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Abstract. To begin with, we identify the intrinsic equations of a von Kármán
nonlinearly elastic plate, which allow to directly compute the stresses inside
the plate without having to first compute the displacement field, by contrast
with the classical displacement approach. Then we establish that these intrinsic
equations possess weak solutions, which are the bending moments and stress
resultants of the middle surface of the plate.
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1 Introduction

When an elastic plate is subjected to specific boundary conditions and applied
forces, its reference configuration, i.e., the portion of space it occupies in the ab-
sence of forces, becomes a deformed configuration. One of the central themes
of plate theory then consists in providing equations that allow to determine the
displacement vector at each point of the reference configuration. The unknown is
thus a vector field defined over the reference configuration, whose components
are those of the unknown displacement field. These equations originally took the
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form of boundary value problems, i.e., partial differential equations on the mid-
dle surface of the plate, complemented by suitable boundary conditions. How-
ever, it was subsequently recognised that minimising an ad hoc energy functional
over an appropriate set of admissible displacements of the middle surface of the
plate was the most efficient way to obtain existence theorems.

From the computational viewpoints, however, this classical approach is not
fully satisfactory, in that the unknowns of primary interest in practical applica-
tions are not so much the components of the displacement field, but instead those
of the stress tensor field inside the body, since large stresses, rather than large
displacements, are more likely to provoke the collapse of an elastic structure.
But computing the stresses from the displacement, by means of the constitutive
equation of the elastic material constituting the structure, involves computing
derivatives, a procedure well-known to be unstable numerically.

By contrast, in an intrinsic approach, it is the components of the stress tensor,
or more generally of any bona fide measure of stress, that are the only unknowns,
instead of the components of the displacement vector field. Although he idea of
using such intrinsic approaches for the modelling of elastic bodies goes back to
Chien [6, 7] and, more recently, to Antman [1], it is only in the last two decades
that mathematical foundations of such methods have been investigated, first for
the three-dimensional model of elasticity, both linear and nonlinear (see [10]),
then for two-dimensional models for plates and shells, but only for linear models
(see [11, 12]), or for the nonlinear Kirchhoff-Love model (see [13–15]).

The objective of this paper is to address one of the missing cases, namely the
von Kármán equations for a nonlinearly elastic plate (see [20]). The new non-
linear plate model, which is defined in Theorem 4.1 below, is equivalent to von
Kármán’s model, but has the advantage of being defined solely in terms of the
bending moments and stress resultants of the middle surface of the plate, instead
of the vertical component of the displacement field and of the Airy function in
the original von Kármán equations. This is of importance in applications where
lower-dimensional models for thin elastic bodies are most of the time used to
predict the stresses that may appear in them (see, e.g., [17–19]).

The paper is organized as follows. In the Section 2, we first introduce the
notation and all relevant notions from differential geometry of surfaces that we
will need. Then we describe the type of applied forces and boundary conditions
that correspond to the von Kármán equations.

In Section 3, we state the classical two-dimensional von Kármán equations
for a nonlinearly elastic plate and give a brief, but self-contained, account of the
derivation of these equations as the limit as the thickness of the plate approaches
zero of the three-dimensional equations of the plate.
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In Section 4, we define the new intrinsic von Kármán equations. Then we
show in Theorems 4.1 and 4.2 that the intrinsic von Kármán equations and the
classical von Kármán equations are equivalent.

In Section 5, we define the notion of weak solution of the intrinsic von Kármán
equations. Then we justify this definition in Theorem 5.1 by showing that a clas-
sical solution is a weak solution that is sufficiently smooth. Finally, we prove in
Theorem 5.2 that the intrinsic von Kármán equations defined in Section 4 possess
a weak solution.

2 Notation and assumptions

Greek indices vary in the set {1,2}, save in the notation ∂τ and ∂ν used for the
tangential and normal derivatives along the boundary of a two-dimensional do-
main, while Latin indices vary in the set {1,2,3}. The summation convention for
repeated indices is used in conjunction to these rules for indices. Vectors and
vector-valued functions are denoted by boldface letters to distinguish them from
scalar functions.

Throughout this paper, E3 denotes the three-dimensional Euclidean space.
The inner-product of two vectors a and b in E3 is denoted a·b. The vector product
of two vectors a and b in E3 is denoted a∧b. The Euclidean norm of a vector
a∈E3 is denoted |a|.

The space of all real 2×2 symmetric matrices is denoted S2. The Frobenius
norm of a real matrix A is denoted |A|.

A Cartesian frame in E3 is given once and for all and its vectors are denoted ei.
Thus a point x ∈ E3 is identified with its Cartesian coordinates by the relation
x= yαeα+x3e3, where (y,x3)∈R3 and y=(yα)∈R2. Partial derivative operators
with respect to these Cartesian coordinates yα and x3 are denoted ∂α := ∂/∂yα,
∂3 :=∂/∂x3, ∂αβ :=∂2/∂yα∂yβ and ∆ :=∂11+∂22.

A plate is an elastic body whose natural state, which is by definition a stress-
free configuration of the plate, is of the form

Ω :=
{
(y,x3); y∈ω, x3∈ (−ε,ε)

}
⊆R

3,

where ω is a domain in R2, i.e., a bounded and connected open subset of R2 that
is locally on the same side of its boundary, and ε>0 is a real number. Such a plate
thus have a constant thickness equal to 2ε, a middle surface given by

S :=ω×{0},
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a lower face and an upper face respectively given by

Γ− :=ω×{−ε} and Γ+ :=ω×{+ε},

and a lateral face given by

Γ :=γ×[−ε,ε], where γ :=∂ω.

The plate is assumed to be made of a homogeneous and isotropic elastic ma-
terial, so that its two-dimensional elasticity tensor is given by

aαβστ :=
4λµ

λ+2µ
δστδαβ+2µ(δασδβτ+δατδβσ),

where λ ≥ 0 and µ > 0 denote the Lamé constants of the elastic material, and
δαβ designates the Kronecker symbol, i.e., δαβ := 1 if α = β and δαβ := 0 if α 6= β.
This tensor is invertible, in the sense that two symmetric tensors (Tαβ) and (Eαβ)
satisfy

Tαβ= aαβστEστ ,

if and only if
Eαβ=bαβστTστ,

where

bαβστ :=
1

8µ
(δασδβτ+δατδβσ)−

λ

4µ(3λ+2µ)
δαβδστ.

The von Kármán equations for such a plate are two-dimensional partial dif-
ferential equations obtained at the limit ε→0 from the three-dimensional partial
differential equations of a nonlinearly elastic plate subjected to specific boundary
conditions and applied forces, as shown in [8] by means of a formal asymptotic
analysis. We assume in this paper that the plate satisfy these specific assump-
tions, which are described below.

First, the three-dimensional admissible displacement fields uiei :Ω→E3 of the
plate satisfy the boundary conditions

u3=0 and ∂3uα=0 on Γ.

Secondly, the plate is subjected to applied body forces parallel to the vector e3

of density
f3e3∈L2(Ω;E3)

per unit volume in Ω, to applied surface forces parallel to e3 per unit area on the
lower and upper faces Γ− and Γ+ of density

g3e3∈L2(Γ−∪Γ+;E3)
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per unit area on Γ−∪Γ+, and to applied surface forces parallel to the plane span-
ned by the vectors eα on the lateral face Γ whose resultant density obtained by
integration across the thickness is

hαeα∈L2(γ;E3)

per unit length along γ. Note that these functions hα must satisfy the compatibil-
ity conditions (see [8])

∫

γ
hαdγ=0,

∫

γ
(y1h2−y2h1)dγ=0.

Then the densities per unit area along ω, and per unit length along γ, of the
resulting two-dimensional forces acting on the middle surface of the plate are

p3e3 : ω → E
3,

where

p3 :=
∫ ε

−ε
f3(·,x3)dx3+g3(·,+ε)+g3(·,−ε) in ω,

and
hαeα : γ → E

3.

These two densities are precisely those appearing in the von Kármán equations
defined in the next section.

The assumptions on the Lamé constants and on the applied forces used in [8]
in order to derive the von Kármán equations by letting ε → 0 in the equations
of three-dimensional elasticity of a nonlinearly elastic plate made of a St Venant-
Kirchhoff material are the following:

λ=O(1), µ=O(1), hα=O(ε2), p3=O(ε4),

in which case the resulting displacement field uiei : Ω→E3 satisfies

1

2ε

∫ ε

−ε
uα(·,x3)dx3=O(ε2),

1

2ε

∫ ε

−ε
u3(·,x3)dx3=O(ε).

3 The classical von Kármán’s equations

We give a brief, but self-contained, account of the classical formulation of the
von Kármán equations modeling the behavior of a nonlinearly elastic plate. For
a more detailed introduction to these equations, we refer the reader to, e.g., [2,9].
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The von Kármán’s equations allow to determine the displacement field

ζ := ζiei : ω → E
3

of the middle surface of the plate satisfying the assumptions of Section 2. In turn,
ζ allows to determine the bending moments

Mαβ := aαβστ∂στζ3

and the stress resultants

Nαβ :=
1

2
aαβστ(∂αζβ+∂βζα+∂αζ3∂βζ3)

of the middle surface of the plate, then the stress tensor fields of the entire plate
(so not only of its middle surface) by

σ :=σijei⊗ej : Ω → R
3×3,

where, for all (y,x3)∈Ω,

σαβ(y,x3) :=
1

2

(
Nαβ(y)−x3Mαβ(y)

)
,

σα3(y,x3)=σ3α(y,x3) :=0,

σ33(y,x3) :=0,

and finally the displacement field of the entire plate by

u :=uiei : Ω → E
3,

where, for all (y,x3)∈Ω,

uα(y,x3) := ζα(y)−x3∂αζ3(y),

u3(y,x3) := ζ3(y).

Thus determining the displacement field and the strain and stress fields inside
the plate reduces to computing the displacement field ζ=(ζi) of the middle sur-
face of the plate. The von Kármán equations provide a way to compute ζ =(ζi)
in the particular case where, in addition to the assumptions made in Section 2, it
is assumed that ω is simply-connected, by first determining the two functions

ζ3 : ω → R, φ : ω → R,
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where ζ3 is the vertical component of the displacement field ζ and φ is the Airy
stress function.

To define this Airy stress function, note that the assumptions that the ap-
plied body forces and the applied surface forces on Γ−∪Γ+ are parallel to the
vector e3 (Section 2) implies that the classical equations of equilibrium satisfied
by the stress resultants and bending moments of the middle surface of the plate
take the form

∂βNαβ=0 in ω,

∂αβ Mαβ(ζ)−∂α(Nαβ∂βζ3)= p3 in ω.

Then the first equation of the above system, the assumption that ω is simply-
connected, and the symmetry relations

Nαβ =Nβα=0 in ω,

together imply that there exists a function, called the Airy stress function,

φ : ω → R,

which is unique up to the addition of an affine function such that

N11=∂22φ, N22=∂11φ, N12=N21=−∂12φ.

Consequently, the horizontal components ζα of the displacement field ζ=(ζi)
of the middle surface of the plate are completely determined by the vertical com-
ponent ζ3 and the Airy function φ, via the equations (see, e.g., [8, 9])

1

2
(∂αζβ+∂βζα)=bαβστ(∆φ−∂στφ)−

1

2
∂αζ3∂βζ3.

Since the functions

eαβ :=
1

2
(∂αζβ+∂βζα)

satisfy the compatibility conditions of Saint Venant, that is

∂11e22+∂22e11=2∂12e12 in ω,

the previous equation shows that the pair of functions (φ,ζ3) must satisfy the
compatibility condition

∆
2φ+

µ(3λ+2µ)

λ+µ
[ζ3,ζ3]=0 in ω,
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where [·,·] denotes the Monge-Ampère bilinear form, defined for all (u,v)∈H2(ω)
×H2(ω) by

[u,v] :=∂11u∂22v+∂22u∂11v−2∂12u∂12v.

In this fashion, the Airy stress function φ and the vertical component ζ3 of
the displacement field become the two unknowns of the von Kármán equations,
instead of the three unknowns ζi representing the Cartesian components of the
displacement field ζ=(ζi).

Finally, in order to explicitly define the boundary conditions satisfied by the
Airy stress function φ, assume without loss of generality that the origin of the
plane spanned by the vectors eα belongs to the boundary γ of ω. Then the Airy
stress function φ satisfies the boundary conditions

φ=φ0 and ∂νφ=φ1 on γ,

where the functions φ0 : γ→R and φ1 : γ→R are defined at each y∈ω by

φ0(y) :=
∫

γ(y)
(x1−y1)h2(x)dγ(x)−

∫

γ(y)
(x2−y2)h1(x)dγ(x),

φ1(y) :=−ν1(y)
∫

γ(y)
h2(x)dγ(x)+ν2(y)

∫

γ(y)
h1(x)dγ(x)

in terms of the functions hα :γ→R introduced in Section 2. In these two formulas,
γ(y) designates the portion of the curve γ := ∂ω joining the origin 0∈γ to y∈γ,
while ν1(y) and ν2(y) denote the Cartesian components of the unit outer normal
vector to the curve γ at y.

In conclusion, the two-dimensional nonlinear von Kármán equations assert
that the vertical displacement ζ3 and the Airy stress function φ associated with
the unknown displacement field of the middle surface of a nonlinearly elastic
plate should satisfy the following boundary value problem:

ε3 8µ(λ+µ)

3(λ+2µ)
∆

2ζ3−ε[φ,ζ3]= p3 in ω,

∆
2φ+

µ(3λ+2µ)

λ+µ
[ζ3,ζ3]=0 in ω,

ζ3=0 and ∂νζ3=0 on γ,

φ=φ0 and ∂νφ=φ1 on γ,

(3.1)

where the constants λ>0 and µ>0 are the Lamé constants of the elastic material
constituting the plate and the functions p3 :ω→R and φ0,φ1 :γ→R are defined in
terms of the densities f3,g3 and hα of the forces applied to the plate (see Section 2).
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4 The intrinsic von Kármán equations

An intrinsic approach to plate theory consists in providing intrinsic equations for
computing the strains and stresses inside the plate, as opposed to the classical
approach which provides equations depending on the displacement field.

The sole unknowns appearing in the intrinsic von Kármán equations are the
bending moments

(Mαβ) : ω → S
2,

and the stress resultants
(Nαβ) : ω → S

2,

which are both symmetric tensor fields defined on the middle surface S of the
plate.

The advantage of choosing Mαβ and Nαβ instead of ζ3 and φ as the new un-
knowns is that they are the most relevant unknowns in computational mechan-
ics. In particular, the stress tensor field σ :=(σij) inside the entire plate Ω can be
computed by purely algebraic operations (i.e., without differentiation) in terms
of Mαβ and Nαβ by

σαβ(y,x3) :=
1

2

(
Nαβ(y)−x3Mαβ(y)

)
,

σα3(y,x3)=σ3α(y,x3)=σ33(y,x3) :=0

for all (y,x3)∈Ω, see [9].
In order to find the intrinsic equations satisfied by the bending moments Mαβ

and stress resultants Nαβ, we proceed in two steps.
First, we show that the bending moments and stress resultants associated with

a solution (ζ3,φ) of von Kármán equations necessarily satisfy a boundary value
problem where ζ3 and φ no longer appear, cf. Theorem 4.1.

Second, we show that if (Mαβ,Nαβ) is a solution of the boundary value prob-
lem defined in Theorem 4.1, then they are the bending moments and stress re-
sultants associated with a displacement field ζ = (ζi) and the pair of functions
(ζ3,φ), where φ is the Airy function associated with ζ, satisfies the von Kármán
equations (3.1), cf. Theorem 4.2.

Given the Lamé constants λ> 0 and µ> 0 of the elastic material constituting
the plate (see Section 2), the tensors aαβστ and its inverse bαβστ are those defined
in Section 2. Then we define the new tensor

cαβστ :=
1+ν2

4E
δαβδστ−

E

32µ2
(δασδβτ+δατδβσ),
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where

E :=
µ(3λ+2µ)

λ+µ
and ν :=

λ

2(λ+µ)

denote respectively Young’s modulus and Poisson’s ratio of the elastic material.

Theorem 4.1. Assume that ω is a simply-connected open subset of R2 with a boundary

of class C2.

Let (ζ3,φ)∈C4(ω;R2) be a solution to von Kármán equations (3.1) corresponding to

the data

p3∈C0(ω), φ0∈C2(γ), φ1∈C1(γ).

Define the functions

kα :=∂τ(να∂τφ0−ταφ1)∈C0(γ),

where ν=(να) : γ→R2, denote the components of the unit outer normal vector field to

the boundary γ of ω, and τ=(τα) : γ→R2, where

τ1=ν2, τ2=−ν1

denote the components of the positively-oriented unit tangent vector field along the boun-

dary γ of ω.

Then the functions

Mαβ := aαβστ∂στζ3, Nαβ :=∆φδαβ−∂αβφ

satisfy the boundary value problem

ε3

3
∂αβMαβ−εbαβστ Mστ Nαβ= p3 in ω,

∂ααNββ+cαβστ Mστ Mαβ=0 in ω,

∂βNαβ=0 in ω,

∂α(bβγστ Mστ)−∂β(bαγστ Mστ)=0 in ω,

bαβστ Mσττβ=0 on γ,

Nαβνβ= kα on γ.

(4.1)

The boundary value problem (4.1) constitute the intrinsic von Kármán equations cor-

responding to the same data p3,φ0,φ1, this time by means of the functions p3 and kα.
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Proof. The definitions of aαβστ and Mαβ imply that

Mαβ := aαβστ∂στζ3=
4λµ

λ+2µ
(∂σσζ3)δαβ+4µ∂αβζ3 in ω,

so that

∂αβMαβ=
8µ(λ+µ)

λ+2µ
∆

2ζ3 in ω.

The definitions of bαβστ , Mαβ, Nαβ, and of the Monge-Ampère bilinear form

[·,·] (Section 3) imply that

bαβστ MστNαβ =∂αβζ3(∆φδαβ−∂αβφ)=[φ,ζ3] in ω.

Thus the first equation of the boundary value problem (4.1) follows from the

first equation of (3.1).

The definition of Nαβ implies that

∂ααNββ=∆
2φ in ω.

The definitions of cαβστ and aαβστ imply that (after a series of long, but straight-

forward, calculations)

cαβστaστϕψaαβγδ =
µ(3λ+2µ)

λ+µ

(
δϕψδγδ−

1

2
(δϕγδψδ+δϕδδψγ)

)
.

Consequently,

cαβστ Mστ Mαβ =(cαβστaστγδaαβϕψ)∂ϕψζ3∂γδζ3

=
µ(3λ+2µ)

λ+µ

(
∂ϕϕζ3∂γγζ3−∂ϕψζ3∂ϕψζ3

)

=
µ(3λ+2µ)

λ+µ
[ζ3,ζ3] in ω.

Thus the second equation of the boundary value problem (4.1) follows from

the second equation of (3.1).

The third equation of (4.1) follows from the definition of Nαβ

∂βNαβ=∂β(∆φδαβ−∂αβφ)=0 in ω.

The fourth equation of (4.1) follows from the definitions of Mαβ, aαβστ and

bαβστ

∂α(bβγστ Mστ)=∂α(∂βγζ3)=∂β(∂αγζ3)=∂β(bαγστ Mστ) in ω.
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It remains to prove that the functions Mαβ and Nαβ satisfy the boundary con-

ditions given by the last two equations of (4.1).

Let εαβ denote the Levi-Civita permutation symbol, defined by εαβ=−εβα and

ε12=1. Since

Nαβ= εασεβγ∂σγφ, τα= εαβνβ, να=−εαβτβ on γ,

we deduce from the boundary conditions φ=φ0 and ∂νφ=φ1 on γ (see the bound-

ary value problem (3.1)) and from the definition of Nαβ that

Nαβνβ= εασεβγνβ∂σγφ=−εαστγ∂σγφ=−εασ∂τ(∂σφ)

=−εασ∂τ(τσ∂τφ+νσ∂νφ)=−∂τ(εαστσ∂τφ+εασνσ∂νφ)

=−∂τ(−να∂τφ+τα∂νφ)=∂τ(να∂τφ0−ταφ1)= kα on γ.

We also deduce from the boundary conditions ζ3=∂νζ3=0 on γ (see (3.1)) and

from the definition of Mαβ that

bαβστ Mσττβ=τβ∂αβζ3=∂τ(∂αζ3)=∂τ(τα∂τζ3+να∂νζ3)=0 on γ.

Hence, the proof is complete.

The next theorem shows that the system of equations (4.1) found in Theo-
rem 4.1 is well-posed, in the sense that its equations allow to determine uniquely
the bending moments Mαβ and the stress resultants Nαβ arising in an elastic plate.
This justifies calling this system the intrinsic von Kármán equations.

Theorem 4.2. Assume that ω is simply-connected open subset of R2 with a boundary

γ :=∂ω of class C2.

Let (Mαβ)∈C2(ω;S2) and (Nαβ)∈C2(ω;S2) be symmetric matrix fields that satisfy

the intrinsic von Kármán equations (4.1) corresponding to the functions

p3∈C0(ω), kα :=∂τ(να∂τφ0−ταφ1)∈C0(γ),

where φ0∈C2(γ) and φ1∈C1(γ) are two given functions.

Then there exists a unique function ζ3∈C4(ω) such that

aαβστ∂στζ3=Mαβ in ω,

ζ3=0, ∂νζ3=0 on γ,
(4.2)

and there exists a unique function φ∈C4(ω) such that

∆φδαβ−∂αβφ=Nαβ in ω,

φ=φ0, ∂νφ=φ1 on γ.
(4.3)
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Moreover, the pair (φ,ζ3) satisfies the von Kármán equations (3.1) corresponding to

the data

p3∈C0(ω), φ0∈C2(γ), φ1∈C1(γ).

Proof. Since the set ω is simply-connected, the equations

∂α(bβγστ Mστ)−∂β(bαγστ Mστ)=0 in ω,

∂βNαβ =0 in ω,

which are respectively equivalent to the equations

∂1(b2γστ Mστ)=∂2(b1γστ Mστ) in ω,

∂1Nα1=∂2(−Nα2) in ω,

imply that there exist functions ξγ∈C3(ω) and ηα∈C3(ω) (the regularity of these

functions follow from the regularity assumptions on Mστ and Nαβ) such that

bαγστ Mστ =∂αξγ in ω,

Nαβ= εβσ∂σηα in ω,

where εβσ is the Levi-Civita permutation symbol.

Next, the symmetries bαγστ =bγαστ and Nαβ=Nβα imply that

∂1ξ2=∂2ξ1 in ω,

∂1(−η1)=∂2η2 in ω.

Therefore, using again the assumption that ω is simply-connected, there exist

functions ζ̃3∈C4(ω) and φ̃∈C4(ω) (the regularity of these functions follow from

the regularity of the functions ξγ and ηα) such that

ξγ =∂γζ̃3 in ω,

ηα= εατ∂τφ̃ in ω.

Then we infer from the above relations that

bαγστ Mστ =∂αγ ζ̃3 in ω,

or equivalently,

aαβστ∂στ ζ̃3=Mαβ in ω,
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and that

Nαβ = εβσεατ∂στφ̃ in ω,

or equivalently,

∆φ̃δαβ−∂αβφ̃=Nαβ in ω.

Consequently, for any affine functions f ,g : ω→R, the functions

φ := φ̃− f , ζ3 := ζ̃3−g

satisfy the equations

aαβστ∂στζ3=Mαβ in ω,

∆φ δαβ−∂αβφ=Nαβ in ω.

It remains to prove that the functions φ and ζ3 satisfy the boundary conditions

announced in the theorem for a unique choice of the affine functions f and g. To

this end, we will use the boundary conditions of (4.1) and that γ is connected.

The boundary conditions satisfied by Nαβ, viz. (see Eqs. (4.1)),

Nαβνβ= kα on γ,

and the relations

Nαβ= εασεβγ∂σγφ̃, τα= εαβνβ, να=−εαβτβ,

together imply that

kα =Nαβνβ= εασεβγνβ∂σγφ̃=−∂τ(εασ∂σφ̃) on γ.

Hence, using the definition of the functions kα, as given in the statement of the

theorem, we have

∂τ(να∂τφ0−ταφ1)=−∂τ(εασ∂σφ̃) on γ,

so that there exists constants cα∈R such that (we use here the assumption that γ

is connected)

να∂τφ0−ταφ1+εασ∂σφ̃= cα on γ.

Consequently,

να∂τφ0−ταφ1−cα=−εασ∂σφ̃=−εασ

(
τσ∂τφ̃+νσ∂νφ̃

)

=−εαστσ∂τφ̃−εασνσ∂νφ̃

=να∂τφ̃−τα∂νφ̃ on γ.
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Then

να∂τ

(
φ̃−φ0

)
+τα

(
φ1−∂νφ̃

)
= cα on γ,

or equivalently

∂τ

(
φ̃−φ0

)
= cσνσ on γ,

φ1−∂νφ̃= cστσ on γ.

Let L :R2→R be the linear function defined by

L(y) :=(εασ cσ)yα for all y=(yα)∈R
2.

Then

cσνσ =(εασcσ)τα =τα∂αL=∂τ L on γ,

−cστσ =(εασcσ)να =να∂αL=∂νL on γ,

so that the previous system is equivalent to

∂τ

(
φ̃−φ0−L

)
=0 on γ,

∂ν(φ̃−L)=φ1 on γ.

Since γ is connected, the first equation implies that there exists a constant c3 such

that

φ̃−φ0−L= c3 on γ.

Thus the function

φ := φ̃− f ,

where f : ω →R is the affine function defined by f (y) := L(y)+c3 for all y∈ ω,

satisfies the boundary conditions

φ=φ0 on γ,

∂νφ=φ1 on γ.

The uniqueness of such an affine function f follows from the fact that if f̃ has

the same properties as f , then the difference f0 :=( f̃ − f ) is an affine function from

ω into R such that f0=0 on γ and ∂ν f0=0 on γ, this implies that f0=0 in ω.

The existence and uniqueness of the affine function g appearing above in the

definition of the function ζ3 are established in a similar manner, with some minor

differences due to the absence of the permutation tensor εαβ in the definition of
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Mαβ, as compared with that of Nαβ. We sketch this proof below for completeness,

so as to provide an explicit way to compute the vertical component of the dis-

placement field ζ=(ζi) of the middle surface of the plate from the knowledge of

the bending moments Mαβ of this surface.

The boundary conditions satisfied by Mαβ, viz. (see Eqs. (4.1)),

bαβστ Mσττβ=0 on γ,

and the relations

Mαβ= aαβστ∂στ ζ̃3 in ω,

together imply that

∂τ(∂αζ̃3)=τβ∂αβζ̃3=0 on γ.

Since γ is connected, this implies the existence of constants bα∈R such that

∂αζ̃3=bα on γ.

Consequently,

∂α

(
ζ̃3− g̃

)
=0 on γ,

where g̃ :R2→R is the linear function defined by

g̃(y) :=bαyα for all y=(yα)∈ω.

Furthermore, since

∂τ

(
ζ̃3− g̃

)
=τα∂α

(
ζ̃3− g̃

)
=0 on γ,

there exists a constant b3 (we use here the assumption that γ is connected) such

that

ζ̃3− g̃=b3 on γ.

Then we infer from the previous relations that the function

ζ3 := ζ̃3−g,

where g : ω →R is the affine function defined by g(y) := g̃(y)+b3 for all y ∈ ω,

satisfies the boundary conditions

ζ3=0 on γ,

∂νζ3=να∂αζ3=0 on γ.
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The uniqueness of such an affine function g is proved by the same argument as

the one used above to prove the uniqueness of such an affine function f .

We have therefore established the existence of unique functions ζ3∈C
4(ω) and

φ∈C4(ω), respectively satisfying the systems (4.2) and (4.3).

It remains to prove that the pair (φ,ζ3) satisfies in addition the von Kármán

equations (3.1) corresponding to the data

p3∈C0(ω), φ0∈C2(γ), φ1∈C1(γ).

To begin with, we infer from the relations (4.2) established above and from the

definition of the tensor aαβστ given in Section 2 that, on the one hand,

∂αβMαβ =∂αβ(aαβστ∂στζ3)=
8µ(λ+µ)

λ+2µ
∆

2ζ3 in ω.

Then we infer from the relations (4.2) and (4.3) and from the definition of the

tensor bαβστ given in Section 2 that, on the other hand,

bαβστ MστNαβ =∂αβζ3(∆φδαβ−∂αβφ)=[φ,ζ3] in ω,

where [·,·] denotes the Monge-Ampère bilinear form. Using these two relations

in the first equation of (4.1) gives

ε3 8µ(λ+µ)

3(λ+2µ)
∆

2ζ3−ε[φ,ζ3]=
ε3

3
∂αβMαβ−εbαβστ Mστ Nαβ = p3 in ω,

which is precisely the first equation of the boundary value problem (3.1).

Next we infer from the relations (4.3) that, on the one hand,

∂ααNββ=∆
2φ in ω.

Then we infer from the relations (4.2) and from the definitions of the tensors aαβστ

(Section 2) and cαβστ (Section 4) that, on the other hand,

cαβστ Mστ Mαβ= cαβστ(aστγδ∂γδζ3)(aαβϕψ∂ϕψζ3)

=
µ(3λ+2µ)

λ+µ
∂ααζ3∂ββζ3−

µ(3λ+2µ)

λ+µ
∂αβζ3∂αβζ3

=
µ(3λ+2µ)

λ+µ
[ζ3,ζ3] in ω.
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Using these two relations in the second equation of (4.1) shows that

∆
2φ+

µ(3λ+2µ)

λ+µ
[ζ3,ζ3]=∂ααNββ+cαβστ Mστ Mαβ =0 in ω,

which is precisely the second equation of the boundary value problem (3.1).

Finally, we infer from the relations (4.2) and (4.3) that the functions ζ3 and φ

satisfy the last two equations of the boundary value problem (3.1). This completes

the proof.

5 Weak solutions to the intrinsic von Kármán

equations

As usual, D(ω) denotes the space of all infinitely differentiable functions ψ:ω→R

with compact support contained in ω and D′(ω) denotes the space of distribu-
tions in ω.

We use the notation Lp(ω) for the Lebesgue space with exponent p>1, H1(ω)
and H2(ω) for the Sobolev spaces of functions in L2(ω) with derivatives also in
L2(ω), and H2

0(ω) for the closure in H2(ω) of its subspace D(ω).

The notation H1/2(γ) denotes the image of H1(ω) by the trace operator and
H−1/2(γ) denotes the dual space of H1/2(γ). The notation H3/2(γ) denotes the
image of H2(ω) by the trace operator and H−3/2(γ) denotes the dual space of
H3/2(γ).

A weak solution to the intrinsic von Kármán equations (4.1) corresponding to
the functions

p3∈L1(ω), kα ∈H− 1
2 (γ),

is a pair of symmetric tensor fields

(Mαβ)∈L2(ω;S2), (Nαβ)∈L2(ω;S2),

that satisfies the compatibility conditions

∂βNαβ=0 in ω,

∂α(bβγστ Mστ)−∂β(bαγστ Mστ)=0 in ω,
(5.1)

the boundary conditions

bαβστ Mσττβ=0 on γ,

Nαβνβ= kα on γ,
(5.2)
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and the variational equations

ε3

3

∫

ω
Mαβ∂αβηdy−ε

∫

ω
(bαβστ Mστ Nαβ)ηdy=

∫

ω
p3ηdy,

∫

ω
Nαα∂ββψdy+

∫

ω
(cαβστ Mστ Mαβ)ψdy=0

(5.3)

for all η∈H2
0(ω) and all ψ∈H2

0(ω).
The boundary conditions (5.2) make sense thanks to the compatibility condi-

tions (5.1) satisfied by Mαβ and Nαβ, which in effect provide these functions with
sufficient regularity in order to define their traces on γ appearing in (5.2). More
specifically, (Nαβνβ) and (bαβστ Mσττβ) are well-defined in H−1/2(γ) by

〈Nαβνβ,η〉 :=
∫

ω
(Nαβ∂βη)dy,

〈bαβστ Mσττβ,ψ〉 :=
∫

ω
(bα1στ Mστ∂2ψ−bα2στ Mστ∂1ψ)dy

(5.4)

for all functions η∈H1(ω) and ψ∈H1(ω), where 〈·,·〉 denotes the duality bracket
between H−1/2(γ) and H1/2(γ).

Note that these trace operators extend the corresponding trace operators for
smooth tensor fields (Mαβ)∈H1(ω;S2) and (Nαβ)∈H1(ω;S2), since

∫

γ
(Nαβνβ)ηdγ=

∫

ω

(
Nαβ∂βη+(∂βNαβ)η

)
dy

for all functions η∈H1(ω), and

∫

γ
(bαβστ Mσττβ)ψdγ=

∫

ω
(bα1στ Mστ∂2ψ−bα2στ Mστ∂1ψ)dy

+
∫

ω

(
∂2(bα1στ Mστ)−∂1(bα2στ Mστ)

)
ψdy

for all functions ψ∈H1(ω).
The above definition of weak solution to the intrinsic von Kármán equations

(4.1) is justified by the following theorem.

Theorem 5.1. Two symmetric tensor fields (Mαβ)∈C2(ω;S2) and (Nαβ)∈C2(ω;S2)
satisfy the intrinsic von Kármán equations (4.1) if and only if they satisfy the compatibil-

ity conditions (5.1), the boundary conditions (5.2), and the variational equations (5.3).
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Proof. First, let (Mαβ)∈C
2(ω;S2) and (Nαβ)∈C

2(ω;S2) be tensor fields that satisfy

the Eqs. (4.1). Then, for all η∈H2
0(ω) and all ψ∈H2

0(ω), we have

∫

ω
p3ηdy=

ε3

3

∫

ω
(∂αβMαβ)ηdy−ε

∫

ω
(bαβστ Mστ Nαβ)ηdy

=
ε3

3

∫

ω
Mαβ∂αβηdy−ε

∫

ω
(bαβστ Mστ Nαβ)ηdy,

and

0=
∫

ω
(∂ααNββ)ψdy+

∫

ω
(cαβστ Mστ Mαβ)ψdy

=
∫

ω
Nββ∂ααψdy+

∫

ω
(cαβστ Mστ Mαβ)ψdy.

This proves that the functions Mαβ and Nαβ satisfy the variational equations (5.3).

That they also satisfy the compatibility conditions (5.1) and the boundary condi-

tions (5.2) is clear.

Secondly, let (Mαβ)∈C2(ω;S2) and (Nαβ)∈C2(ω;S2) be tensor fields that sat-

isfy the compatibility conditions (5.1), the boundary conditions (5.2), and the vari-

ational equations (5.3). In particular then,

ε3

3

∫

ω
Mαβ∂αβηdy−ε

∫

ω
(bαβστ Mστ Nαβ)ηdy=

∫

ω
p3ηdy

for all η∈D(ω) and

∫

ω
Nββ∂ααψdy+

∫

ω
(cαβστ Mστ Mαβ)ψdy=0

for all ψ∈D(ω).
Consequently,

∫

ω

(
ε3

3
(∂αβMαβ)−ε(bαβστ Mστ Nαβ)−p3

)
ηdy=0

for all η∈D(ω), and

∫

ω

(
(∂ααNββ)+(cαβστ Mστ Mαβ)

)
ψdy=0

for all ψ∈D(ω).
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Since η and ψ are arbitrary functions in the space D(ω), the two relations

above show that the functions Mαβ and Nαβ satisfy the first two equations of

the system (4.1) in the distributional sense, hence in the classical sense since the

functions Mαβ and Nαβ belong to the space C2(ω). That the remaining equations

of the system (4.1) are satisfied is clear. The proof is complete.

We conclude this section by establishing the existence of weak solutions to the
intrinsic von Kármán equations.

Theorem 5.2. Assume that ω is a simply-connected open subset of R2 with a boundary

γ :=∂ω of class C2. Let

p3∈L1(ω), kα :=∂τ(να∂τφ0−ταφ1)∈H− 1
2 (γ),

where φ0∈H3/2(γ) and φ1∈H1/2(γ) are two given functions.

Then the intrinsic von Kármán equations (4.1) corresponding to the functions p3 and

kα possess a weak solution (Mαβ)∈L2(ω;S2) and (Nαβ)∈L2(ω;S2).

Proof. The assumptions of the theorem on p3, φ0 and φ1 imply that there exists

a pair of functions φ∈H2(ω) and ζ3∈H2(ω) that satisfies the von Kármán equa-

tions (3.1) corresponding to the data p3, φ0 and φ1, cf. [3–5, 16].

Define the functions

Mαβ := aαβστ∂στζ3, Nαβ :=∆φδαβ−∂αβφ.

Then Mαβ = Mβα ∈ L2(ω) and Nαβ = Nβα ∈ L2(ω). Besides, we infer from the

symmetry of the second derivatives of φ and ζ3 and from the definition of the

tensors aβγστ and bβγστ (see Section 2) that

∂βNαβ=∂α(∆φ)−∂β(∂αβφ)=0 in D′(ω),

and

∂α(bβγστ Mστ)−∂β(bαγστ Mστ)=∂α(∂βγζ3)−∂β(∂αγζ3)=0 in D′(ω).

Next, using the boundary conditions satisfied by the function ζ3 (see (3.1))

and the definition (5.4) of the trace on γ of (bαβστ Mσττβ), we deduce that

bαβστ Mσττβ=τβ∂αβζ3=∂τ(τα∂τζ3+να∂νζ3)=0 in H− 1
2 (γ).

Using the boundary conditions satisfied by the function φ (see (3.1)), the defini-

tion (5.4) of the traces of Nαβνβ on γ, the definition of the Levi-Civita permutation
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symbol εαβ, and the chosen orientation of the Cartesian bases along γ formed by

the tangent and normal vector fields (τα) and (να), we deduce that

Nαβνβ=νβεασεβδ∂σδφ= εσατδ∂σδφ= εσα∂τ(∂σφ)

= εσα∂τ(τσ∂τφ+νσ∂νφ)=∂τ(να∂τφ−τα∂νφ)

=∂τ(να∂τφ0−ταφ1)= kα in H− 1
2 (γ).

We established in the proof of Theorem 4.1 that

∂αβMαβ=
8µ(λ+µ)

λ+2µ
∆

2ζ3 in ω,

bαβστ Mστ Nαβ=[φ,ζ3] in ω

under the assumption that ζ3,φ∈C4(ω). A similar argument shows that the above

relations still hold in the distributional sense under the weaker assumption that

ζ3,φ∈H2(ω). Then the first equation of (3.1), viz.,

ε3 8µ(λ+µ)

3(λ+2µ)
∆

2ζ3−ε[φ,ζ3]= p3 in D′(ω),

implies that
ε3

3
∂αβMαβ−εbαβστ MστNαβ = p3 in D′(ω),

or equivalently, that

ε3

3

∫

ω
Mαβ∂αβηdy−ε

∫

ω
(bαβστ Mστ Nαβ)ηdy=

∫

ω
p3ηdy

for all η∈H2
0(ω). Thus the tensor fields Mαβ ∈ L2(ω) and Nαβ ∈ L2(ω) satisfy the

first equation of the variational equation (5.3).

We also established in the proof of Theorem 4.1 that

∂ααNββ=∆
2φ in ω,

and

cαβστ Mστ Mαβ=
µ(3λ+2µ)

λ+µ
[ζ3,ζ3] in ω

under the assumption that φ,ζ3∈C
4(ω). A similar argument shows that the above

relations still hold, albeit only in the distributional sense, under the weaker as-

sumption that φ,ζ3∈H2(ω). Then the second equation of (3.1), viz.,

∆
2φ+

µ(3λ+2µ)

λ+µ
[ζ3,ζ3]=0= p3 in D′(ω),
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implies that

∂ααNββ+cαβστ Mστ Mαβ=0 in D′(ω),

or equivalently,

∫

ω
Nαα∂ββψdy+

∫

ω
(cαβστ Mστ Mαβ)ψdy=0

for all ψ∈H2
0(ω). Thus the tensor fields Mαβ∈L2(ω) and Nαβ∈L2(ω) also satisfy

the second equation of the variational equation (5.3). This completes the proof of

the theorem.
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