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Abstract. In this paper, we consider the divergence degenerate elliptic equation with
bounded coefficients constructed by Hérmander’s vector fields. We prove a De Giorgi
type result, i.e., the local Holder continuity for the weak solutions to the equation by
providing a De Giorgi type lemma and extending the Moser iteration to the setting
here. As a consequence, the Harnack inequality of weak solutions is also given.
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1 Introduction

In 1957, De Girogi has found the local Holder continuity of weak solutions to the follow-
ing divergence elliptic equation with bounded coefficients

Lu=— Zn: D; (aij(x)D]-u> =0, xeR"
ij=1

and a priori estimate of Holder norm (see [1]). Nash in [2] used a different approach
and derived the similar result to the parabolic equation with bounded coefficients. In [3]
Hou and Niu have taken into account of Nash’s approach to obtain the Holder regularity
and Harnack inequality to divergence parabolic equation related to Hormander’s vector
fields. Moser [4] developed a new method (nowadays it has been called the Moser it-
eration) and applied it to prove forenamed results with respect to elliptic and parabolic
equations. These important ideas opened a new prospect for the study of regularity to

*Corresponding author. Email address: h11678000163. com (L. Hou)

http:/ /www.global-sci.org/jpde/ 22



A De Giorgi Type Result to Divergence Degenerate Elliptic Equation 23

partial differential equations. A natural and interesting problem is whether De Giorgi’s
resultis true to the divergence degenerate elliptic equation related to Hormander’s vector
fields. We will affirmatively answer it.

Hoérmander introduced the square sum operator constructed by smooth vector fields
and proved that it is hypoelliptic if vector fields satisfy the finite rank condition (see [5]).
Many authors continued his research ([6-11]) and obtained numerous insight, such as,
fundamental solutions ([12]), the Poincaré inequality ([13]), potential estimates ([14]) and
sub-elliptic estimates ([15,16]). Nagel, Stein and Wainger ([17]) deduced the basic prop-
erties of balls and metrics defined by Hormander’s vector fields, which are the starting
point for treating many problems on the Hérmander square sum operator and related
sub-elliptic operators. Lu found the Harnack inequality and Holder continuousity for so-
lutions to quasilinear degenerate elliptic equations formed by Hérmander’s vector fields,
see [18,19].

Rothschild and Stein in [11] have proved regularity to the second order subelliptic
equation. Xu and Zuily in [20] dealt with the interior regularity of weak solutions to the
quasilinear degenerate elliptic system

Zq: X7 (aij(x,u)Xiu"‘) = f*(x,u,Xu).

i,j=1

The Holder regularity and Harnack inequality of the functions in the De Giorgi class relat-
ed to Hormander’s vector fields are arrived at by Marchi in [21]. Bramanti and Brandolini
in [22] gave regularity to the nondivergence degenerate elliptic equation of Hormander’s
vector fields. The partial Holder regularity for weak solutions to the quasilinear degener-
ate elliptic system was settled by Gao, Niu and Wang [23]. Dong and Niu in [24] obtained
regularity of weak solutions to the nondiagonal quasilinear degenerate elliptic system

-X; (a?}ﬁ(x,u)X,guj> =gi(x,u, Xu)— X fif (x,u,Xu).

Schauder estimates to degenerate elliptic operators related to noncommutative vector
fields have been derived in [25,26] etc.

Throughout this paper we are concerned with the following divergence degenerate
elliptic equation with bounded coefficients:

X <aij(x)Xiu) Fhi(x) Xiutc(x)u=f(x)= X fi(x)  inQ, (1.1)

where ) is a bounded domain in R", X;=Y"}_; by (x) aixk (bi(x) €C®(Q)), i=1,...,.q9,q<n)
are smooth vector fields satisfying the finite rank condition, and the summation symbols

in (1.1) are omitted. We assume that there exists A >0, such that

ATYNEP <l (0)EESAE?,  forxeQ, EERY, (1.2)
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ZHainLw(Q)+ZHbiHL°°(Q)+ el Loy <A (1.3)
i i

FeLdH(Q) and flell(Q),  (i=1-.q), (14)

for p>Q, Q is the local homogeneous dimension relative to () (see (2.2) below). Here we
refer the corresponding results of (1.1) when X; = a%, i=1,---,nto[27].

Let H} (€);X) be the local Sobolev space of Hérmander’s vector fields.

A functionu e H llo (0;X) is said a weak sub-solution (super-solution) to Eq. (1.1), if

XX, X1 - . ix.
/()(a XiuX;p+b;Xu q)+cuq))dx<(>)/0<f o+f qu))dx, (1.5)

for any ¢ € H}((;X) with ¢ >0. If u € H}, (;X) is both a sub-solution and a super-
solution to (1.1), then u is said a weak solution to (1.1), where (1.5) becomes an integral
equality and ¢ >0 is not needed.

Let us describe the De Giorgi class in the frame of Carnot-Carathéodory disance in-
duced by Homander’s vector fields.

We say that u € H}, ((;X) belongs to the De Giorgi class, denoted by DG(Q)), if
[[4]] Lo () < M and there exists 6 € (0,1), such that for any real k satisfying

O<esssup(u—k)+ <9, BrCQ, (0<R<1),

Bg
the following inequalities
Yo 2 4 1-2
XuPdy< 0 [ (u—k AE 1 1
/,@,R' U xS T pyge Jy, (Rl (1.6)

are valid, where o € (0,1],79 and -1 are positive constants, 7 > Q, and
Alg={xeBrlu(x) =2k}, A g={x€Br|u(x)<k}.
If (1.6) - (or (1.6)_) is valid, then we say u € DG*(Q) (or u€ DG~ (Q2)). Obviously,
DG(Q)=DGT(Q)NDG™ (Q).

Clearly, A}y is decreasing and A,  is increasing on k. Let us note that (1.6) here is not
same as one in [21].
Now we state the main results of this paper.

Theorem 1.1. (Holder Regularity) Let u € H}, (€;X) be the bounded weak solution to (1.1)
with (1.2), (1.3) and (1.4). Then for any Br(x) CC Q,R€ (0,Ro],0< R <1, there exists 0 <a <
1 —% in which 1> Q, such that u € C¢ (Q) and

loc
1 1
(U] 5, <Cd " <M+7fdx|0| '11>, (1.7)

where dy =dist{x,000} and C >1 depends on 1,6,Q and A.
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Theorem 1.2. (Harnack Inequality) Suppose that conditions in Theorem 1.1 are satisfied and
u>0o0n Bgr(x9) CQ(R€E(0,Rp), 0<Ro<1), then

1
inf >Cu(x)—C?93R|Bg| 7, (1.8)
Br(xo)

where C >0 depends on 11,6,Q and A.

Remark 1.1. Because of the complexity of geometry structure caused by Hormander’s
vector fields, the Lebesgue measure |Bg| and R are not equivalent (see [17]). We do not
use the equivalence in our proofs of main results. It is a lightspot in the paper.

The paper is organized as follows: Section 2 contains notions related to Hérmander’s
vector fields, the Campanato space, the Holder space, the Sobolev inequality and Poincaré
inequality of Hérmander’s vector fields. A De Giorgi type lemma is inferred which is not
same as in [4]. In Section 3 we prove that weak solutions to (1.1) are actually in the De
Giorgi class DG(Q)) and derive oscillation estimates for functions in DG(Q2). Section 4
is devoted to proofs of main results. The proof of Theorem 1.1 is based on oscillation
estimates of weak solutions and the isomorphism between the Campanato space and
Holder space. Theorem 1.2 is proved by giving an extension lemma of positivity of weak
solutions and using Theorem 1.1.

2 Preliminaries

Let Xy,---,X; (g <n) be C® vector fields in the domain QQ CIR". We say that these vector
fields satisfy the finite rank condition in (), if the vector space spanned by Xi,---,X,; and
their commutators up to r step is the whole RY at every point in () (more definitions are
referred to [5]), i.e.,

rank Lie[Xy,---, X;]=N.

An absolutely continuous curve 7 :[0,T] — Q is called sub-unitary with respect to
vector fields Xj,---,X,, if 7/(t) exists and for every { € RN and t€([0,T] a.e., it holds

q
<7 (1),6>2< Y <Xj(v(1),&>2
j=1

Denote by ®(x,y) the collection of sub-unitary curves connecting x and y.

Definition 2.1 (Carnot-Carathéodory distance, [17,28,29]). The Carnot-Carathéodory dis-
tance (C-C distance) is defined by

d(x,y)=inf{T>0:y€P(x,y)}.
The C-C ball of the centre xo € Q) and radius R >0 is the set
B(XO,R) = BR(X()) = {.X' € QZd(.X‘o,x) < R}
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The Lebesgue measure of B(xo,R) is expressed as |Br(Xp)|. From [17], there exist
positive constants ¢; and ¢, such that for any x,y € (),

a1l x—y| <d(xy) <ealx—y7,

where |- | means the Euclidean norm, and there are positive constants ¢3 and Ry , such
that for xp € Q),B(x0,2R) CC Q),0<2R < Ry, the doubling property holds:

|B(x0,2R)| < c3|B(x0,R)|. (2.1)
We have by (2.1) that for any 0< R<Rpand 0 € (0,1),
|Bor| > c5109|Bg, (2.2)

where Q =log,c3 acts as a dimension. It knows from [22,30] that B(xo,R) is a homoge-
neous space which allows us to apply known statements in the homogeneous space in
the sequel.

We define the Sobolev spaces W7 ((); X) and Wg P(0;X)(p=1), which are the closures
of C}(Q)) and C}(Q)) under the norm

1
P
lullwisiey = | (ul? +1x0l7) x| @3

respectively, where Xu= (Xlu,- . ,Xqu). If p=2, we simply denote H!(Q); X)=W?((); X),
HY(O;X) =W, (Q;X), and HL (Q;X)={uec H'(QV;X); ' cCcQ}.

loc

Definition 2.2 (H6lder space). For a€(0,1], the Holder space C*(Q) is a collection of a-Holder
continuous functions with the norm

|u(x) —u(y)]

u [y = Su u +Su <+Oo.
lllee(my =suplul+sup =705

Let C¥ (Q) stand for the local Holder space {u € C*(€Y'); O’ CC Q}.

Definition 2.3 (Campanato space). For 1<p<+o00, A>0, ucLF(Q), if

u RN Ty s
Ulpr= sup <—>/ u(x)—uqn,|Pdx 3 <-oo,
§ x€0,0<RKd ’QR| Or .

where d =diam ), Qr =QNBr(Y), uq, = ﬁfmu(x)dx, then we say that u belongs to the
Campanato space LP(Q)) with the norm

[l 2 = [l pa =+ [l
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Lemma 2.1 ([28,29]). For 0<A<pand a=A/p, it follows
LPMQ)=C*(Q).

Lemma 2.2 (Sobolev Inequality, [31,32]). For 1<p<Q, there exist C>0and Ro>0 such that
forany x€Q), Bk =B(x,R), 0 < R< Ry, it implies for any u € W&’p(BR),

1 1
1 1
<i yu|P’<dx> " <CR (i yXudex> " 2.4)
|Br| /Bx |Br| /g
where 1<k<Q/(Q—p).
Let p=2and k=Q/(Q—2) in (2.4), we immediately have

Corollary 2.1. For uc€ H}

ioc (4 X), there exist C >0 and Ro >0 such that for any x €Q), Br =
B(x,R)CQ), 0<R<Ry,

1

2
72 (RZ / |Xu|2dx> : (2.5)
Br

Lemma 2.3 (Poincaré Inequality, [13]). Let u € WYP(Bg) (p=1), then for any x € Q), B =
B(x,R)CQ),

L
*

</ |u]2*dx>2 < C|Bg
Br

Here 2*=2Q/(Q—-2).

/ |u(x)—uBR|”dx<CR”/ | Xul|Pdx, (2.6)
BR BR
where uBR:|BR]*1fBRu(x)dx.

Using (2.6), we can prove

Theorem 2.1 (De Giorgi type Lemma). Let uc W'2(Bg) and denote A(k)={x€Bg|u(x)>k},
then for 1 >k,

_ | B 2 2 >% _ 3
a-Rlam<cy B (2 o X0PE) AGR=ADE, @)

where C relies only on Q.

Proof. Itis evident to see A(I) C A(k) for I >k. Let p=1in (2.6), it yields
/ |u(x)—uBR|dx<CR/ | Xu|dx. (2.8)
Br Bg
Denote Ny = {x € Br|u(x) =0}, then

|N0||uBRy:/ |uBRydx:/ |u(x)—uBR|dx</ |u(x)—uBRydx<CR/ |Xu|dx
No No Bg Br
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and
/|uBRydx ]BR||uBR|<CR’N|/ |Xuldx.

By using (2.8), we arrive at

/B|u(x)]dx</ |u(x)—uBR|dx—|—/ lup, |dx
R

<CR/ Xu|dx-+CRIER! R'/ |Xu|dx
[Nol /Br

1B R!
<CR+— Xu dx. 29

Applying (2.9) to function

I—k, xeA(l),
a(x)=qu(x)—k, xeAk)—A(l),
0, XEBR—A(k),

it follows that
(=01AD)I< [ [a(x)dx

’BCIEIBM / | X1 |dx

1
| Br| ( 2/ 2 >7 3
<C——— (R Xuld A(k)—A(I)|?
B A(R) A(k)—A(l)| uldx ) |A(k)—A(l)]
and (2.7) is proved. O

Remark 2.1. We stress that (2.7) here is not same as the corresponding inequality in [21].

Lemma 2.4 (Existence of cut-off functions, [21,32]). If 0<s <t and xo €IR", then there exists
a Lipschitz function ¢ such that ¢ =1 in Bs(xp), ¢=0in R"\ B(xo) and

q C
2
. < .
;llfﬂl’! S(t—s)2

3 Some auxiliary lemmas

We have the following result for the weak sub-solution (super-solution) to (1.1):

Lemma 3.1. Let u € H}OC(Q;X) be the bounded weak sub-solution (or super-solution) to (1.1)
with (1.2), (1.3) and (1.4), then

ueDGH(Q)(or ue DG~ (Q)).
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Proof. We only prove the conclusion for the bounded weak sub-solution, the proof for the

other case is similar.

Taking the test function {?(u—k) to (1.1), here { is the cut-off function between

By, (0<o<1) and By, it shows

/B aiinqu(gz(u—k)+)dx—|—/Bp <biXiu—|—cu) *(u—k) dx

0

< J, XIS k) + T k) Jax.

Noting X;u=X;(u—k) and

ZX 1) (u—k)+ X0 —=X;(Z(u—Fk)+ ) (u—k) + X;il =0,
ij=1

it infers

XiuX; (02 (u—k) 1) = XuX;(C-¢(u—k) 1)

=CXiul(u—k)+ X;0+X;({(u—k)+)]

=[Xi(G(u—k)+)— (u—k)+ Xif][(u—k)+ X;0+ X;(C(u—k)+)]
=X;(C(u—k) 1) X;(g(u—k) 1) — (u—k)3 Xi{X;C

and puts it into (3.1) to obtain

[, X =0 ) X (G =k) )~ (u =k XX, Cdx

< /B p (u—k)%a"X;X;{dx— /B p (biXﬂH—cu) 7% (u—k)  dx
[ X k) + (k) ]

=L+ L+

Applying (1.2), it gets
I <A/ (u—K)2 | X |*dx.
BP

By using the Cauchy inequality to I, we have

Izé/
B

big(u—k)JrCXiu‘dx

bl'xiugz(u—k)+‘dx+/8 lcug?(u—k), |dx=: Iy + Ly;
0

0

since

121</
B

0

(3.1)

(3.2)
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<c(e) [ =k [T dxve [ eXuldx

=C(@ [, Ew=R [COdrre [ D=k~ (k) XL P

<C(e) [ =k [T dx+2e [ Xi(u—k)) P+ =k XCPdx

ko - N kp

and

dx

o< [ |\l /Ieluc

<C(e) [ 16l u=k) e [ el ((u=k)+h2¢dx

k,p Ak,p

<C(e)/A+ |cyg2(u—k)ﬁolx+ze/A+ o] ((—k)2+K2)2dx

kp

<C(e) [ lel(u=k) >+ lelegdx,

kp

where Ak+,p ={xeB,|u(x) >k}, it follows

L<C(e) |, AP 2 [T ] +1eeg fox
e - PR+ (e X
Also ,p
B<C© [ DU HAC w0 faxre [ Xi(E-Lu—)Pax
~c@) |, {ZUFP+1A12 k) fdxte | X X))l

k,p ko

<cle) [ AL (PR Wk pdvr2e [ (k2 [XTP+ X u—R)1 ) d

k,p Ak,p

Now substituting estimates of I;,I; and I3 into (3.2), it derives
AT [ X (@ (k)4 P
BP
<A/B (u—k)2 yxgyzc1x+C(e)/A+ (=12 [L 0+ |el] +]clg? }dx
0

+C(©) [, {EUP+ A0k Jax



A De Giorgi Type Result to Divergence Degenerate Elliptic Equation 31

e [ (=R [XEP+X(E(u—k)4) Pax. (3.3)

k,p

Choosing € small enough, we have

[, Xk Pdx

<C{A

+f [Z<ff>2+rf|§2<u—k)+]dx}

::C(]1+]2+]3). (3.4)
As |X(| < <7 ) , it knows

0

(=R IXgPdx+ [ [ =03 [L )P+ |el] +1elie?] ax

]1\(1 S)P / (u—k)i_dx.

p

By using (1.3),
_bgAAJau—@H%M+WAMQJ<Aqu—@i¢H%%HAa
Employing the Holder inequality and (2.5),
Js<ClIF IR A% T+ 18 —K) < 0@ 2 1l roroia A,
<CIFI AL+ 1X(=K) 2l fllrorora AL 7
<CIFIR AL 7 +el X(u=k) 4[24+ CO)IfI2,0/0-0 AL, 7
<CIF IR+ 1120 ) 1AL, el X (u=K) 4 I

Taking these estimates into (3.4) yields

| 1X@u=k))Pdx= [ |XuPds
Byp Af

k,op

[

I\?I»—l
E

C
< -
S (1-0)%?

+C (I I+ I sriprcr ) 14T ' el X (=) I

C+A Z _2
<(71—9)2p2/3( kPt C (I B 1 serio A AL 7 el X (k) [
0

It implies (1.6) by choosing 7o=C+A, y1=C <||fl|| + HfHLPQ/ (r1Q) +k2A> and 7=p, and
sou e DG (Q). Lemma 3.1 is proved. O

(/(u—midx+AA;w—kﬁdx+HApg¥
0
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Lemma 3.1 explains that the weak solution of (1.1) belongs to the De Giorgi class
DG(Q). The following Lemmas 3.2, 3.3, 3.4 and 3.5 give properties of functions in the De
Giorgi class.

Lemma3.2. Let uc DG1(Q) (or ue DG~ (Q)), Br(x0) CQ, 0< R<1. If there exists 6 € (0,1)
depending only on Q,M,#,6,7vo, and 71 such that for any real k ,

|AfRI<OIBR| (or |A; x| <6|Bg|), (3.5)
1 1
5>H::supu—k>'yfR]BR|f% (or5>H::k—i§1fu>'yfR]BR|f%), (3.6)
BR R
then
+ _ - _
|Ak+§,’23’_0 (or|Ak7%§]—O). (3.7)

We explicitly note that (3.7) implies
ugk—l—% (or u}k—%).

Before proving Lemma 3.2, let us recall a known result.

Lemma 3.3 ([33,34]). Assume that a nonnegative sequence {y,} (h=0,1,2,---) satisfies
yh+1 <Cbhy}l+€/ h:0/1/2/”'/

where b>1 and € >0. If

then
li =0.
el
Proof of Lemma 3.2. We only treat the case u € DG™ (Q)), and the case u€ DG~ (Q) is

similarly treated. Set

R R H H

Ry CTERE; > omit

20/1/2/"'/ (38)

where H =supu —k, then R,, is decreasing and k;, increasing. Denoting
Br

Bo=Bg, AO:A;’R/ Bm:BR,,,/ Am:Aktn,Rm = {M € By, | u(x) >km}, m=1,2,---,
it sees that B, is decreasing and A,, increasing, and (3.5) is rewritten as

|Ao| <8|Bol. (3.9)
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Using k, —k+H R, —>§ as m— oo, it has

7

Al = A} o |— \A;%

and (3.7) becomes
lim |A,,|=0. (3.10)

m—ro0

With Lemma 3.3, we promptly know that (3.10) is proved if one can check

Al <|Amr>1+"
<CYM | —— , m=0,1,---, 3.11
IBrl Bxl G.11)

for some C,x >0, where b>1 is independent of m,R,x and 6y = C—1/xp=1/%,
To check (3.11), we apply the function (1 —k;,)+ in (1.6) between the balls B, 11 and
B,, and note

H<H

H
S TS

H H
u—kpy < s;lpu—km <S;lpu— (k+§ N 2m+1)
m R

to get

/ ]X(u—km)+|2dx:/ |Xu[2dx
Bm+1

Am+1
_2
<(§—f%—;5;/ (=) dx 71| A
m m m

H2 1—2
<2rc{ Tl tmlan )

H? _ _2
::fmcif{pu4+7ﬂ8H’HAmP b (3.12)

It yields from (3.6) that
11 R2H 2 < BT,
and then by putting it into (3.12) that

R [ X(u—kn)  PAx<22"CH? (| A +]Aul'F BRI ). (3.13)

Bm+1

Using (2.5) to the function {(u—ky, )+, { is a cut-off function between By, ;2 and By,+1, we

have
%
-} <R2/ |X(u—km)+|2dx>
Am+1

1
2
ZL**% <R2/ ]X(u—km)+]2dx>
Bm+1

1
N 2%

</ (u—km)idx> <C|Bx

Am+1

<C|Bg
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and then

2
*

. 2
rkmﬂ—kmrzmmmk(/ <u—km>idx)
Am+1

<C|Bg|F ! <R2/ |X(u—km)+|2dx>. (3.14)
Bm+1

Combining it with (3.13) and noting
|Am+1| < |Am’ < ’BR| and u—ky,<H,

it follows

2
*

. 3
=Pl Awial< ([ -k ax) A #

Am+1

s;z%ncf{2L4m|17%

2 _2 2
Bel# (| Aul+1 Al [Bel )

=222 A [ (B F Y A (Al 1B

<O2MCHA| Ay~ 0 | By |1 F (3.15)

We exploit k1 —ky, :2_’”% in (3.15) and show

1+x
Al oimey g, 233 g i E 2= ginc (140l (3.16)
| Br| | Br|
where KZl—%— 2>0(n>Q= 223*2) Now (3.11) is deduced. O

Lemma 3.4. For u€ DG(Q) and any BR=Bgr(x0), Byny+2g =Bong+25(x0) CQYfor some ngcIN T,
there exists s € N large enough depending on 6,1,7vo and <y1, such that one of the following
inequalities holds:

1
oBscugzwmeRy‘%, (3.17)
R
1
oscu< | 1—5— | osc u, (3.18)
Br 2572 ) Byugiag

where oscu =supu —infu.

Proof. Suppose
1
oscu > 292 R|Bg| 7, (3.19)
R
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where s satisfies 245 <J; we will prove (3.18). Set

25— 25—3
— _ _ _ S _MitH
u=supu, Uy1= sup u, U= inf u, Ww=HUy1—H2, U= 5 ,
Byr B ug+25 2"0+2R
D;=A" — A"

Hlfw/zf,z’?o“R ﬂl*w/2t+1,2”0+1R’

where t e NT and oM
s>t>log27éto.

Using (1.6) (R and (1—6)2R? in (1. 6) are changed to 2"0"2R and 22"*2R?, respectively) to
the function (u—k)+ with k=p; — 5r and denoting Ay g = AT it knows that for any
fo<E<s,

2 Yo
/A | Xul dx<22n0+2R2/B

20 t1R

wi—w/24L,R’

{ (‘ul_f)} dx+'71|A 2n0+2R’

2o +2R

_ w\12 _2
<C{R™? sup [u—<y1—§)] ’At’2110+2R|+’)’]|At,2n0+2R’1 1 0. (3.20)
A

t,2n0+2R
Furthermore, since
At,2”0+2R Bt,2”0+2R
it follows
oy (W2 _2
/A |Xu|2dx < C [R 2 (5) A, sl 71| Ao 7 | (3.21)
120 t1R
Noting by (3.19) that
oscu

W_HM—H2 Br

1 _1 1 _1
ot~ ot ot >2§7t’)’12R|BR’ ”2712R’BR| 1, to<t<s,

it sees by putting it into (3.21) that

/i

2 -2 1-2
xuPdx<CR2(5)" 1A porsel 1R (51) sz el 7]

t,2110+1R

<CR™ (zt)z(m skl +|Br| 7|4, 2nOHRP") (3.22)

We now consider the case .
|4 2r] < 5[Barl; (3.23)
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to the case |AF7,2R| = |A;_£%’2R! < %|Bar/, the following proof is also valid by taking the

function (#—k)- in (3.20). Let k=p1 — 5 and [ = 1 — 547, then [ —k= 555, Applying (2.7)
and (3.23), it implies

1
| Bag| <2/ 2 >2 1
A <C—22RL__(R2 [ |xuPdx) |Dy2
(5777) 1Avsran| <Crp =5 — (R [ [xuPdx ) Dy
1
c&< /|Xu|2dx>2]Dtﬁ
| Bag | — 3| B2g]
2
<c<R2/ ]Xu]zdx> D[}
Dy
2
<C<R2/
A

|Xu|2dx> Dy 2. (3.24)
This leads to from (3.22) and (3.24) that

t,2110+1R

w \~1 1-2 3 1
|At+1,2R’<<ﬁ) ( )(|A 2”0+2R’+’BR’ | Ay pro+2g ) | Dyl

<C(IAmmiael +lA el 1Bl DAL (3.25)

Replacing |Asy12r| in (3.25) by |As 22r|, t <53, and noting |A, yupeag | < |Byuge2g|, we
have

[As-228| <C(|Bysag |+ |Byrgsagl " |Brl ") D <ClByusgHIDIE. (326)
Since (2.2) yields |B,uy+25| < C|Bar|, it follows by (3.26) that
(s—to—2 )|As 22R[?
<C|Byyizg] Z Dy| < C|Bag] ‘A

t=tg
<C|Bar||Byrgi1g] <C|Bar %

A+
p1—w/2t2M0+1IR p—w/2t+12m0+IR

hence

C
Aq_ < ——|Byr|. 3.27
| As_22R] (s—t0—2)| 2R | (3.27)

Let w
H:V—(m—P), p=supu,

Bor

we need to treat two possibilities:

H<297R|Bg| 7, (3.28)
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1
H>2y2R|Bg| 7. (3.29)

If (3.28) holds, it sees from (3.19) that w > %scu > 257}/2R|BR | 7%, ie.,
R

w
271R|BR’ 25—1'
and then
w 2
M=H+(m—p) <P~ e S+ 27 R|B|
w w w
<H1—P+F:H1—F. (3.30)
Noting
supu<supu=p and infu> inf u=py,,
Br Bor Br Bng+2g
we obtain
oscu =supu —infu < < w _Y 1—L w
A —BRP N H—H2x H1— 551 —H2= 251 251

which indicates (3.18). If (3.29) holds, we note 2572 >2"3 and w < ||u|| L=(0) <M to get

w M
H=p- m+2s 7S 33 S 5s3 SO (331)

Taking into account (3. 27) (3.29) and (3.31), and applying (3.7) in Lemma 3.2 (here
<60<1, tg=log, 24 M, 505> tg+2+max{1,C?/6?} ), it means

(S t072)

| Ay~ (w/252) (/21,81 =0,

ie. w
Supu < p1—5.7-
Br
Hence 1
oscu =sup— 1nf<y1 il 1nfu<y1 yz—%: (1—ﬁ>w.
Bg By 2 2
It also follows (3.18). O

Lemma 3.5. Suppose u€ DG(Q)), Br, CQ, AR< Ry, A > 1. If there exist positive constants C
and 0 <8 <1 such that one of the following inequalities is valid:

%scu<CR|BR|‘%, (3.32)
R
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oscu < foscu, (3.33)
Br Bir
then
-/ R\*
<Cl—= ), 3.34
%sRcu < R, > ( )

where zx:min{—logAG,l—%}, C_:/\"‘max{wo,CRo|Bo]_%} and (Wo = OsCiL.

Ro

Proof. Denote
Ry=A"*Ry, By=Bg, Wi =oscu, k=0,1,2,---,
k

then Ry and wy are decreasing. Since (3.32) or (3.33) holds, it follows
_1
Wi <max{CRkyBk| 7, 0w } k=1,2,--- (3.35)

Setting 1
C_:A"‘max{wo, CRo|Bo| 7 },

1 1
where oc:min{—logAG, 1—%} >0, and noting Ry|Bx| 7 <CRy|Boy| 7 and wy_1 <wp, we

have )
oBscu:wogmax{wo,CRdBo]_ﬁ}<CA’“. (3.36)
0

Using (2.1) and Ry = A7kRy, it derives

Ro\©
Bo<63<—> By|,
Bol<ca(22) I8

and then

1

_1 _1 1
. “i < (1B Ro 9R,2) "=(c3By|Rg™CATRRQ) "=cIA T |By i, (3.37)
B 3 3 3

Let
yk:)\kawk/ k:0/1/2/'“/

we obtain by (3.35)—(3.37) that
Yk <max{)\k"‘CRk]Bk|7%; )\k"‘ka_l}
gmax{CAk“/\’kRo)\kT? IBo| 7 iy
:max{CA"(“*”%)RdBoy*%; A“Gyk_l}
<max{CA™% yr_1}, (3.38)
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IR . 0 o k(a—1+92)
where we used CRy|By| "=CA*and tx—mm{—log)\@,l—ﬁ},whmh yield A 17<1
and A“6 < 1. From (3.36), (3.38) and the induction, we conclude that for all k=0,1,2,---,

Yk < C)L_a.
24
Noting A ~F = % and A k¢ = (ﬁ—’é) , it implies

- - R\ “
wk:)\‘k"‘yk<crw—“=c2\—“<R—’;> . (3.39)

Since for any 0 < R < Ry, there exists k > 1 such that Ry < R < Ri_1, we employ Ry =
A"IR,_1 and (3.39) to know

oscu < osc u SCAT"Ry*Rf_;=CRy*R{<CR;*“R",
R Re—1

which is (3.34). O

4 Proofs of main results

The following Lemma is in preparation for the proof of Theorem 1.1.

Lemma4.1. Let u€ H}, (Q;X) be the bounded weak solution to (1.1) with (1.2), (1.3) and (1.4).
Then for any R € (0,Ro], 0<Ro <1, Br(x) CQ, we have

R\* 1 _1
<C| = 2Ro|B |, 4.1
%sRcu C <Ro> <%iocu+71 0| Br, | 7) (4.1)

where %scu =esssupu —essiélfu, 0<a<1-Q/n and C=1relies on 1,6,Q and A.
R Br R

Proof. We denote w(R)=oscu=supu—infu, then
Bg By By

w(R)<w(Ry), for 0< R<Ry. (4.2)

It knows u € DG(Q)) by Lemma 3.1. If R=Ry, it follows (4.1) from (4.2). If 0< R < Ry, then
there exists n* € N+ such that 2" 2R < R,. Using Lemma 3.4, we see that there exists a
positive number s, such that one of the following inequalities holds:

1
%scugzs’yfR]BRr%, 4.3)
R
1
oscu<|1——=] osc u. (4.4)
B 2571 ) B eiag
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. 1
It yields from Lemma 3.5 (at this time A =2""*2R, C= 2y and 0=1— %) that

oseu< ¢ (R) 2o s (R o Lio(Re) 29t RofBol
B = RO RO ’ 1

R
R\" o 1 1
<C{ ) (@(Ro)+27Ro[Bo| 7
0

<C<R>“ 42 Ro|Bo|
<C( = oscu ],
Ro Br, Y1 o|bo

where 0 <a<1— %, and (4.1) is proved. O

Proof of Theorem 1.1. It follows from Lemma 4.1 that for any xp € ), Br(xp) CQ),

R \*“ 1 1
<C| — 2d,.. QA ], Re(0,dy,], 4.5
B A

where d,, = dist{xp,0Q2}. We have by (4.5) and o(s)cu < M that
712_0‘ —K —n % _1
|Br(x0)| BR(xo)’M(x)_MBR(XO)|01ng Bg(sag)ugccixo M+7ide Q7 ),

which means u € £ (Q) and so u € C{ _(Q) from Lemma 2.1.
Now let us estimate [u],,n. For any x; € Q, if d(x1,x0) < dy,, then we take x,, €

Ba(x, xo) (X0) CQ, X — x1, and use (4.5) to give

|t (2, ) —1(x0)| < 0sc uéC(@) <M+'y%dx0|()|_}7>.

Bd(xl,xo) (XO) X0

Letting x;,, — x1, it implies

& 1
u(xy)—u(xg)|< osc u<C A(x1,%0) M+92d, |Q) i) (4.6)
1%%o
Bi(x,xy) (x0) dy,
If d(x1,x0) > dy,, then
14
|u<x1>—u<xo>|<2M<2M(d(f;'x°)) . @)
Xo
Combining (4.6) and (4.7), it concludes (1.7). 0

To prove Theorem 1.2, we need a lemma.
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Lemma4.2. Let ue DG~ (Q)), u>0o0n Bgr(y) C Qand

1
h>Ly?R|Bg| 7 (48)

forh>0and L>1. If
|A, rI=0, (4.9)

then there exists Ao, L~ <Ao< 1/2, such that for € € (0,2)0], we have
’Agh,zR’ =0. (4.10)

Proof. Tt sees that (4.9) actually implies u > on Bg, and then |A}} . |=|{x € Bsr |[u>h}|>
|Br|. Using (2.2), we observe

| Ay ar) <IBar| = Ay 4z | <|Bar| — |Br| < (1—c5'479)[Byg|- (4.11)
To verify (4.10), we first claim that there exist >0 and L' <A < 3, such that
| A onar| S TIBarl- (4.12)

In fact, it derives by choosing Ao, L1 <A < 27%(sy is to be determined), and using
(4.8) that
h>2592R|Bg| 7. (4.13)
Fors=0,1,---,s,—1, denote
As,r = Az_*sh,r
and

(u—2"%h)_=

25h—u, u<2"°h,
0, u=2"%h.

Noting that u >0 yields (1 —2"°h)_=2"*h—u <2 %h and using (1.6) (k,R and (1—0)2R?
in changed to 27/, 8R and 16R?, respectively) to (1 —27°h)_ on Byg and Bgg, it implies

X(u—2"h 2dxéﬂ/ u—2"-n)2dx+v|A =3
[, X2 mPdrs gy [ (-2 2 dxt il Asse

To —5712 1-2
=2 —27h A 1
16R2 AS,SR(M Vvt milAss]
_2
<2 %R 22| Asgr|+71| Assr|' 7 (4.14)

Take k=—2"Shand [ =—2"5"1, then | —k= zshﬁ We apply (2.7) to —u on Bag (A(k) and
A(I)in (2.7) becomes Ag 4r={xE€Byr|—u>—2"%h} and Ag 1 4r={xEBsr|—u>-2""1h},
respectively), and combine (4.11), (4.13) and (4.14) to derive

h
5571 | As+14R|
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2

| B4r|

_ 1
<———— | R? / [ X(u—2"%h)[Pdx | |Asar—Asi14r]?
|Bar — As 4|

Asar—Ast14R

2

| B4r| ’ / e .
X R X(u—2"5h)1%dx A _A 1
|Bsr|— (1—c5'47Q) | Byg| |X( )| |Asar— As+14R|

saR—Ast14R

1
| Byr| 1 h 12" -2\’ 1
_ PRL a1y = R | Assr| T ) | Asar — Asi1ar]?
B C3_147Q ’B4R ’ r)/() s | S,8R| + ’)’0 I’lz Y1 ’ 5,8R ’ | s AR s+l,4R|

h 2 1-2\2 1
<CE(IAs,8R|+C|BR’”|As,8R| ’7) |Asar— Ast14R] 2
2 2
Furthermore, using | A; sr| < |Bsr|, |Br|" |Assr|' 7 <|Bsg| and (2.2), the inequality above

leads to . . . .
| Ast1,4r| < C|Bgr|2|Ds|2 < C|B4r|2|Ds |2, (4.15)

where Ds=Ag ar— As+14r, $=0,1,--+,5.—1. Since | As, ar| <|As+1,4r], it follows from (4.15)
that
|As*,4R’2<C’B4RHDs,-

Summing it with respect to s from 0 to s, — 1, and noting Y5 ;' |Ds| = | Ag ar — As. 4r|, We

have
S*|As*14R’2 < C’B4R’2. (416)

Choosing 7= \/g €(0,1), it gets from (4.16) that
| As, 4r| < T|Bag| (4.17)
and s, is also determined. As Ay <27 % and so A\gh <2 %h, we see
|AXOh/4R| < |A;?275*,4R’ = ’AS*AR’ < T’B4R |/
which is (4.12).
1
From L> A, ! and (4.8), it follows Agh > 1/2R|Bg| 7 and
1
4Aoh> 2 (4R)|Bar| 7.

Combining it with (4.12) and employing Lemma 3.2, it obtains | A, th,ZR’ =0.For0<e<
20, it sees [A] 5| <[A;) 4 op| =0 and (4.10) is proved. O

Proof of Theorem 1.2. Define two functions

K(r)=u(xo) (1-%)  and M) =l (4.18)
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where s is large enough from Lemma 3.4. Let g be the largest root satisfying the equation
K(r)=M(r). Since K(r) — o0 as r — R—0 and u is bounded and continuous on Bg(xo) by
Theorem 1.1, we see that rg <R is well defined and K(r) > M(r), for ro<r<R. In addition,
there exists x1 € B,,(xg) such that

u(x1)=K(ro) =M(ro)

and u(x1)>0.
For any x € B(r_,),2(x1), because of

R—r R—+r
O+1’0= 0

d(-x/-x())<d(x/xl)+d(xl/x0)< 2 2 7

we have Bg_y),2(¥1) C B(ry,)/2(x0) and by the meaning of ro,

R R —s
sup < sup :M< 42—r0> <K< %2—r0> =u(xp)-2° (1—%’) =2°K(rp).
Brrp)/2(x1)  B(Ryry)/2(X0)

From it and (1.7) in Theorem 1.1 (R and Ry in (1.6) are taken by e(R; ") and R;ro, respec-
tively, € is to be decided), it obtains

|u(xq)— inf u(x)|<  osc  u
d(x,x1)<e(R—rq)/2 Be(r—rg)/2(%1)

1 R— _1
<Ce” osc  u+; 10 |Brory| 7
B(r—ry)/2(x1) 2 7

1 1
<Ce* sup  u+7y7(R—r0)|Bry,| 7
B(r—ry)/2(x1)

1
<Ce" <251<(r0) +712R|BR]_'17> ,
where 0<a <1~ % and we used R—rp < R and (2.1) in the last inequality. Therefore,

1 1
inf > —Ce"( 2°K 2R|Bg| 77 ). 419
d(x,X1)>1£1(R—r0)/2u(x) u(x)—Ce < (r0) +77 R|Bg| ’7> (4.19)

In what follows, let us suppose
1
u(x0) =24 Cy 2R B | 7; (4.20)
otherwise, if (4.20) is invalid, it yields

1
inf u(x)>0>u(xp)— 21 +*Cy2R|Bg| 7, (4.21)
Br(x0)
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which implies (1.8). From (4.18) and (4.20), we have

K(ro) > u(x0) 2 1**Co{ R|Bg| 7, @2)
and by (4.19),
inf >K _Ce* (2°K K
d(x,xl)gl?(RirO)/zu(x) (7’0) € ( (1/0)_|_ (1,0))

>K(ro) — Ce* 251K (rp) = (1 —Ce"‘25+1> K(ro).
Choosing € so small that 1—Ce*2571 > 1 it implies

1
inf u(x) = =K(rop). 4.23
d(x,x1)<e(R—rp)/2 ( ) 2 (0) ( )

Setting h:= K (ro), we see by (4.22) and (4.23) that
1
h>2"%C?R|Bg| 7 (4.24)

and u>h on Be(g_y) /2(x1), then

Ay s | =] {3 € B o)<} =0

e€(R—rg)
h=5

Noting by (2.2),

Q
_1(€(R—rg
’Be(R—ro)/2’>C3l<%> |Br|,

x —s—2~—1 R=rp 1 % 9 :
e*<2 c—, SR <§ar1dc3 =27 <2, we obtain

Q

e(R—rp) i _{€(R—ro) L/e(R=ro)\ 7, 1

2 Be(R_rO)/Z‘ < 2R Rez 2R [Brl
Q

<2~ 1o 1R|Bg| . (4.25)
Combining (4.24) and (4.25), it shows

1 (R—}’o)

h> 225+2a+1cz,hz € : T (4.26)
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Now we use Lemma 4.2 to derive that there exists Ag, 272 ~2*C~2 <21y <1, such that if
o € (0,2)\0], then
‘Aoigh,e(Rfrg) =0,

ie.
inf u(x) = doh. (4.27)

d(x,x1)<e(R—rp)

loge'R/(R—rp)

Adjust suitably € >0 such that Tog2

is a positive integer and denote

_loge™'R/(R—ro)

N Tog2 +2. (4.28)
If
slog (R;RV °>
N> —> 7
10g272s72acf2
then

S

R=ro\N _ o5 oap—2
1 27T CTS,
>< - ) >

and we choose

S

R—i’() N

%= ( 2R > ’

if
slog(Rz_RrO)
N< log2~2-22C~2"

we choose

50 :27257204(:72
and then

R—T’O s
0N > .
> ()

Using h=1K(ro), (4.18), (4.20) and R :2N_1e¥ from (4.28) we have

_ R—r0\°K(ro) 1 1 1
5(I)\I 1h>5(l)\lh> < 2R ) 2 :2s+1u(x0)>2ac712R|BR’ 7
1

1 n_1€6(R—719) ~3
=Xem [2N 1T] ‘BZN*le(R—Vo)/Z y
and apply Lemma 4.2 with N times to get

inf u(x)=o0\h. (4.29)

d(x,x1)<2N-1e(R—r9)
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For any x € Br(xp), it derives
d(x,x1) <d(x,%0)+d(x0,x1) <R+719<2R=2N"1e(R—ry),

and so Br(x0) C Bon-1¢(r_yy)(x1). We follow from (4.19) and (4.27) that

, , R—r9\*K(ro) 1
inf u(x)> inf u(x >5Nh>< 0) = u(xg). 4.30
Br(xo) ) BoN-1e(r-rg) (¥1) () >4 2R 2 25+l (x0) (#.50)
Combining (4.21) and (4.30) it proves (1.8). 0
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