
INTERNATIONAL JOURNAL OF c© 2014 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING, SERIES B Computing and Information
Volume 5, Number 1-2, Pages 21–30

A SPARSE APPROXIMATE INVERSE PRECONDITIONER FOR

NONSYMMETRIC LINEAR SYSTEMS

YINGZHE FAN AND ZHANGXIN CHEN

Abstract. Motivated by the paper [16], where the authors proposed a method to solve a symmet-
ric positive definite (SPD) system Ax = b via a sparse-sparse iterative-based projection method,
we extend this method to nonsymmetric linear systems and propose a modified method to con-
struct a sparse approximate inverse preconditioner by using the Frobenius norm minimization
technique in this paper. Numerical experiments indicate that this new preconditioner appears
more robust and takes less time of constructing than the popular parallel sparse approximate
inverse preconditioner (PSM) proposed in [6]

Key words. nonsymmetric linear systems, preconditioning, projection method, Krylov subspace
methods, PSM, sparse approximate inverse

1. Introduction

Consider the solution of a sparse nonsymmetric linear system of algebraic equa-
tions:

(1) Ax = b,

where A ∈ Rn×n is a nonsingular matrix, x ∈ Rn is an unknown vector, and
b ∈ Rn is a given vector. This system arises in many areas of scientific computing,
such as in fluid mechanics [9], solid mechanics [4], and fluid flow in porous media
[5]. When A is large and sparse, direct solvers such as Gauss elimination may
bring ’fill-in’ phenomenon and require huge amount of work and memory storage.
Another approach to solve this system uses Krylov subspace iterative methods such
as the generalized minimal residual method (GMRES) and the biconjugate gradient
stabilized method (BiCGSTAB) [15, 18]. These methods require less storage but
the rate of convergence depends strongly on the spectral distribution of matrix
A. Usually, the more clustered the eigenvalues of A are, the faster these methods
converge. Toward this end, we may apply a preconditioning technique; i.e., we may
transform system (1) into the following system:

(2) AMy = b, x = My or MAx = Mb,

where M is a nonsingular matrix and is required to be cheaply constructed, called a
preconditioner. If M ≈ A−1, the coefficient matrix AM of system (2) always has a
‘good’ spectral distribution, and then using the Krylov subspace iterative methods
for solving (2), we can achieve much faster convergence.

Recently, many preconditioning techniques have been developed; see, e.g., [2, 15]
for a review. In this paper, we focus on a sparse approximate inverse technique
based on minimizing the Frobenius norm [6, 7, 11, 12, 13, 14]. Because of the
inherent parallel feature of this technique, it has attracted much attention. Its basic
idea is to construct a sparse nonsingular matrix by the constrained minimization

Received by the editors January 1, 2014 and, in revised form, March 10, 2014.
2000 Mathematics Subject Classification. 65F10, 65F15.

21

22 Y. FAN AND Z. CHEN

problem:

(3) min
M∈℘

‖AM − I‖F ,

where ℘ is a set of sparsity pattern of matrices, ‖.‖F denotes the Frobenius norm
of a matrix, and I denotes the identity matrix. The minimization problem (3) can
be decoupled into n independent linear least squares problems:

(4) min
M∈℘

‖AM − I‖F = min
M∈℘

n∑

j=1

‖Amj − ej‖2,

where mj and ej denote the jth column of M and I, respectively. Thus we can
construct the preconditioner M by solving n independent linear least squares prob-
lems. However, how to choose a ‘good’ sparsity pattern of M that can be effectively
constructed is still challenging. The aim of this paper is to construct a desired pre-
conditioner M for the sparse nonsymmetric system (2), and we will discuss the
construction process in the following sections in detail. Numerical experiments
indicate that this new preconditioner appears more robust and takes less time of
constructing than the popular parallel sparse approximate inverse preconditioner
proposed in [6].

The paper is organized as follows. In Section 2, we briefly describe three basic al-
gorithms for computing approximate solutions of nonsymmetric systems. Then, in
Section 3, we develop a new method to construct the preconditioner we are propos-
ing. Finally, numerical experiments to check this preconditioner’s effectiveness are
presented in Section 4.

2. Approximate Solutions of Nonsymmetric Systems

In this section, we extend the method which was used in [16] for solving SPD
linear systems to general nonsymmetric systems and then modify this method so
that it can be more flexible and effective.

Let A ∈ Rn×n be a general nonsingular matrix. Also, let K and L be two m-
dimensional subspaces of Rn, and x0 ∈ Rn be an initial guess of the solution of
system (1). A projection method is a process which finds an approximate solution
x ∈ Rn of (1) as follows:

(5) Find x ∈ x0 +K such that b−Ax ⊥ L.

Now, let K = span{ei1 , ei2 , ..., eim} and L = AK, where eij is the ijth column of
the identity matrix and m is a small integer. Then problem (5) can be transformed
into the following form:

Find x ∈ x0 + Ey such that r0 −AEy ⊥ L,

i.e., (ETATAE)y = ETAT r0,
(6)

where E = [ei1 , ei2 , ..., eim], r0 = b− Ax0, and y ∈ Rm.
If we loop (6) and use it to solve the linear systems:

(7) Amj = ej ,

then we define a new approach for solving the systems in (7) as follows:
Algorithm 1 (sparse approximate solution to the system Amj = ej):

1. Choose an initial guess mj and compute r = ej −Amj ;
2. For i = 1 : np,

A SPARSE APPROXIMATE INVERSE PRECONDITIONER 23

3. select J = {i1, i2, ..., im} ∈ {1, 2, ..., n} and set E = [ei1 , ei2 , ..., eim],
4. solve

(8) (ETATAE)y = ETAT r for y,

5. compute mj = mj + Ey,
6. compute r = r −AEy;
7. Enddo

Remarks: a) In step 4 of the above algorithm, the coefficient matrixETATAE ∈
Rm×m is of very small scale since m is very small. Thus solving system (8) is not
very expensive. b) Note that solving system (8) is equivalent to the solution of the
least squares problem:

(9) min
y∈Rm

‖r −AEy‖2.

Therefore, in practice, in order to obtain high accuracy, we can solve (9) instead
of (8) with the QR factorization method. c) Furthermore, it follows from [15] that
solving (9) is equivalent to the solution of the minimization problem: min

mj

‖ej −

Amj‖2, where mj = span{ei1 , ei2 , ..., eim}.
The following theorem on the projection method indicates that this algorithm is

convergent:
Theorem 2.1. Assume that A ∈ Rn×n is a real nonsingular matrix, and let

rk+1 = rk −AEyk after the kth loop of Algorithm 1. Then we have the following

result:

‖rk+1‖
2
2 = ‖rk‖

2
2 − ‖AEyk‖

2
2. (10)

Proof. We start with the relation (ETATAE)yk = ETAT rk in step 4 of Algo-

rithm 1, which is equivalent to ETAT (rk −AEyk) = 0 so (rk −AEyk, AEyk) = 0;
i.e., (rk, AEyk) = (AEyk, AEyk). From step 6 of the same algorithm, we see that

‖rk+1‖
2
2 = (rk+1, rk+1) = (rk −AEyk, rk −AEyk)

= (rk, rk)− 2(rk, AEyk) + (AEyk, AEyk)

= (rk, rk)− (AEyk, AEyk)

= ‖rk‖
2
2 − ‖AEyk‖

2
2,

which is the desired relation (10). �

Note that from relation (9), set L = {j | A(i, j) 6= 0 and r(i) 6= 0}. Then the
potential indices of J are contained in L. If A has no zero element in the diagonal
position, in order to reduce the value of the residual r as greatly as possible, we
can select the indices in J to be the indices of the m components with the largest
absolute values in the current residual r. Then a new modified algorithm can be
defined as follows:

Algorithm 2 (sparse approximate solution to the system Amj = ej):
1. Choose an initial guess mj = 0 and set r = ej ;
2. For i = 1 : np,
3. select the indices in J to be the indices of the m components with the largest
absolute

values in the current residual r; i.e., J = {i1, i2, ..., im} ∈ {1, 2, ..., n}
and set E = [ei1 , ei2 , ..., eim],

4. solve (ETATAE)y = ETAT r for y,
5. compute mj = mj + Ey,
6. compute r = r −AEy;
7. Enddo

24 Y. FAN AND Z. CHEN

Remarks: a) The stop criterion in step 2 of the above algorithm can also be
set as ‖r‖2 > eps and nnz(mj) < lfil, where eps is usually a very small number,
nnz indicates the number of nonzero entries in its argument matrix, and lf il is a
prescribed number of nonzero entries. Since m is usually chosen to be very small,
such as m=2, 3 or 4, the sparsity of mj is preserved only by m. b) The drawback
is that in each loop, we need to search for the m indices of the components with
the largest absolute values in the current residual r, which may be considerably
expensive.

To overcome this disadvantage, the natural idea is to select the index vector
J = {i1, i2, ..., im}, where r(ij) 6= 0. Unfortunately, the number of nonzero entries
in the residual vector r increases dramatically along with the loop. However, it
is interesting to note that relation (10) shows that ‖rk+1‖

2
2 ≤ ‖rk‖

2
2 ≤ ‖r0‖

2
2 = 1.

Thus the components of r in absolute value are all less than one. Therefore, after
computing the residual vector r, we can drop the components whose absolute value
is less than a threshold η (0 ≤ η < 1). Now, another modified algorithm can be
defined as follows:

Algorithm 3 (sparse approximate solution to the system Amj = ej):
1. Choose an initial guess mj = 0 and set r = ej ;
2. For i = 1 : np,
3. select the index vector J = {i1, i2, ..., im} ∈ {1, 2, ..., n}, where |r(ij)| ≥ η,

and set E = [ei1 , ei2 , ..., eim],
4. solve (ETATAE)y = ETAT r for y,
5. compute mj = mj + Ey,
6. compute r = r −AEy;
7. Enddo

Remarks: a) In practice, we can select η = 10−1 or η = 10−2 and np = 1, 2
or 3 often leads to good numerical results. b) Furthermore, if mj is not sparse, we
can also apply numerical dropping to mj with threshold ǫ, but how to select ǫ is a
problem since we may not be sure about the distribution of the values in mj.

3. Construction of Preconditioners

In this section, we shall first review some strategies for determining the sparsity
pattern of a preconditioner. In general, there are two ways to construct a precondi-
tioner. The first one is the adaptive approach [8, 11, 12] and the other is the static
approach [6, 13].

The SPAI (sparse parallel approximate inverse) method which was proposed by
Grote and Huckle in [12] is the most successful approach based on the adaptive
method. The main idea is to augment the sparsity pattern successively with a
given initial simple pattern of M until a criterion of ‖Amj − ej‖2 < ε is satisfied
for a given tolerance ε or a maximum number of nonzeros in mj has been reached.
Unfortunately, the setup time of this approach is often high even if implemented
in parallel; data must be transferred from one processor to other processors on a
distributed memory computer when the augment process is being executed.

On the other hand, the static approach seems more attractive in terms of im-
plementation because the sparsity pattern of M is prescribed (a-priori) before the
computation starts; during the process of calculation, communication is easy. A
particularly useful and effective strategy is to use the sparsity pattern of Ak (k
is a positive integer) which is based on the Hamilton-Cayley Theorem that A−1

can be represented as a matrix polynomial of A. However, the number of nonzero

A SPARSE APPROXIMATE INVERSE PRECONDITIONER 25

entries of Ak will become too big to compute in practice. This motivates the spar-
sified method proposed by Tang [17] and Chow [6]. Here ‘sparsified’ means that
the entries below a prescribed threshold will be removed. This method takes the
sparsified pattern of A as the sparsity pattern of the preconditioner M . Then, to
achieve higher accuracy, the sparsity pattern of A2, A3, ..., may be used.

However, the sparsified threshold and the power of A are not easy to determine
a-priori. If k is small, the method may not converge; while k is too big, it requires
more time to set up. Table 3.1 shows test data using Parasails with different levels
of sparsity patterns from papers [7, 20].

Table 1: Test results for the SPD matrix with the order = 12,205; time is in seconds.

Sparsity pattern Density Iteration Setup time Solution time
A 0.25 754 2.0 39.3
A2 0.47 539 40.0 33.7
A3 0.80 243 491.2 20.4

We can see that using a high level sparsity pattern such asA2 and A3 can lead to a
better preconditioner as it reduces the number of iterations and the time of solution,
but the setup time for constructing the preconditioner increases dramatically. The
reduction in the solution time does not compensate for the huge increase in the
setup time. Hence, as it was pointed out in [7] and [20], we are in a situation where
the higher accurate sparsity pattern will be used in later computations and the
initial high cost of extracting a high accurate sparsity pattern may be avoided.

In order to overcome the above drawbacks, we can combine the new method
presented in Section 2 with the static method. Suppose that an approximate inverse
preconditioner M with the sparsified pattern of A has been computed; if we find
that M is not effective, we can use the new method in Section 2 to correct (modify)
it until it is sufficiently satisfactory, instead of taking the sparsified pattern of A2

or A3 as the new sparsity pattern of M , which needs to be recomputed. One of
the reasons is that if we take the sparsified pattern of A2 or A3 as the new sparsity
pattern of M to recompute, we will lose the information that has been already
obtained with the sparsified pattern of A. By making use of the new method, we
can utilize the information such as in mj and the residual r to get a better result
because the new method can guarantee that ‖rk+1‖2 < ‖rk‖2.

The new algorithm for constructing a sparse approximate inverse preconditioner
can be stated an follows:

Algorithm 4 (construction of a sparse approximate inverse preconditioner):
1. Let M have the sparsified pattern of A with threshold ε and set mj = Mej;
2. For each column j = 1 : n,
3. select the index vector J = {i1, i2, ..., im} ∈ {1, 2, ..., n}, where |mj(ik)| 6= 0,

k = 1, 2, ...,m, and set E = [ei1 , ei2 , ..., eim],
4. solve (ETATAE)y = ETAT r for y,
5. compute mj = mj + Ey,
6. compute r = r −AEy;
7. For i = 1 : np,
8. select the index vector J = {i1, i2, ..., im} ∈ {1, 2, ..., n}, where |r(ij)| ≥ η,

and set E = [ei1 , ei2 , ..., eim],
9. solve (ETATAE)y = ETAT r for y,

26 Y. FAN AND Z. CHEN

10. compute mj = mj + Ey,
11. compute r = r −AEy;
12. Enddo
13. Enddo

Remarks: The method with the sparsified pattern of A as the initial pattern
always produces a good preconditioner with a small number of np. In addition,
this method needs very little communication between the processors because of the
small number of np. Of course, if the initial system is difficult to solve, we can also
take the sparsified pattern of A2 as the initial pattern. The numerical experiments
carried out in the next section show that this method can produce a very robust
and sparse preconditioner.

4. Numerical Experiments

In this section, we present numerical examples with matrices chosen from the
Harwell-Boeing sparse matrix collection which are used typically in [6, 8, 12] for
comparison. A brief description of these matrices is given in Table 1. In this table,
n and nnz represent the size of the matrix and the number of nonzero entries,
respectively. In this paper, we are not concerned with the implementation of the
parallel algorithm so the numerical experiments are performed in the sequential
environment. We emphasize that the algorithms presented here are inherently
parallel. All the numerical experiments presented in this section are computed in
double precision using MATLAB.

Table 2: The information of the test matrices

Matrix n nnz Description
SHERMAN1 1000 3750 Oil reservoir simulation 10× 10× 10 grid
SHERMAN3 5005 20033 Oil reservoir simulation 35× 11× 13 grid
SHERMAN5 3312 20793 Oil reservoir simulation 16× 23× 3 grid
ORSIRR1 1030 6858 Oil reservoir simulation 21× 21× 5 grid
PORES2 1224 9613 Reservoir simulation
SAYLR4 3564 22316 3D reservoir simulation
FIDAP008 3096 106302 Finite element modeling
FIDAP009 3363 99397 Finite element modeling
FIDAP010 2410 54816 Finite element modeling

In all tables, ε and η denote the corresponding ε and η in Algorithm 4, and
m represents the mean of m in this algorithm. ALG4(i) denotes Algorithm 4

with np = i. To solve the linear equation, we use the BiCGSTAB method and the
stopping criterion is 10−7. The right preconditioning technique is used. P-iter is
the number of BiCGSTAB iterations for convergence, S-time is the time for solving
the linear system with the BiCGSTAB method, P-time is the time for constructing
the preconditioner, and T-time is the sum of S-time and P-time. Time is in seconds.
The symbol − indicates that the corresponding method is not convergent within
1,000 steps.

In Table 2, the numerical results for matrix ORSIRR1 with different values of
steps, i.e., np and threshold η are given. This table shows the effect of an increment

A SPARSE APPROXIMATE INVERSE PRECONDITIONER 27

Table 3: ORSIRR1 (ε = 0.5)

np η m Density P-iter S-time P-time T-time
0 0.1 0 0.21 287 0.06 0.14 0.20
1 2.6 0.39 183 0.05 0.28 0.33
2 3.3 0.57 60 0.02 0.41 0.43
3 3.5 0.67 46 0.02 0.55 0.57
4 2.5 0.79 44 0.02 0.67 0.69
5 2.3 0.80 45 0.02 0.79 0.81
1 0.01 3.0 0.50 186 0.05 0.28 0.33
2 4.8 0.74 59 0.02 0.44 0.46
3 8.4 1.31 33 0.01 0.66 0.67
4 15.6 2.49 18 0.01 1.09 1.10
5 23.8 4.20 15 0.01 1.78 1.79

in steps on the reduction of the number of the iterations for convergence, also along
with the computational cost and the memory storage increase when η = 0.01. For
these reasons, we usually choose np to be 1 or 2 for compromise. On the other hand,
we can see that the ratio of the sparsity is stable along with the increment of steps
when η = 0.1. The reason for this observation is that the number of the residual
elements in r which are greater than 0.1 is getting fewer step-by-step. Therefore, to
solve difficult matrices, a good compromise is to set η = 0.1 first and then change
it to η = 0.01.

From Tables 3 and 7, we can see that more entries are dropped during the pre-
processing phase along with the increment of ε. This way degrades the convergence
rate of the preconditioners through increasing the powers of the sparsity of A, while
the new method proposed in this paper still seems working well.

The other tables show that ALG4(1) always has a small sparse ratio than
PSM(A2) and also requires less time in constructing; ALG4(2) has similar fea-
tures compared to PSM(A3). Moreover, the threshold η leads to a good result
when it is chosen to be 0.01 or 0.1.

Table 4: Matrix SHER-MAN1

Matrix ε m η Pattern Density P-iter S-time P-time T-time
SHER-
MAN1

0.5 PSM(A) 0.10 85 0.02 0.13 0.15

PSM(A2) 0.11 88 0.02 0.28 0.30
PSM(A3) 0.11 88 0.02 0.43 0.45

2.5 0.1 ALG4(1) 0.20 44 0.01 0.24 0.25
2.8 0.1 ALG4(2) 0.30 39 0.01 0.35 0.36
3.3 0.01 ALG4(1) 0.26 49 0.01 0.25 0.26
7.3 0.01 ALG4(2) 0.56 27 0.01 0.40 0.41

28 Y. FAN AND Z. CHEN

Table 5: Matrix SHER-MAN3

Matrix ε m η Pattern Density P-iter S-time P-time T-time
SHER-
MAN3

0.1 PSM(A) 0.69 243 0.15 1.47 1.62

PSM(A2) 1.57 178 0.17 3.32 3.49
PSM(A3) 3.18 138 0.26 0.43 6.06

1.5 0.1 ALG4(1) 0.90 189 0.14 2.24 2.38
1.0 0.1 ALG4(2) 0.99 173 0.13 2.92 3.05
7.8 0.01 ALG4(1) 2.07 159 0.19 2.84 3.03

Table 6: Matrix SHER-MAN5

Matrix ε m η Pattern Density P-iter S-time P-time T-time
SHER-
MAN5

0.1 PSM(A) 0.48 60 0.04 0.81 0.85

PSM(A2) 1.38 258 0.21 2.21 2.42
PSM(A3) 3.45 25 0.04 0.43 5.65

0.8 0.1 ALG4(1) 0.48 59 0.03 1.21 1.24
2.0 0.01 ALG4(1) 0.65 56 0.04 1.34 1.38
5.2 0.001 ALG4(1) 1.11 50 0.04 1.60 1.64

Table 7: Matrix SAY-LR4

Matrix ε m η Pattern Density P-iter S-time P-time T-time
SAY-
LR4

0.01 PSM(A) 0.43 – 0.54 0.92 1.46

PSM(A2) 0.67 695 0.47 2.46 2.93
PSM(A3) 0.86 465 0.40 4.00 4.40

4.2 0.1 ALG4(1) 0.70 682 0.48 1.55 2.03
5.2 0.1 ALG4(2) 0.92 467 0.40 2.17 2.57

0.001 PSM(A) 0.46 – 0.57 0.93 1.50
PSM(A2) 0.75 647 0.47 2.52 3.00
PSM(A3) 1.08 501 0.42 4.14 4.56

4.3 0.1 ALG4(1) 0.72 795 0.56 1.56 2.12
5.0 0.1 ALG4(2) 0.93 482 0.42 2.18 2.60

5. Conclusions

In this paper, we have first introduced a new approach for solving nonsymmetric
linear systems. Then, combining it with the method of patterns of a sparsified ma-
trix, we have developed a new method for constructing sparse approximate inverse
preconditioners for nonsymmetric matrices. This new method is nonsensitive to the
threshold ε which is used for dropping the matrix entries during the preprocessing

A SPARSE APPROXIMATE INVERSE PRECONDITIONER 29

Table 8: Matrix POR-ES2

Matrix ε m η Pattern Density P-iter S-time P-time T-time
POR-
ES2

0.1 PSM(A) 0.47 – 0.26 0.21 0.47

PSM(A2) 0.76 – 0.29 0.72 1.01
PSM(A3) 0.99 – 0.31 1.30 1.61

15.4 0 ALG4(1) 1.96 506 0.21 0.72 0.93
0.01 PSM(A) 0.69 – 0.30 0.24 0.54

PSM(A2) 1.79 687 0.27 0.95 1.22
PSM(A3) 3.79 486 0.26 2.04 2.30

20 0 ALG4(1) 2.62 952 0.46 1.01 1.47

Table 9: Matrices FIDA-P008, FIDA-P009 and FIDA-P010

Matrix ε m η Pattern Density P-iter S-time P-time T-time
FIDA-
P008

0.1 PSM(A) 0.41 – 2.49 3.43 5.92

PSM(A2) 2.01 – 1.23 0.72 19.21
PSM(A3) 4.35 177 1.09 1.30 56.98

90.0 0 ALG4(1) 2.64 250 1.23 32.52 33.75
FIDA-
P009

0.1 PSM(A) 0.62 – 1.09 4.67 5.76

PSM(A2) 3.37 73 0.41 29.31 29.72
42.5 0.01 ALG4(1) 1.51 217 0.85 19.64 20.49

FIDA-
P010

0.1 PSM(A) 0.56 – 1.22 1.84 3.06

PSM(A2) 2.65 294 0.93 10.13 11.06
PSM(A3) 5.43 93 0.52 27.52 28.04

31.7 0.01 ALG4(1) 1.45 259 0.68 6.51 7.19
69.0 0 ALG4(1) 3.04 267 0.90 12.36 13.26

phase. The other threshold η which is used for choosing the indices always leads to
a good result when it is chosen to be 0.1 or 0.01.

The numerical results have also shown favorable convergence rates and compu-
tational efficiency of the new method compared to the PSM method. This method
is inherently parallel since all calculations are performed independently. Hence our
future work is to focus on the parallel implementation of this method.

References

[1] O. Axelsson, Iterative Solution Methods, Cambridge University Press, Cambridge, 1996.
[2] M. Benzi, Preconditioning Techniques for Large Linear Systems: A survey, J. Comput. Phys.,

182(2002) 418–477.
[3] M. Benzi and M. Tuma, A Sparse Approximate Inverse Preconditioner for Nonsymmetric

Linear Systems, SIAM J. Sci. Comput., 19(1998) 968–994.
[4] Z. Chen, Finite Element Methods and Their Applications, Springer-Verlag, Heidelberg and

New York, 2005.

30 Y. FAN AND Z. CHEN

[5] Z. Chen, G. Huan, and Y. Ma, Computational Methods for Multiphase Flows in Porous
Media, in the Computational Science and Engineering Series, Vol. 2, SIAM, Philadelphia,
2006.

[6] E. Chow, A Priori Sparsity Patterns for Parallel Sparse Approximate Inverse Preconditioners,
SIAM J. Sci. Comput., 21(2000) 1804–1822.

[7] E. Chow, Parallel Implementation and Pratical Use of Sparse Approximate Inverse Precon-
ditioners with a Priori Sparsity Patterns, Int. J. High Perf. Comput. Appl., 15 (2001) 56–74.

[8] E. Chow and Y. Saad, Approximate Inverse Preconditioners Via Sparse-Sparse Iterations,
SIAM J. Sci.Comput., 19(1998) 995–1023.

[9] R. Glowinski, Handbook of Numerical Analysis: Numerical Methods for Fluids, Elsevier
Science Publishing Company, 2003.

[10] G.H. Golub and C.F. Van Loan, Matrix Computations, third ed., The Johns Hopkins Uni-
versity Press, Baltimore and London, 1996.

[11] N.I.M. Gould and J.A. Scott, Sparse Approximate-Inverse Preconditioners Using Normmin-
imization Techniques, SIAM J. Sci. Comput., 19(1998) 605–625.

[12] M. Grote and T. Huckle, Parallel Preconditioning and Approximate Inverses, SIAM,
J.Sci.Comput., 18(1997) 838–853.

[13] T. Huckle, Approximate Sparsity Patterns for the Inverse of a Matrix and Preconditioning.
Appl. Numer. Math., 30(1999) 291–303.

[14] Z.X. Jia and B.C. Chen, A Power Sparse Approximate Inverse Preconditioning Procedure for
Large Sparse Linear Systems, Numer. Linear Algebra Appl., 16(2009) 259–299.

[15] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Press, New York, 1995.
[16] D.K. Salkuyeh and F. Toutounian, A Sparse-Sparse Iteration for Computing a Sparse In-

complete Factorization of the Inverse of an SPD Matrix, J. Appl. Numer. Math., 59(2009)
1265–1273.

[17] W.P. Tang, Towards an Effective Sparse Approximate Inverse Preconditioner, SIAM J. Matrix
Anal. Appl., 20(1999) 970–986.

[18] H.A. van der Vorst, Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the
Solution of Nonsymmetric Linear Systems, SIAM J. Sci. Stat. Comput., 12(1992) 631–644.

[19] K. Wang, S. Kim, and J. Zhang, A Comparative Study on Dynamic and Static Sparsity
Patterns in Parallel Sparse Approximate Inverse Preconditioning, J. Math. Model., 2(2003)
203–215.

[20] K. Wang and J. Zhang, MSP: A Class of Parallel Multistep Successive Sparse Approximate
Inverse Preconditioning Strategies, SIAM J. Sci. Comput., 24(2003) 1141–1156.

Center for Computational Geosciences, College of Mathematics and Statistics, Xi’an Jiaotong
University Xi’an, 710049, Shaanxi Province, P. R. China. Department of Chemical and Petroleum
Engineering, University of Calgary, Calgary, AB, Canada, T2N 1N4.

E-mail : fanyinzhe@163.com, zhachen@ucalgary.ca

URL: http://schulich.ucalgary.ca/chemical/JohnChen

