρ
1+ξ
k + tO(f̄ki ) + o(t)

≤ −0.51+ξσtρ1+ξ
∗ + o(t) ≤ 0.

B2.4. Consider i ∈ J−(xk) and fi(x
∗) < 0. In view of the boundedness of {dk}, we have

fi(x
k + tdk) = fki + tgi(x

k)T dk + o(t) ≤ 0.5fi(x
∗) +O(t) ≤ 0.

Now, summarizing the analysis in cases B2.3 and B2.4 above, it follows that fi(x
k + tdk) ≤

0, ∀ i ∈ J−(xk), for k ∈ K large enough. So J−(xk) ⊆ J−(xk+tdk) holds, and then |J−(xk)| ≤
|J−(xk + tdk)|, inequality (2.36) holds. On the other hand, from the analysis of the four cases

above, it shows that inequality (2.35) holds.

Step C. Using tk ≥ t > 0 (∀ k ∈ K) to get a final contradiction. If Case A in Remark 2.2

takes place, then {Fk}k≥s is decreasing and bounded. So it is convergent. On the other hand,

it follows from (2.38) that

Fk+1 ≤ Fk − σαtkρ1+ξ
k ≤ Fk − 0.51+ξσαtρ1+ξ

∗ , k ≥ s, k ∈ K.
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Passing to the limit in the inequality above, we immediately get 0 ≤ −0.51+ξασtρ1+ξ
∗ , this

together with t > 0 and ρ∗ > 0 brings a contradiction.

If Case B in Remark 2.2 takes place, then {ϕk}k≥0 is decreasing and bounded. Thus, it is

convergent. Therefore, according to (2.39), we have

0 = lim
k∈K,k→∞

(ϕk+1 − ϕk) ≤ lim
k∈K,k→∞

−ασtk(ρ1+ξ
k + rϕk) ≤ −0.51+ξασtρ1+ξ

∗ .

This also brings a contradiction. Consequently, we can conclude that x∗ is a stationary point

of the problem (1.1).

(ii) Based on conclusion (i), as well as the monotone and bounded property of {ϕ(xk)}, we

have lim
k→∞

ϕk = lim
k→∞

ϕ(xk) = ϕ(x∗) = 0, where x∗ is an accumulation point of the sequence

{xk}. And the theorem is proved. �

Subsequently, we further analyze the strong convergence of our proposed algorithm. For

this purpose, the following assumption which is used in [6, 7, 11] is necessary.

Assumption 3.2. (i) The functions fi(x) (i ∈ I ∪ J) are all twice continuously differentiable

over Rn; (ii) The stationary pair (x∗, λ∗) satisfies the upper-level strict complementarity and

the strong second–order sufficiency conditions (SSOSC).

The details for the Assumption 3.2 (ii) above can be seen in [11, Assumption 4.1 (iii)]. Next,

we give a lemma to show that x∗ is an isolated accumulation point of the problem (1.1) under

certain conditions.

Lemma 3.4. Suppose that x∗ is the accumulation point of the problem (1.1) and the stated

assumptions hold. Then x∗ is an isolated accumulation point of (1.1).

The proof of this lemma is similar to the one of Theorem 1.4.2 in [21] or Lemma 4.1 in [6],

thus it is omitted here. Now, we can present the strong convergence of Algorithm 2.1 as follow.

Theorem 3.2. Suppose that Assumptions 2.1, 3.1 and 3.2 are all satisfied. Then lim
k→∞

xk = x∗,

i.e., Algorithm 2.1 is strongly convergent.

Proof. From Lemma 3.3 (ii), we have limk→∞ ‖xk+1 − xk‖ = 0. This, together with

the isolation of the accumulation point x∗, implies that limk→∞ xk = x∗, see [21, Corollary

1.1.8]. �

4. Numerical Experiments

In this section, in order to validate the practical effectiveness of our proposed algorithm, we

test the middle-small-scale constrained minimax problems. The numerical experiments were

implemented in MATLAB 9.3.0.713579 (R2017b) on a personal computer with Windows 10,

Intel(R) Core(TM) i5-8250U CPU 1.80 GHz and 8 GB RAM. During the numerical experiments,

we set the parameters α = β = 0.5, σ = 0.19, ξ = 0.01, r = 12, ε0 = 10, and the approximate

Hessian matrix Hk is updated by the BFGS formula with Powells modification (see [6] for

details), where H0 is the identity matrix. The unified terminated criterion is ρk < 10−5 for all

test problems.

The first test group consists of 4 problems (P1-P4) taken from [5], where problems P1-

P4 correspond to the test problems 1, 2, 5 and 7 in [5], respectively. And the second group
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Table 4.1: Numerical comparisons for Algorithms 2.1 and A.

Problem n/m/l x0 ϕ(x0) Algorithm Ni F (x∗) Tcpu

P1 2/3/2 (3, 3)T 42.5 Algorithm 2.1 1 + 12 1.952225 0.02

Algorithm A 3 + 7 1.952224 0.10

P2 2/6/2 (1, 3)T 0 Algorithm 2.1 8 0.616435 0.01

Algorithm A 7 0.616432 0.04

P3 4/4/3 (2, 2, 2, 2)T 10 Algorithm 2.1 6 + 25 −43.999996 0.04

Algorithm A 1 + 22 −44.000000 0.13

P4 7/5/4 (3, · · · , 3)T 188 Algorithm 2.1 2 + 50 680.630077 0.09

Algorithm A 4 + 60 680.630057 0.36

P5 50/3/49 (0.5, · · · , 0.5)T 0 Algorithm 2.1 63 98.000671 1.13

Algorithm A 147 98.000001 10.28

(0, · · · , 0)T 1 Algorithm 2.1 1 + 54 98.000781 0.88

Algorithm A 1 + 72 98.000001 5.31

P6 50/2/48 (2, 1, · · · , 2, 1)T 0 Algorithm 2.1 147 −36.436048 1.58

Algorithm A 38 −36.436316 3.18

(1, · · · , 1)T 0.5 Algorithm 2.1 1 + 137 −36.436061 1.44

Algorithm A 48 + 18 −36.436316 4.64

P7 50/2/49 (0, · · · , 0)T 0 Algorithm 2.1 151 −56.580049 1.85

Algorithm A 92 −56.580326 6.29

(1, · · · , 1)T 2 Algorithm 2.1 1 + 99 −56.580079 1.14

Algorithm A 1 + 48 −56.580326 4.01

P8 50/3/49 (0.5, · · · , 0.5)T 0 Algorithm 2.1 113 198.345882 1.26

Algorithm A 78 198.345372 5.70

(−1, · · · ,−1)T 2 Algorithm 2.1 1 + 246 198.345961 5.66

Algorithm A 1 + 298 198.345369 20.05

P9 50/2/48 (1.5, · · · , 1.5)T 0 Algorithm 2.1 135 119.115732 1.47

Algorithm A 157 119.114299 10.17

(0.5, · · · , 0.5)T 0.875 Algorithm 2.1 1 + 163 119.115682 1.69

Algorithm A 36 + 98 119.114299 8.74

P10 50/2/49 (0.5, · · · , 0.5)T 0 Algorithm 2.1 19 0.000006 0.06

Algorithm A 10 0 1.17

(2, · · · , 2)T 11 Algorithm 2.1 1 + 20 0.000010 0.06

Algorithm A 3 + 15 0 1.37

consists of 7 problems (P5-P11), these problems are composed of the corresponding objec-

tive functions and constraint functions in [24]. In particular, P5 = 2.4 + 4.6(1) (which mean-

s the objective and constraints of the problem P5 are 2.4 and 4.6(1) in [24], respectively,

and the same blew), P6 = 2.3 + 4.1(2), P7 = 2.3 + 4.6(2), P8 = 2.4 + 4.6(2), P9 = 2.9 + 4.7,

P10 = 2.9 + 4.6(2), P11 = 2.1 + 4.6(1).

The numerical results are listed in Tables 1 and 2. The following notations are used: “n”:

the dimensions of the variable x; “m”: the number of all component objective functions; “l”: the

number of constraint functions; “x0”: the initial feasible point; “Ni”: the number of iterations

(when Ni is a sum of two numbers, the former and the latter indicate the number of iterations

outside and inside the feasible set, respectively); “NF”: the number of all component functions

evaluations in the objective; “NC”: the number of constraints evaluations; “F (x∗)”: the final

objective value; “ρ∗”: the approximate identification value at the final iteration point; “Tcpu”:

computing time of CPU (in seconds); “Algorithm A”: the algorithm of [7], and the corresponding

data of Algorithms A in Table 4.1 are reported in [7].
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Table 4.2: Numerical results of Algorithm 2.1.

Problem x0 ϕ(x0) n/m/l Ni NF NC F (x∗) ρ∗ Tcpu

P5 (3.5, · · · , 3.5)T 23.75 100/3/99 25 + 124 2557 90321 198.001766 9.8357e− 06 4.22

150/3/149 25 + 79 2411 146180 298.001952 7.1367e− 06 6.58

200/3/199 25 + 61 1667 126592 398.002627 8.8239e− 06 7.33

300/3/299 25 + 105 2178 249242 598.004368 8.8252e− 06 14.74

P6 (1, · · · , 1)T 0.5 100/2/98 1 + 127 2398 48204 −73.239238 8.6121e− 06 2.98

150/2/148 1 + 131 2372 71970 −110.042615 6.0118e− 06 4.92

200/2/198 1 + 105 1768 72140 −146.845472 9.4005e− 06 5.87

300/2/298 1 + 125 2250 127198 −220.451924 8.3525e− 06 10.21

P7 (6, · · · , 6)T 107 100/2/99 50 + 137 4025 125959 −114.314785 9.7788e− 06 4.13

150/2/149 62 + 170 5069 240724 −172.049576 9.2432e− 06 8.64

200/2/199 62 + 178 5235 323382 −229.784348 9.1351e− 06 17.18

300/2/299 62 + 232 6213 539402 −345.253830 9.3946e− 06 30.03

P9 (0.5, · · · , 0.5)T 0.875 100/2/98 1 + 161 2817 53370 248.406681 9.5585e− 06 3.54

150/2/148 1 + 167 2850 81340 377.697717 9.8484e− 06 5.85

200/2/198 1 + 177 2998 114242 506.988534 9.6540e− 06 9.27

300/2/298 1 + 196 3281 192362 765.573917 1.3291e− 06 20.94

P10 (5, · · · , 5)T 74 100/2/99 12 + 23 841 45051 0.000007 6.7653e− 06 0.15

150/2/149 21 + 22 1182 97607 0.000005 7.1377e− 06 0.25

200/2/199 21 + 26 1322 145891 0.000012 9.2633e− 06 0.48

300/2/299 20 + 27 1359 224573 0.000003 2.4150e− 06 0.89

P11 (0.8, · · · , 0.8)T 0 100/100/99 95 62100 29674 0.111111 1.6572e− 15 3.79

150/150/149 145 141750 67022 0.111111 2.2313e− 15 9.84

200/200/199 181 205000 110180 0.111111 1.5667e− 17 18.98

In Table 4.1, we compare our algorithm with the SQP algorithm for minimax problem in [7],

regardless of starting from the feasible points or not. The performance of these two algorithms

is similar in terms of the approximate optimal objective value at the final iteration point, and

two algorithms have their own advantages with respect to the total number of iterations, thus

the comparisons show that our algorithm is promising. Furthermore, Algorithm 2.1 solves two

SLEs with a same coefficient matrix at each iteration, while Algorithm A need to solve a norm-

relaxed quadratic programming subproblem and a SLE at each iteration, so we point out that

our algorithm can reduce the computing time of CPU in the experiments. In Table 4.2, we

see that Algorithm 2.1 can efficiently solve all the problems with dimensions varying from 100

to 300, except for Problem 12 with the dimension n = 300, the reason is that the coefficient

matrix of Problem 12 (n = 300) in the SLEs is close to singular or badly scaled during the

implementation, so its numerical results are not given in Table 4.2.

In summary, through the numerical results in the two tables and the analysis above, we can

get that our proposed algorithm is promising for the middle-small-scale constrained minimax

problems.

5. Conclusion

In this work, based on the stationary conditions of the nonlinear minimax problems with in-

equality constraints, we propose a SSLE-type algorithm of quasi-strongly sub-feasible directions

starting from an arbitrary initial iteration point. By means of a new working set, we develop a

new technique for constructing the coefficient matrix of the SLE. At each iteration, two SLEs
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with the same uniformly nonsingular coefficient matrix are solved. Under mild conditions, the

proposed algorithm possesses global and strong convergence.

In terms of further work, we think the ideas in this work can be extended to minimax

problems with equality and inequality constraints or other optimization problems.
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