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Abstract. In this study, we develop computational models and a methodology for
accurate multicomponent flow simulation in underresolved multiscale porous struc-
tures [1]. It is generally impractical to fully resolve the flow in porous structures
with large length-scale differences due to the tremendously high computational ex-
pense. The flow contributions from underresolved scales should be taken into account
with proper physics modeling and simulation processes. Using precomputed physi-
cal properties such as the absolute permeability, K0, the capillary pressure-saturation
curve, and the relative permeability, Kr, in typical resolved porous structures, the lo-
cal fluid force is determined and applied to simulations in the underresolved regions,
which are represented by porous media. In this way, accurate flow simulations in
multiscale porous structures become feasible.
To evaluate the accuracy and robustness of this method, a set of benchmark test cases
are simulated for both single-component and two-component flows in artificially con-
structed multiscale porous structures. Using comparisons with analytic solutions and
results with much finer resolution resolving the porous structures, the simulated re-
sults are examined. Indeed, in all cases, the results successfully show high accuracy
with proper input of K0, capillary pressure, and Kr. Specifically, imbibition patterns,
entry pressure, residual component patterns, and absolute/relative permeability are
accurately captured with this approach.

AMS subject classifications: 52B10, 65D18, 68U05, 68U07
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1 Introduction

The numerical simulation of multicomponent fluid flows in porous regions with complex
solid structures is of great importance in many industrial applications such as enhanced
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Figure 1: Cross-section pictures of a carbonate rock. An original scanned picture (left) and a segmented picture
with small-scale porous structures marked in gray (right) are shown.

oil recovery including carbon dioxide injection, capture and storage [2,3], water/air flow
in gas diffusion layers of fuel cells, [4–6], in situ copper mining by leaching [7], and so-
phisticated personal protective equipment [8]. To achieve high-fidelity simulation, it is
crucial to fully resolve complex solid boundaries. In most simulation cases, however,
fully resolving all details of a multiscale porous structure is infeasible due to limited ma-
chine power and the immaturity of computational models and algorithms, although such
complex structures are frequently observed in nature.

Here is an example from an oil&gas industry application. Fig. 1 shows a typical
cross-section of a carbonate rock sample that has porous structures with multiple differ-
ent scales [9]. The left picture shows one slice of an original microtomography scanned
image, and the right picture shows its segmented image with small-scale porous struc-
tures marked in gray. The length-scale difference between black and gray structures is
approximately tenfold. The small-scale porous regions in gray could significantly im-
pact the flow behavior on a large scale because they can contribute to the connectivity
among larger-scale pores and can lead to high capillary forces and variable flow resistiv-
ity. Therefore, it is necessary to properly consider their contributions. However, resolving
all such small-scale details requires extremely fine resolutions, which results in a tremen-
dously expensive simulation. The cost could increase by a factor of tens of thousands
compared to the unresolved case, ignoring the contributions of small porous structures
from the gray regions because of the increased number of three-dimensional cells and the
reduction of time increments. Therefore, such fully resolved simulations are impractical
in industrial applications.

In many previous studies [10–16], the viscous force from underresolved porous media
(PM) was modeled by a resistance term, as in the Brinkman equation, using a precom-
puted permeability in the resolved PM with finer resolutions. These studies, however,
mainly focused on single-component fluid flow and did not extend to multicomponent
fluid flow. A few recent studies [17, 18] have discussed multicomponent fluid flow in
multiscale porous structures. In reference [17], the relative permeability from underre-
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solved PM regions was computed by solving the transport equation for the total energy,
Helmholtz free energy and kinetic energy, without referring to physical properties such
as the capillary pressure curves. In reference [18], the precomputed capillary pressure
and the effective flow resistance in the resolved PM were applied to derive a force balance
analysis at the capillary equilibrium state using recursive methods. Due to the sensitivity
of multicomponent fluid flow to the initial flow conditions, it is desirable to solve the
unsteady fluid dynamics equation, even when capturing the steady state. In this study,
we solve equations based on unsteady fluid dynamics following conditions in laboratory
experiments. In addition to improving accuracy, this approach allows us to check the
transition of component distributions and flow patterns. Moreover, processing both the
input and output data for the PM model using a single solver can contribute to simulation
robustness in a significant way.

Here, we propose a solution based on the lattice Boltzmann method, although the
methodology itself is not limited to it. In the proposed workflow, computational models
are implemented to consider the effects of fluid flow in the underresolved regions. This
approach should be applicable for various engineering cases of multiscale porous sys-
tems whose length scales typically range from micrometers to millimeters as long as the
flows are well within the continuous, Stokes and capillary flow regimes. For example,
hydrocarbon reservoir rocks, which are natural porous media, could contain not only in-
tergranular pores but also microporous minerals such as clays [2, 3, 7]. For battery fuel
cells and electrolizers in renewable energy applications, it is typical to encounter microp-
orous electrodes separated by nanoporous membranes [4–6]. In composite applications,
fibers can be arranged in bundles to form textile-like large-scale structures as well as
extremely small-scale microstructures between individual fibers [8].

This paper is organized as follows. A basic formalism of the lattice Boltzmann method
(LBM) for multicomponent fluid flow is introduced in Section 2. The proposed workflow
and numerical models for treating multiscale structures are presented in Section 3. In Sec-
tion 4, detailed settings and results in a set of benchmark test cases for single-component
and two-component fluid flows are shown. Finally, in Section 5, the findings of this study
are summarized.

2 Lattice Boltzmann models for immiscible fluids

Lattice Boltzmann models for immiscible fluids based on the Shan-Chen model [20, 21]
and its recent advancements [19, 22–25] are introduced in this section. The lattice Boltz-
mann (LB) equation for multicomponent fluids is:

f α
i (x⃗+ c⃗i∆t,t+∆t)− f α

i (x⃗,t)=C α
i +F α

i , (2.1)

for space x⃗ and time t, where f α
i is the density distribution function of fluid component

α and c⃗i is the discrete particle velocity. In this study, a binary mixture of immiscible
fluids, such as water and oil, is considered for simplicity, namely, α={water(w),oil(o)},
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although the framework can be easily extended to an arbitrary number of components.
The D3Q19 [26] lattice model with fourth-order lattice isotropy is employed.

The simplest form of the collision operator C α
i is the Bhatnagar-Gross-Krook type,

C α
i =− 1

τmix
( f α

i − f eq,α
i ), (2.2)

where f eq,α
i is the equilibrium distribution function for the Stokes flow with the third

order expansion in u⃗,

f eq,α
i =ραwi

[
1+

c⃗i ·u⃗
T0

+
(⃗ci ·u⃗)3

6T3
0

− c⃗i ·u⃗
2T2

0
u⃗2

]
, (2.3)

where T0 = 1/3 and wi denote the lattice temperature and isotropic weights in D3Q19,
respectively. The density of the components α and ρα and the mixture flow velocity, u⃗,
are defined as

ρα =∑
i

f α
i , ρ=∑

α

ρα =∑
α

∑
i

f α
i , u⃗α =∑

i
c⃗i · f α

i /ρα, u⃗=∑
α

∑
i

c⃗i · f α
i /ρ. (2.4)

The relaxation time τmix in Eq. (2.2) relates to the kinematic viscosity of the mixture of
components, νmix, as

τmix =(νmix/T0)+1/2, (2.5)
νmix =(ρwνw+ρoνo)/(ρw+ρo). (2.6)

According to Ref. [19], the forcing term F α
i in Eq. (2.1) is formulated involving the inter-

component force, F⃗α,β, between components α and β,

F⃗α,β (x⃗)=Gρα (x⃗)∑
i

wi⃗ciρβ (x⃗+ c⃗i∆t), (2.7)

for α ̸= β, and F⃗α,β (x⃗)=0 for α= β following the conventional way [20, 21]. When the in-
teraction strength G is negative, a repulsive force acts between components and yields a
phase separation. In this paper, G is chosen so that the surface tension σ is 0.025. The ac-
celeration of the component α, g⃗α, originating from F⃗α,β is defined as g⃗α=∑β F⃗α,β/ρα. The
resulting fluid velocity u⃗F is defined as the averaged velocity over pre- and postcollision
steps and written as

u⃗F = u⃗+ g⃗∆t/2, g⃗=∑
α

g⃗αρα/ρ. (2.8)

In what follows, this quantity u⃗F is called velocity.
To enhance stability and accuracy when τmix is not close to 1, a regularized collision

operator is used. Rearranging Eq. (2.1), one obtains

f α
i (x⃗+ c⃗i∆t,t+∆t)= f eq,α

i +

(
1− 1

τmix

)
f
′α
i +F α

i , (2.9)
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where the function f
′α
i is the nonequilibrium particle distribution for each fluid compo-

nent. If f
′α
i takes the standard BGK form, f α

i − f eq,α
i , and τmix is away from 1, one suffers

from the instability caused by numerical artifacts from the LB model. To address this
issue, a collision procedure regarding f

′α
i is regulated as

f
′α
i =Φα : Πα. (2.10)

Here, Φ is a regularization operator that uses Hermite polynomials, and Πα is the nonequi-
librium part of the momentum flux. The basic concept of the regularized collision proce-
dure can be found in [22–25, 27–29].

For accurate no-slip wall boundary conditions on arbitrary geometries, an extension
of the volumetric boundary condition proposed by Chen et al. in 1998 [30–33] is em-
ployed. In this method, after boundary surfaces are discretized into linear surface facets
in two dimensions or triangular polygons in three dimensions, the incoming and outgo-
ing particles based on those facets or polygons are computed in a volumetric way obeying
the conservation laws. This method is generalized for BCs on arbitrary geometry, and it
has been studied extensively. More details can be found in [30]. To mitigate numerical
smearing in the near-surface region, especially when the physical viscosity is small and
the resolution is coarse, the surface scattering model presented in [31] is useful.

For the surface wetting conditions, the intercomponent interaction force in Eq. (2.7) is
extended to the interaction force between the wall and fluid particles, F⃗α,β

w , as

F⃗α,β
w (x⃗)=Gρα (x⃗)∑

i
wi⃗ciρ

′
β (x⃗+ c⃗i∆t), (2.11)

for α ̸=β, and F⃗α,β
w (x⃗)=0 for α=β, where ρ

′
β is constructed of a fluid part and a solid part

ρs
β in a volumetric way so that ∂ρβ/∂n is close to zero [30]. This volumetric wettability

scheme has a sufficient isotropy on complex geometries [34–36]. The wall potential for
components ρs

w and ρs
o is defined as

ρs
w =−ρ0ρsΘ(−ρs), ρs

o =ρ0ρsΘ(ρs), (2.12)

using a single parameter ρs, where Θ is the Heaviside function and ρ0 is 1.0.

3 Numerical models and workflow for multiscale porous
structures

In a multiscale fluid-flow simulation at a certain resolution level, flow contributions from
underresolved porous regions are properly considered by applying numerical models
at each site using local information of the geometry and fluids. The models reproduce
proper forces acting on fluids, such as viscous, pressure, and capillary forces, using lo-
cal representative physical properties, such as absolute permeability K0, relative perme-
ability Kα

r and capillary pressure-saturation curves PC−Sw, where α is an index for the
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fluid component. As a first step, CT scanned images of the porous geometry are ana-
lyzed. Small-scale porous structures, which are underresolved in the flow simulation,
are characterized into a few porous types with assigned type IDs such that the under-
resolved porous structures can be effectively represented by those porous types. Next,
the physical properties for each porous type are precomputed using a fine resolution to
fully resolve the porous structure in the representative tiny subdomain of the original
porous structure. Once finished, the results are registered and stored in a library. Each
set of physical properties mentioned above represents a flow type for the particular un-
derresolved porous structure type. Last, for a multiscale simulation with a practical
resolution, referring to the type ID assigned in each underresolved region, one selects a
set of physical properties of the porous type from the library and uses it for computing
the local forces acting on the fluid. To properly consider the detailed local structures, the
local porous geometry information sources, including porosity ϕ (the ratio of fluid vol-
ume to total volume) and directionality of the structure, are also utilized to formulate the
force.

The workflow is further illustrated in Fig. 2. The left top scanned image is an image
coarsened from a high-resolution scanned image that resolves all porous structures of
interest. This image indicates a multiscale flow simulation, with black, gray, and white
colors representing pores, underresolved porous structures, and solids, respectively. The
multiscale flow simulation is performed with the same resolution as this scanned image.
The detailed procedures are as follows.

i. Conduct a geometrical analysis for the original image and categorize the porous
structures [38]. Then, the porous structure in each underresolved region, i.e., the
gray region in Fig. 2 is labeled by a porous type ID according to the analysis. Such
a categorization allows us to simplify the representation of multiple porous regions
using only a few different types. In Fig. 2, four possible types are illustrated. Regions
belonging to the same category or type not only look similar but also share similar
physical properties, as represented by the curves in Fig. 2.

ii. Define a flow model for each underresolved region and check existing sets of physi-
cal properties corresponding to the typed porous structure in the library. If the cor-
responding set of physical properties already exists, pick it up from the library. If
not, conduct a fully resolved simulation in a representative subdomain using the
fully resolving original scanned images, compute the new set of physical proper-
ties, including absolute permeability, relative permeability, and capillary pressure-
saturation curves for this particular type of porous structure, and add it to the li-
brary utilized for the multiscale simulation. Detailed settings in such a simulation
are shown in the beginning of Section 4 as an example.

iii. Construct and apply fluid force at each underresolved site using the constitutive rela-
tionships according to the local geometry information and physical properties. This
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Figure 2: Steps for a multiscale simulation.

force corresponds to viscous, pressure and capillary forces from the underresolved
solid structure.

There are various ways to define numerical models for fluid force in underresolved
regions. Here, we show one possible example. Under an assumption of a homogeneous
solid structure in an underresolved porous region, the viscous force in the underresolved
PM region is computed using K0 and Kα

r as

F⃗α
PMvis

=− να

K0Kα
r

ραu⃗F. (3.1)

Here, K0 and Kα
r are the main inputs of the model and functions of porosity ϕ and density

ratio of fluid components Sw =ρw/(ρw+ρo).
On the other hand, an example for a definition of capillary force F⃗σ

PMcap
can be written

as

F⃗α
PMcap

=− 2σcosθ ·J√
K0Kα

r /ϕ

∇̂ρo−∇̂ρw

2
·H(At,|∂x (At)|), (3.2)

where the hat notation indicates the unit vector and θ is the contact angle of the under-
resolved porous solid. Here, J is the Leverett J-function, defined as Pc

√
K0Kα

r /ϕ/σcosθ,
which is the normalized capillary pressure and function of Sw and ϕ. Here, Pc is one of the
main inputs of the model and is the function of Sw. The Atwood number, At, is defined
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as At=(ρw−ρo)/(ρw+ρo). A functional H is a switch function depending on the local
multicomponent interface condition. This switch function is necessary for the diffusive
multicomponent model because its nonzero interface thickness may cause excessive ar-
tificial force. Moreover, this definition cannot cover a scenario where a component fluid
is confined in an underresolved cell due to its internal structures. To mitigate this prob-
lem, an additional model can be implemented. For example, the drainage and stagnation
of residual components in a computational cell under a certain local pressure and Sw is
controlled by referring to the Leverett J-function.

The wettability effects originating from solid parts in the PM site can be considered
by simply extending Eq. (2.11). Specifically, ρ

′
β is constructed by a wall potential from the

porous solid, ρsPM
β , and the fluid density ρβ with the ratio of ϕ as

ρ
′
β =ϕρβ+(1−ϕ)ρsPM

β , (3.3)

where no adjacent regular solid, the resolvable solid, exists. This natural extension for
the PM model is one of motivations to employ the LBM in this study. Additionally, in a
computational cell with small porosity, the wettability and friction effects from the reg-
ular solid may be suppressed. This is because the confined fluid in the porous media
cannot be influenced by the adjacent regular solids, and wettability and friction effects
are already considered in the PM region via the inputs K0, Kr, and PC.

4 Validation

The numerical models and workflow introduced in Section 2 and Section 3 are validated
through a set of benchmark test cases for single-component and two-component fluid
flows. As a representative porous structure underresolved in the multiscale simulation,
geometrical data are constructed based on open-source data [9], as shown in Fig. 3. The
domain size is 256×256×256, and the resolution is 1 µm/pixel. The global porosity, ϕglb,
is 38%. First, we simulate several cases in this system to obtain inputs for the following
multiscale simulations. In the simulation for computing K0(ϕ), the domain is mirrored,
and periodic boundaries are assigned in the flow direction. Then, gravity g is assigned
as the driving force. The other domain edges are bounded by solid walls. The values of
viscosity ν and g are set as ν=0.012 and 1.0×10−4 so that the velocity is in the reasonable
range and the Reynolds number is sufficiently small. We evaluate K0 as ϕglb < u> ν/g,
where <u> is the spatially averaged fluid velocity. This K0 computation is individually
performed for the eight-cube domain, which is equally divided from the original domain.
In the simulation for computing PC (Sw), the oil initially fills the entire domain of the orig-
inal geometry plus the oil reservoir of the top 14 lattice layers. The dominant oil/water
pressure boundaries are assigned on the top/bottom ends. Their pressure difference ∆P
is initially set as a high value and timely controlled while fixing the pressure in the bot-
tom boundary as 7.33×10−2. Specifically, if the temporal variation of Sw drops below a
certain value, a controller judges this as the steady state and shifts ∆P to the next level.
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Figure 3: A representative porous structure applied for the underresolved regions in the multiscale simulation
in Section 4.

The PM and sidewalls surrounding the PM are assumed to be water-wet with a contact
angle of 10 degrees. Viscosities for both fluid components are set to νw = νo =1.66×10−3

so that the capillary number is sufficiently small. In the simulation for computing the rel-
ative permeability for water and oil, Krw (Sw) and Kro (Sw), the domain is mirrored, and
periodic boundaries are assigned in the flow direction. Gravity g is assigned as the driv-
ing force. Initially, in addition to the oil mainly occupying the domain, a small amount
of water is distributed in the relatively small-sized pores. A controller program adjusts
the gravity so that the target capillary number, Ca=1.0×10−6, is achieved at the steady
state. Once the flow reaches the targeted steady state, using a mass-sink-source (MSS)
function [39], the water is injected locally with criteria of local At and velocity fields.
Once Sw reaches the targeted level, the MSS is switched off, and the controller adjusts the
gravity for the next targeted Ca again. This loop is iterated until the relative permeability
for all Sw is evaluated. Wettability conditions are set similarly to the PC simulation. Vis-
cosities for both components are set as νw =νo =3.33×10−3 so that the Reynolds number
is sufficiently small.

The simulated K0(ϕ), PC (Sw), Krw (Sw), and Kro (Sw) are fitted with the Kozney-Carman
equation, Thommer model, and Corey model, respectively;

K0(ϕ)=
D
(
ϕ−ϕp

)2

72τ2
p
(
1−
(
ϕ−ϕp

))2 , (4.1)

Pc (Sw)=P∗
c ·exp

(
∆P∗

C

ln
(
Sw/Swre f

)), (4.2)

Krw (Sw)=

(
Sw−Swi

1−Swi−Sor

)nw

, (4.3)

Kro (Sw)=

(
1−Sw−Sor

1−Swi−Sor

)no

. (4.4)
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Figure 4: Simulated absolute permeability vs porosity (left), the capillary pressure vs water saturation Sw(center),
and the relative permeability vs Sw (right) in the PM of Fig. 3. Their �tted results are plotted with lines.

The results for the simulation points and fitting curves are shown below and Fig. 4;

D=801800[mD], τp =2.5, ϕp =0.01,
P∗

c =1.515[Psi], ∆P∗
C =0.0831, Swre f =0.161,

Swi =0.065, Sor =0.07793, nw =4.408,
no =1.844.

(4.5)

Henceforth, unless specifically mentioned, they are used as standard inputs for the PM
model in the multiscale simulation.

4.1 Force balance check in single-component fluid flow through porous media

The modeled resistance force from the PM in Eq. (3.1) is validated by checking the force
balance in single-component fluid flow through a PM region. In an arbitrary small do-
main bounded by periodic boundaries, the PM model is applied everywhere while grav-
ity g is assigned. The expected force balance can be formulated as ρr ·(ϕu)=ρg, where r
is the resistivity from the PM model, r=ν/K, ϕ is the porosity, and u is the fluid velocity.
Various options of viscosity ν, g, and r are tested. Here, r is controlled by setting the input
K as certain constant numbers. Table 1 shows the resulting r·(ϕu). They agree with input
g very well. Remembering the definition of K0=ϕuν/g, we see that this force balance also
indicates the consistency between input K0, K0,in and output K0, K0,out. This is because
K0,in = ν/r=ϕuν/g=K0,out, where the formulation of r is used in the first equation and
the force balance is used in the second equation.

Table 1: Results of force balance check in the gravity driving �ow through PM.

ν r g r ·(ϕu)
1.67×10−3 8.32×10−3 5.00×10−4 5.00×10−4

3.33×10−2 1.66×10−1 1.00×10−2 1.00×10−2

1.67×10−1 8.32×10−1 5.00×10−2 5.00×10−2
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4.2 Single-component fluid flow through multitype porous media

Two-dimensional single-component fluid flow through spatially varied porous structures
is simulated. In a simulation domain of 200×100, circular-shaped porous medium PM2,
whose diameter is 40, is surrounded by the other typed porous medium PM1, as shown
in Fig. 5. Many options of the input permeability for PM2 are tried from 1 mD to 5000
mD, while one for PM1 is fixed at 100 mD. The resolution is assumed to be 31.25µm/pixel.
Gravity is assigned in the horizontal direction, and its value is low enough to realize the
Stokes flow regime. The viscosity ν is set as 1.66×10−3.

The simulated permeability, K0,sim=ϕglb<u>ν/g, where ϕglb is the global porosity, is
presented in Table 2 together with the Darcy solver’s results. In the Darcy solver, the force
balance between the driving and resistance terms in the Brinkman equation is solved at
each definition point [37]. Since it ignores the viscous terms and temporal derivative
terms, it is applicable only for limited cases in the multiscale simulation. In the present
case where the entire domain is covered by porous media, however, the Darcy solver
outputs consistent results with the present solver within 0.1% deviation. The pressure
profiles are compared in Fig. 6 for the case of K0 = 1mD in PM2. The pressure value is
normalized by F·Ld, where F is the driving force and Ld is the domain length. Its absolute
value is shifted to zero on the right boundary. Their excellent agreement indicates that

Figure 5: Setups of the single-component �uid �ow simulation through various types of porous media.

Table 2: Simulated K0 through two-dimensional porous structures using the present and Darcy solver.

K0 in PM2 [mD] K0,sim (Darcy solver) K0,sim (Present) Deviation
1 87.52 87.45 0.08 %

10 89.66 89.61 0.06 %
50 95.83 95.8 0.03 %

200 104.2 104.2 < 0.01 %
1000 110.5 110.4 0.09 %
5000 112.5 112.4 0.09 %
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Figure 6: Contours of the pressure pro�le with the Darcy solver (left) and the present solver (right) in the case
of K0 = 1mD in PM2. The pressure value is normalized by F ·Ld, where F is the driving force and Ld is the
domain length.

the present PM model based on the LBM correctly handles the fluid force of a single
component in porous media.

4.3 An imbibition process in one-dimensional porous media

The modeled capillary force from the PM in Eq. (3.2) is examined by checking the force
balance between the pressure force and capillary force in the one-dimensional PM region
and a pore region. In a simulation domain of 150 lattices, the left half is set as a pore
region, and the right half is set as a PM region of ϕ= 0.3, as shown in Fig. 7. In the PM
region, in addition to the standard inputs of K0(ϕ), Krw (Sw), and Kro (Sw) precomputed
in Fig. 4, the input function PC (Sw) is set as the constant value of PC=0.05. The resolution
is assumed to be 4.0µm/pixel. The wettability in the PM region is set as water-wet with
a contact angle of 10 degrees. On the right end, the pressure value is set as 0.0733 with
Sw=0.9995. On the left end, with Sw=0.05, the pressure value is set so that the pressure
difference between both ends, ∆P, is equivalent to 110% or 90% of the assigned PC in
the PM. Initially, oil is mainly filled over the entire domain. The viscosities for both
components are νw=νo=1.66×10−3 so that the capillary number is sufficiently low while
the velocity magnitude is in the reasonable range.

Snapshots of the water distribution at certain timesteps are shown in Fig. 8. In the top
and bottom three figures, the results in cases with ∆P=0.9PC and ∆P=1.1PC are shown,
respectively. They indicate that the imbibition process can be accurately simulated within
the 10% range of the assigned PC in the PM.

Figure 7: Settings in a one-dimensional PM case. The red and blue colors show the pore region and PM region
of ϕ=0.3, respectively. At both the right and left ends, pressure boundaries are imposed.
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Figure 8: Snapshots of the water distribution at certain timesteps in one-dimensional imbibition processes with
the PM model. The top three �gures show the case with a pressure di�erence of 90% assigned PC in the PM.
The bottom three �gures show the case with a pressure di�erence of 110% assigned PC in the PM.

4.4 An imbibition process in two-dimensional layered channels

A typical sequential imbibition process into pores and PM is examined in two-
dimensional layered channels, as shown in the left figure of Fig. 9. In the domain of
44×26, the center region, colored red, is a pore and regarded as the main channel. On
both sides of the main channel, there are two different types of underresolved PMs of
ϕ=0.3, colored blue and gray. The left/right PM is oil/water-wet with a contact angle of
170/10 degrees. On the top and bottom edges, they are bounded by oil- and water-wet
walls of the same contact angles as the adjacent PM regions. The resolution is assumed
to be 31.25µm/pixel.

The imbibition process is started with a sufficiently high pressure difference between
the inlet and outlet, ∆P. As time goes, ∆P is gradually reduced, as shown in the right
figure of Fig. 9. Due to the scale difference between pores and PM, imbibition into the
water-wet PM typically occurs at first once ∆P becomes sufficiently low. When ∆P is
decreased further and becomes comparable with the capillary pressure in the water-wet
pores, the water invades such pores. Later, as ∆P is decreased, in contrast to the water-
wet scenario, the water invades the oil-wet pore at first and the oil-wet PM lastly. One of
the main motivations in this section is to capture this sequential process quantitatively.

In addition to the standard inputs of K0(ϕ), Krw (Sw), and Kro (Sw) precomputed in
Fig. 4 for the PM region, the input function of PC (Sw) is set as the constant value of
PC(wwet,PM)= 0.02 for the water-wet PM and PC(owet,PM)=−0.02 for the oil-wet PM. The
pressure value on the right boundary is set as 0.0733 with Sw=0.9995. According to the
Laplace law, the capillary pressure in the main channel is expected to be PC(wwet,pore) =

σcos(10◦)/h = 4.92×10−3 for the water-wet pore and PC(owet,pore) = σcos(170◦)/h =
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Figure 9: Settings in two-dimensional layered channels (left) and time history of the pressure di�erence between
the left and right ends (right). In the left �gure, the red, blue, and gray colors show a pore region, water-wet
and oil-wet porous medium of ϕ=0.3, respectively.

Figure 10: Water isosurface of At>0.5 at six ∆P conditions in two-dimensional layered channels.

−4.92×10−3 for the oil-wet pore, where h = 5 is the half channel height and σ = 0.025
is the surface tension. Considering the estimated capillary pressure above, we gradu-
ally decrease ∆P from 0.03 to −0.03 by changing the pressure value on the left boundary
while fixing Sw=0.05. Initially, oil mainly occupies the entire domain. Viscosities for both
components are set as νw =νo =1.66×10−3.

The simulated results are shown in Fig. 10. The water distributions at six ∆P condi-
tions are shown with the isosurface of At>0.5. At ∆P=0.01, which is below PC(wwet,PM)

and above PC(wwet,pore), water invades the water-wet PM. When ∆P=0.0025 and ∆P=0.0,
which are below PC(wwet,pore) and above PC(owet,pore), water invades the water-wet pore.
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When ∆P=−0.0075, which are below PC(owet,pore) and above PC(owet,PM), water invades
the oil-wet pore. Last, when ∆P=−0.03, which is below PC(owet,PM), most of the entire
domain is filled with water. As a result, the current PM model successfully reproduces
the expected sequential imbibition process to pores and PM quantitatively.

4.5 Porous media of a large cone-shaped hole

Using an in-house designed porous structure that has a large cone-shaped hole partially
bounded by the solid walls and connects to the PM regions, single-component and two-
component fluid flows are simulated using two different resolutions. The PM structures
are constructed based on the geometry in Fig. 3. A finer resolution, 1 µm/pixel, allows
us to resolve all of the PM structures and capture the geometry shown in the left figure
of Fig. 11. On the other hand, the coarse resolution, 4 µm/pixel, underresolves the PM
structures but can resolve only large-scale solid walls on the boundaries between the hole
and PM, as shown in the middle figure of Fig. 11.

The PM model in Section 3 is applied only for the underresolved regions in the coarse
resolution case, using the porosity distribution presented in the right figure of Fig. 11. The
contributions of the resolved and underresolved regions to the global porosity are 41%
and 55%, respectively. In this section, we mainly examine the consistency between the
fully resolved PM case with fine resolution and the underresolved PM case with coarse
resolution. The standard inputs of K0(ϕ), Krw (Sw), and Kro (Sw) precomputed in Fig. 4
are used for the PM model in the underresolved PM case. The resolution of the scanned
images is equivalent to the resolution in the flow simulation.

In the simulation for computing K0, the domain and gravity are set in the same
manner as the K0 simulation for the PM model in Fig. 3. The domain sizes in the re-
solved PM case and the underresolved PM case, before mirroring, are 256×256×512 and

Figure 11: Visualization of porous structures. Solid surfaces in the resolved PM case (left) and in the underre-
solved PM case (center). The isosurfaces of porosities larger than 0.9 are displayed on the right together with
the color contour of the porosity on a center plane.
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Table 3: Absolute permeability K0 in porous media of a large cone-shaped hole.

Case K0 (mD)
Fully-resolved PM 458
Under-resolved PM 486

Figure 12: Contour plots of the nondimensional z-velocity using gL2/ν, where g is gravity, ν is the kinematic
viscosity, and L is the characteristic length.

64×64×128, respectively. The viscosity is set as ν= 0.166 for the resolved PM case and
ν= 0.0166 for the underresolved PM case. The gravity, g, is set as 1.0×10−4 for the re-
solved PM case and 1.5×10−4 for the underresolved PM case. They are set so that the
mean velocity is almost on the same order of magnitude. Table 3 shows the computed
K0 in the resolved PM and underresolved PM cases. Although the resolved PM case re-
quires more than 20 CPU hours compared to the underresolved PM case, their K0 values
are consistent within 6.1% deviation. The deviation possibly comes from connectivity
among the PM cells and improper assignments of input K0 for the PM model on bound-
aries between the hole and the PM region. On such boundaries, the homogenous PM
models shown in Fig. 3 may not be accurate. Fig. 12 shows comparisons of flow fields on
XY-/XZ-/YZ-planes, displayed with the nondimensionalized z-velocity by gL2/ν, where
L is the characteristic length. This shows that the PM model enables us to capture a rea-
sonable flow field even inside the PM. According to our original method in which the
underresolved regions are regarded as solid, there are no main flow passages through
the domain, and therefore, K0 results in almost zero. The proposed methods and the PM
model address this issue effectively and provide accurate K0 and velocity profiles while
largely saving computational costs

In the simulation for computing PC, the domain settings, initial conditions, and simu-
lation processes follow the same manner as the PC simulation for the PM in Fig. 3. Viscosi-
ties for both components are set as νw=νo =1.66×10−3. The resulting capillary pressure,
∆P, in terms of the water saturation Sw is shown in the left figure of Fig. 13. Here, a
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Figure 13: Capillary pressure curve in terms of water saturation Sw in the resolved PM case and the underresolved
PM case in the left �gure. In the right �gures, the water distributions at certain stages, marked with dotted
circles in the left �gure, are shown for both cases using the isosurface of At>0.5 and color contour of At on
the central cutting plane.

resolution factor 4 is multiplied by ∆P of the resolved PM case for fair comparisons in
the lattice unit. The water distributions at certain stages, marked with the dotted cir-
cles in the left figures, are shown in the right figures using the light-blue isosurfaces of
At> 0.5 and color contours on the central cutting plane. The capillary pressure curves
show that the main entry pressure around ∆P=0.045 is accurately captured with the PM
model compared to the resolved PM case within 5 % deviation. This main entry occurs
in the PM region, and therefore, the accuracy of the input PC curve plays an important
role. Additionally, the entry pressure into the large hole around ∆P=0.005 is accurately
captured with the PM model. As seen in the right figures of Fig. 13, some oil bubbles
are observed in the PM region in the middle of imbibition. They are possibly caused
by the difficulty in capturing the exact steady state. This is because the dynamics in the
PM region are usually very slow due to the high viscous force from the complex porous
structure and complex invasion paths. As a result, the simulation controller sometimes
insufficiently judges the steady state and proceeds to the next stage. Nevertheless, the
capillary pressure curves in the underresolved PM and resolved PM cases are reasonably
matched, while the simulation time is reduced by a factor of 30.

4.6 Porous media made from a typical carbonate rock

Using an in-house designed PM geometry made from images of a typical carbonate rock
[9], single-component and two-component fluid flows are simulated using two different
resolutions. To explicitly produce multiscale structures, the porous structures in Fig. 3
are patched to the original images as small-scale PM structures. Specifically, the images
of Fig. 3 are patched while scaling them so that a resolution of 0.758 µm/pixel allows
us to resolve all PM structures. As a result, the geometry shown in the left figure of
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Figure 14: PM structures captured with a resolution of 0.758 µm/pixel (left) and a resolution of 3.79 µm/pixel.

Figure 15: Geometries of simulated �uid cells under three di�erent conditions. The �uid cells in the resolved PM
case with the color contours of the cell volume (left). The �uid cells captured with the coarse resolution where
the underresolved PM is regarded as the solid (middle). The �uid cells captured with the coarse resolution plus
�uid cells handled by the PM model together with the colored porosity distribution.

Fig. 14 is captured at this resolution. Then, the images are coarsened 5 times. The coarse
resolution, 3.79 µm/pixel, underresolves small-scale PM but can resolve only large-scale
PM structures shown in the right figure of Fig. 14. The resolution of the scanned images is
equivalent to the resolution in the flow simulation. The contributions of the resolved and
underresolved regions to the global porosity are 27% and 19%, respectively. Originally,
the underresolved PM regions were treated as solid in the simulation, but now they can
be handled by the PM model. In the sense of clarification, geometries of fluid cells on a
certain cross section are presented for three compared conditions in Fig. 15. The left figure
shows the fluid cells in the resolved PM case of the fine resolution with color contours of
fluid volume. The middle figure shows the fluid cells captured with the coarse resolution,
where the underresolved PM is regarded as solid. This indicates that many small-scale
structures are missed compared to the resolved PM case. The right figure shows that
the fluid cells captured with the coarse resolution plus the fluid cells handled by the PM
model using the colored porosity distribution. It explicitly shows that the connectivity
among large-scale PMs is enhanced compared to the middle figure. For the PM settings,
the standard input of K0(ϕ), PC (Sw), Krw (Sw) and Kro (Sw) precomputed in Fig. 4 are
used.

In the simulation for computing K0, the domain and gravity are set in the same man-
ner as the K0 simulation in Fig. 4. The domain sizes in the resolved PM case and the
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Table 4: Absolute permeability K0 in the PM made from a typical carbonate rock.

Case K0 (mD)
Resolved PM 2121
Underresolved PM with the solid assignment 2040
Underresolved PM with the PM model 2279

underresolved PM case are 500×500×500 and 100×100×100, respectively. The viscosity
is set as ν = 0.166 for the resolved PM case, ν = 0.0166 for the underresolved PM case
with the solid-wall assignment, and ν = 0.012 for the underresolved PM case with the
PM model. The gravity, g, is set as 5.7×10−6 for the resolved PM case and 1.4×10−3 and
1.4×10−5 for the two underresolved PM cases. They are determined so that the mean
velocity is approximately on the same order of magnitude while the Reynolds number
is sufficiently small. Table 4 shows K0 computed in the resolved PM and underresolved
PM cases. In contrast to the case in Section 4.5, the underresolved PM case with the solid
assignment outputs comparable K0 to one in the resolved PM case. This is because the
main flow passages through the domain exist and largely contribute to K0. Qualitatively,
due to less connectivity of large-scale PM, K0 is slightly reduced from the resolved PM
case. On the other hand, the PM model enhanced their connectivity and resulted in a
slightly higher K0. All three cases show almost comparable K0 within the 6% deviation
and consistent velocity profiles in Fig. 16. This fact demonstrates that the PM model
works properly, reproducing the proper high resistivity in the PM regions. Moreover,
the computational cost for simulation is saved from the resolved PM case to the underre-
solved PM case with the PM model by a factor of 5.

In the simulation for computing PC, the domain settings, initial conditions, wettabil-
ity condition, and simulation processes follow the same manner as the PC simulation in
Fig. 4. Viscosities for both components are set as νw = νo = 1.66×10−3. The simulated
capillary pressure, ∆P, in terms of the water saturation Sw is shown in the top figure of
Fig. 17. Here, a resolution factor of 5 is multiplied by ∆P for the resolved PM case for
fair comparisons in the lattice unit. According to the displayed Sw in the underresolved
PM case with the solid assignment, the volume of the underresolved PM, which is re-
garded as solid in this case, is assumed to be filled by 89 % water all time. The water
distributions at certain stages, marked with the dotted circles in the top figure, are shown
in the bottom figures using the light-blue isosurfaces of At> 0.5 and color contours on
the central cutting plane. Between ∆P ≈ 0.04 and ∆P ≈ 0.02, the water mainly invades
the small-scale PM regions. Without the PM model, this stage cannot be simulated. The
underresolved PM case with the PM model shows reasonably consistent results with the
resolved PM case. Between ∆P≈0.02 and ∆P≈0.0, the water mainly invades the large-
scale PM regions. As seen in the Pc curve, all three cases show excellent agreements at
this stage. Between ∆P≈0.0 and ∆P≈−0.055, the oil in the remaining spaces is washed
out. At this stage, connectivity among large-scale PM regions plays an important role.
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Figure 16: Dimensionless velocity pro�les over the domain (left column) and on the center z- (center column)

and y- (right column) slices. Velocity is nondimensionalized by gL2/ν. The resolved PM case (top row), the
under resolved PM case with the solid assignment (middle row), and the underresolved PM case with the PM
model (bottom row) are compared.

At the last stage of the imbibition process, the residual component patterns are shown in
Fig. 18 with an isosurface of At<−0.5. Although it is difficult to compare their detailed
structures by looking at the isosurfaces at different resolutions, it may be fair to compare
the distribution of major blobs. Indeed, we observe that the underresolved PM case with-
out the PM model misses some of the large oil blobs in the resolved PM case, but the PM
model successfully captures them consistently. Moreover, the computational cost in the
underresolved PM case is saved by a factor of 43 compared to the resolved PM case.

4.7 Relative permeability with coarsened images of sampled porous media

In the simulation computing the relative permeability Kr in Fig. 4, the sampled PM in
Fig. 3 is fully resolved with a resolution of 0.758 µm/pixel. In this section, the images
are coarsened by 16 times, and then the size of the computational domain becomes 16×
16×16, in which the PM structure is underresolved everywhere and has to be treated by
the PM model. In this section, we check if the PM model can reproduce the comparable
Kr with the fully resolved PM case. The domain, gravity, and wettability are set in the
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Figure 17: Capillary pressure curve in terms of water saturation Sw in the resolved PM case and the underresolved
PM case with the solid assignment and with the PM model in the top �gure. In the bottom �gures, the water
distributions at certain stages, marked with the dotted circles in the top �gure, are shown for all cases using
the isosurface of At>0.5 and color contour of At on the central cutting plane.

same manner as the Kr simulation in Fig. 4. The viscosity for both components is set as
3.33×10−3.

In Fig. 19, the resulting Kr curves are compared with the input Kr curves, which are
from the fully resolved case in Fig. 4. They show excellent agreement. Additionally, in the
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Figure 18: Residual oil patterns at the last stage of the imbibition process, ∆P ≈−0.055 displayed by the
isosurface of At<−0.5.

Figure 19: Relative permeability in the underresolved PM case with black crosses for Krw and purple crosses
for Kro. The red and black lines are the input Kr based on the fully resolved PM case in Fig. 4. On the right,
the water distribution is compared between the fully resolved PM (left) and underresolved PM (right) cases at
certain options of Sw.

right images, the water distributions are compared at certain options of Sw between the
fully resolved PM case and the underresolved PM case. Although it is difficult to compare
detailed water distributions under such a large resolution difference, we try to show them
using the isosurface of Sw ·ϕ>0.9 for the fully resolved PM case and Sw ·ϕ>0.35 for the
underresolved PM case. The results show that the water volume grows homogenously
in both cases. As a result, the proposed multiscale approach allows us to perform a
consistent Kr simulation in the underresolved PM with the fully resolved PM case. Due
to the coarsened resolution, the simulation time is saved by 200 times from the fully
resolved PM case.
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5 Summary

Computational models and a workflow for efficient two-component flow simulations in
multiscale solid structures are proposed and validated through a set of benchmark test
cases. Specifically, using precomputed physical properties such as the absolute perme-
ability K0, capillary pressure PC, and relative permeability Kr for representative porous
structures, together with the local PM and fluid information such as the porosity and
water saturation, local fluid force is constructed in the multiscale simulation to account
for viscous, capillary, and pressure effects in underresolved porous media (PM) regions.
In this way, flow simulation in multiscale solid structures becomes feasible with prac-
tical resolution. The validation is conducted by comparing with analytic solutions and
computed results with much finer-resolution corresponding cases resolving the PM struc-
tures fully. In addition to artificially established systems, the tested benchmarks include
in-house designed geometries for multiscale complex porous structures.

In the K0 simulation, compared with analytic solutions, it is confirmed that the PM
model works accurately for viscous force as expected. This result shows consistency with
the Darcy solver within 1% accuracy in the multitype PM case. Additionally, compared
with the resolved PM case, K0 in the underresolved PM case with the PM model is con-
sistent within 6% accuracy in the in-house designed PM case. The simulation cost is re-
duced by a factor of 20 at best. In the PC simulation, compared with the analytic solution,
it is confirmed that the PM model can accurately reproduce the capillary force and can
also quantitatively reproduce the typical sequential imbibition process in PM and pores.
Moreover, in the in-house designed PM case, the entry pressures to both PM and pores
agree well between the underresolved PM case with the PM model and the resolved PM
case. The PM model successfully captures the major residual oil blobs at the last stage
of the imbibition process, consistent with the resolved PM case. The simulation cost is
reduced by a factor of 43 at best. In the Kr simulation, comparing the fully resolved PM
case, the PM model can accurately reduce the relative permeability and water distribu-
tions in the underresolved PM using the PM model. The simulation cost is saved by a
factor of 200 at best.

Further applications of this underresolved simulation approach for reservoir rock can
be found in [38]. The models and methodology in this study can be extensively applied
to various engineering systems of multiscale porous structures, such as the example cases
in the introduction. Accordingly, further explorations and developments are expected in
the near future.
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