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Abstract. To begin with, we identify the intrinsic equations of a von Kdrmén
nonlinearly elastic plate, which allow to directly compute the stresses inside
the plate without having to first compute the displacement field, by contrast
with the classical displacement approach. Then we establish that these intrinsic
equations possess weak solutions, which are the bending moments and stress
resultants of the middle surface of the plate.
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1 Introduction

When an elastic plate is subjected to specific boundary conditions and applied
forces, its reference configuration, i.e., the portion of space it occupies in the ab-
sence of forces, becomes a deformed configuration. One of the central themes
of plate theory then consists in providing equations that allow to determine the
displacement vector at each point of the reference configuration. The unknown is
thus a vector field defined over the reference configuration, whose components
are those of the unknown displacement field. These equations originally took the
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form of boundary value problems, i.e., partial differential equations on the mid-
dle surface of the plate, complemented by suitable boundary conditions. How-
ever, it was subsequently recognised that minimising an ad hoc energy functional
over an appropriate set of admissible displacements of the middle surface of the
plate was the most efficient way to obtain existence theorems.

From the computational viewpoints, however, this classical approach is not
tully satisfactory, in that the unknowns of primary interest in practical applica-
tions are not so much the components of the displacement field, but instead those
of the stress tensor field inside the body, since large stresses, rather than large
displacements, are more likely to provoke the collapse of an elastic structure.
But computing the stresses from the displacement, by means of the constitutive
equation of the elastic material constituting the structure, involves computing
derivatives, a procedure well-known to be unstable numerically.

By contrast, in an intrinsic approach, it is the components of the stress tensor,
or more generally of any bona fide measure of stress, that are the only unknowns,
instead of the components of the displacement vector field. Although he idea of
using such intrinsic approaches for the modelling of elastic bodies goes back to
Chien [6,7] and, more recently, to Antman [1], it is only in the last two decades
that mathematical foundations of such methods have been investigated, first for
the three-dimensional model of elasticity, both linear and nonlinear (see [10]),
then for two-dimensional models for plates and shells, but only for linear models
(see [11,12]), or for the nonlinear Kirchhoff-Love model (see [13-15]).

The objective of this paper is to address one of the missing cases, namely the
von Karméan equations for a nonlinearly elastic plate (see [20]). The new non-
linear plate model, which is defined in Theorem 4.1 below, is equivalent to von
Kérmén’s model, but has the advantage of being defined solely in terms of the
bending moments and stress resultants of the middle surface of the plate, instead
of the vertical component of the displacement field and of the Airy function in
the original von Karman equations. This is of importance in applications where
lower-dimensional models for thin elastic bodies are most of the time used to
predict the stresses that may appear in them (see, e.g., [17-19]).

The paper is organized as follows. In the Section 2, we first introduce the
notation and all relevant notions from differential geometry of surfaces that we
will need. Then we describe the type of applied forces and boundary conditions
that correspond to the von Kdrmén equations.

In Section 3, we state the classical two-dimensional von Karman equations
for a nonlinearly elastic plate and give a brief, but self-contained, account of the
derivation of these equations as the limit as the thickness of the plate approaches
zero of the three-dimensional equations of the plate.
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In Section 4, we define the new intrinsic von Kadrman equations. Then we
show in Theorems 4.1 and 4.2 that the intrinsic von Kdrman equations and the
classical von Karméan equations are equivalent.

In Section 5, we define the notion of weak solution of the intrinsic von Kdrman
equations. Then we justify this definition in Theorem 5.1 by showing that a clas-
sical solution is a weak solution that is sufficiently smooth. Finally, we prove in
Theorem 5.2 that the intrinsic von Kdrman equations defined in Section 4 possess
a weak solution.

2 Notation and assumptions

Greek indices vary in the set {1,2}, save in the notation d- and 9, used for the
tangential and normal derivatives along the boundary of a two-dimensional do-
main, while Latin indices vary in the set {1,2,3}. The summation convention for
repeated indices is used in conjunction to these rules for indices. Vectors and
vector-valued functions are denoted by boldface letters to distinguish them from
scalar functions.

Throughout this paper, [E> denotes the three-dimensional Euclidean space.
The inner-product of two vectors a and b in [E® is denoted a-b. The vector product
of two vectors a and b in E? is denoted aAb. The Euclidean norm of a vector
a € B3 is denoted |a].

The space of all real 2 x 2 symmetric matrices is denoted $?. The Frobenius
norm of a real matrix A is denoted |A|.

A Cartesian frame in [E? is given once and for all and its vectors are denoted e;.
Thus a point x € IE® is identified with its Cartesian coordinates by the relation
X =yqeq+x3e3, where (y,x3) €R® and y = (y,) € R?. Partial derivative operators
with respect to these Cartesian coordinates y, and x3 are denoted 0, :=9/9y,,
d3:=0d/dx3, a“‘B = az/ay“ayﬂ and A:=09q1 +02.

A plate is an elastic body whose natural state, which is by definition a stress-
free configuration of the plate, is of the form

Q:={(y,x3); yew, x3€ (—¢¢)} CR3,

where w is a domain in R?, i.e., a bounded and connected open subset of R? that
is locally on the same side of its boundary, and >0 is a real number. Such a plate
thus have a constant thickness equal to 2¢, a middle surface given by

S:=wx{0},
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a lower face and an upper face respectively given by
I_:=wx{—¢e} and Ti:=wx{+e},
and a lateral face given by
I'=vx[—¢e], where 7y:=dw.

The plate is assumed to be made of a homogeneous and isotropic elastic ma-
terial, so that its two-dimensional elasticity tensor is given by

4
AyBor - = 7‘”50759(,3 +2“l/l ((50405[37 +(5zx7(5[5(r)/

A+2u

where A >0 and p > 0 denote the Lamé constants of the elastic material, and
dup designates the Kronecker symbol, i.e., du5:=1if a = and 4,5:=0 if a # B.
This tensor is invertible, in the sense that two symmetric tensors (T,g) and (E,p)
satisfy

Tup=0aupocEor,
if and only if

sz/% = bzx/SaT Tor,
where

1 A
bzx/SaT = @ (5tx¢75ﬁr+5a75/30) - M&xﬁéaf-

The von Karméan equations for such a plate are two-dimensional partial dif-
ferential equations obtained at the limit e — 0 from the three-dimensional partial
differential equations of a nonlinearly elastic plate subjected to specific boundary
conditions and applied forces, as shown in [8] by means of a formal asymptotic
analysis. We assume in this paper that the plate satisfy these specific assump-
tions, which are described below.

First, the three-dimensional admissible displacement fields u;e;: () —E3 of the
plate satisfy the boundary conditions

uz3=0 and J3u,=0 on TI.

Secondly, the plate is subjected to applied body forces parallel to the vector e3
of density
faes € L2(OIE%)

per unit volume in (), to applied surface forces parallel to e3 per unit area on the
lower and upper faces I'_ and I' ;. of density

gae3 € L*(I-UT ;%)



P.G. Ciarlet and C. Mardare / Commun. Math. Anal. Appl., 2 (2023), pp. 221-244 225

per unit area on I'_UI' |, and to applied surface forces parallel to the plane span-
ned by the vectors e, on the lateral face I' whose resultant density obtained by
integration across the thickness is

hyeq € L2 (7;E%)

per unit length along 7. Note that these functions /1, must satisfy the compatibil-
ity conditions (see [8])

/htxd7:0/ /(y1hz—yzh1)d’r=0-
¥y ¥

Then the densities per unit area along w, and per unit length along v, of the
resulting two-dimensional forces acting on the middle surface of the plate are

. 3
pzez:w — [E°,

where .
p3:= /_€f3(~,x3)dx3 +83(,+¢e)+g3(,—¢) in w,

and
hyey:y — ES.

These two densities are precisely those appearing in the von Kdrméan equations
defined in the next section.

The assumptions on the Lamé constants and on the applied forces used in [8]
in order to derive the von Karman equations by letting ¢ — 0 in the equations
of three-dimensional elasticity of a nonlinearly elastic plate made of a St Venant-
Kirchhoff material are the following;:

A=0(1), u=0(1), h=0(&), p3=0(),

in which case the resulting displacement field u;e;: () — IE> satisfies

1 /S o (+,x3)dxs = O(e%), L uz(-,x3)dxz=0(e).

2e )¢ 2e )¢

3 The classical von Karman’s equations

We give a brief, but self-contained, account of the classical formulation of the
von Karméan equations modeling the behavior of a nonlinearly elastic plate. For
a more detailed introduction to these equations, we refer the reader to, e.g., [2,9].
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The von Kdrman's equations allow to determine the displacement field
(:=Cej:w — 3

of the middle surface of the plate satisfying the assumptions of Section 2. In turn,
 allows to determine the bending moments

szﬁ = aDclBO'Ta(TTC?)

and the stress resultants

1
N,X,g = Eaalgmf (a,xgg'Fa,BC(x +apc€3a,8€3)

of the middle surface of the plate, then the stress tensor fields of the entire plate
(so not only of its middle surface) by

o:=0jje;Qej: Q) — R3*3,
where, for all (y,x3) €Q),

s %3) 1= 3 (Nep () 13 Mu (1)),

On3 (%XS) =034 (y/x?)) = 0/
033(Y,x3) :=0,
and finally the displacement field of the entire plate by
u:=ue;: Q) — I
where, for all (y,x3) €Q),
ua(y,%3) = Ca(y) —x39a83(y),
u3(y,x3) =05 (y)-

Thus determining the displacement field and the strain and stress fields inside
the plate reduces to computing the displacement field { = ({;) of the middle sur-
face of the plate. The von Karmén equations provide a way to compute { = (;)
in the particular case where, in addition to the assumptions made in Section 2, it
is assumed that w is simply-connected, by first determining the two functions

(3w - R, ¢:w — R,
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where (3 is the vertical component of the displacement field { and ¢ is the Airy
stress function.

To define this Airy stress function, note that the assumptions that the ap-
plied body forces and the applied surface forces on I'_UI"; are parallel to the
vector e3 (Section 2) implies that the classical equations of equilibrium satisfied
by the stress resultants and bending moments of the middle surface of the plate
take the form

8[5N,Xﬂ=0 in w,
dupMap(L) —9u(Napdpls) =p3 in w.

Then the first equation of the above system, the assumption that w is simply-
connected, and the symmetry relations

Nyp=Ngy=0 in w,
together imply that there exists a function, called the Airy stress function,
p:w — R,
which is unique up to the addition of an affine function such that
Ni1=02¢, Np=0d11¢, Nip=Ny=—012¢.

Consequently, the horizontal components , of the displacement field { = ({;)
of the middle surface of the plate are completely determined by the vertical com-
ponent {3 and the Airy function ¢, via the equations (see, e.g., [8,9])

1 1
E (ach‘B ‘|‘a,3€1x) = ch‘BO'T (A(,b - aUT(P) - Eatx€3a[5€3-
Since the functions ,
Cap = E(aaglg -1—8/3@)
satisfy the compatibility conditions of Saint Venant, that is
d11e2+020e11 =20d1pe1p  in w,

the previous equation shows that the pair of functions (¢,{3) must satisfy the
compatibility condition

(3A+2u)

K9+ E Bl ] =0 inw
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where [-,-] denotes the Monge-Ampére bilinear form, defined for all (1,0)€ H?(w)
x H2(w) by
[u,v] :=011U0220+ 02111V —2012Ud12 0.

In this fashion, the Airy stress function ¢ and the vertical component (3 of
the displacement field become the two unknowns of the von Kdrmén equations,
instead of the three unknowns (; representing the Cartesian components of the
displacement field { = ({;).

Finally, in order to explicitly define the boundary conditions satisfied by the
Airy stress function ¢, assume without loss of generality that the origin of the
plane spanned by the vectors e, belongs to the boundary 7 of w. Then the Airy
stress function ¢ satisfies the boundary conditions

p=¢o and Jd,p=¢; on 7,
where the functions ¢p: v — R and ¢ :y — R are defined at each y € w by

<P0(y)¢=/7(y)(x1—y1)hz(x)d7(x)—A(y)(xz—yz)hl(x)dv(x)z
M=) [ @@ TR [ @)

Ty
in terms of the functions h,:y— R introduced in Section 2. In these two formulas,
v(y) designates the portion of the curve 7 :=0dw joining the origin 0 €y to y €7,
while v1 (y) and v, (y) denote the Cartesian components of the unit outer normal
vector to the curve 7y at y.

In conclusion, the two-dimensional nonlinear von Karmén equations assert
that the vertical displacement {3 and the Airy stress function ¢ associated with
the unknown displacement field of the middle surface of a nonlinearly elastic
plate should satisfy the following boundary value problem:

833“1&[}(\%—;5;A2€3—8[4),€3]:p3 in w,
w2 M G0 in e, 6
(3=0 and 9,(3=0 on 7,
C,DZ(P() and 81,<p=<p1 on 7,

where the constants A >0 and u >0 are the Lamé constants of the elastic material
constituting the plate and the functions p3:w —R and ¢y, ¢$; : v — R are defined in
terms of the densities f3,¢3 and h, of the forces applied to the plate (see Section 2).
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4 The intrinsic von Karman equations

An intrinsic approach to plate theory consists in providing intrinsic equations for
computing the strains and stresses inside the plate, as opposed to the classical
approach which provides equations depending on the displacement field.
The sole unknowns appearing in the intrinsic von Karman equations are the
bending moments
(M,X :3) w o — SZ ,

and the stress resultants
(Ntx /3) W — 82 ,

which are both symmetric tensor fields defined on the middle surface S of the
plate.

The advantage of choosing M, and N,4 instead of {3 and ¢ as the new un-
knowns is that they are the most relevant unknowns in computational mechan-
ics. In particular, the stress tensor field ¢ := (cj;) inside the entire plate () can be
computed by purely algebraic operations (i.e., without differentiation) in terms
of Myp and N,g by

0upy,33) = 5 (Nap(y) 23 Mup()),

0.3(Y,x3) =034 (y,x3) =033(y,x3) :=0

for all (y,x3) € Q), see [9].

In order to find the intrinsic equations satisfied by the bending moments M,
and stress resultants N, g, we proceed in two steps.

First, we show that the bending moments and stress resultants associated with
a solution ({3,¢) of von Kdrman equations necessarily satisfy a boundary value
problem where (3 and ¢ no longer appear, cf. Theorem 4.1.

Second, we show that if (M,g,N,g) is a solution of the boundary value prob-
lem defined in Theorem 4.1, then they are the bending moments and stress re-
sultants associated with a displacement field { = ({;) and the pair of functions
({3,¢), where ¢ is the Airy function associated with , satisfies the von Kérman
equations (3.1), cf. Theorem 4.2.

Given the Lamé constants A >0 and u > 0 of the elastic material constituting
the plate (see Section 2), the tensors 4,5, and its inverse b,p,. are those defined
in Section 2. Then we define the new tensor

1412 E
Capor = ﬁézxﬁéar - fyz (5zx05ﬁr +5a75/30)/
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where

_ H(BA+2p) _ A
E'_i/\-l-y and V'_Z()\—i—y)

denote respectively Young’s modulus and Poisson’s ratio of the elastic material.

Theorem 4.1. Assume that w is a simply-connected open subset of R? with a boundary
of class C2.

Let ({3,¢) € C*(w;R?) be a solution to von Karmdn equations (3.1) corresponding to
the data

pseC’(@), goeC (1), ¢1€C (y).
Define the functions
ky:=0¢ (VtxaTCPO - Tlxc,bl) € CO (7)/

where v=(vy): v — R?, denote the components of the unit outer normal vector field to
the boundary vy of w, and T= (1) :y — R2, where

1=V, ©=—1
denote the components of the positively-oriented unit tangent vector field along the boun-

dary 7y of w.
Then the functions

Mlxﬁ = a,xlgmamgg, Ntxﬁ = A¢5wﬁ —a,x/g()b

satisfy the boundary value problem

?aa/ﬁMaﬁ_ebzxﬁanUTNzx/%ZPB in w,
daaNpp+CuporMorMyp=0 in w,
IpNys =0 in w, (4.1)
9 (bgrocMor) —9p(buyorMor) =0 in w,
buprrMorTp=0 on 7,
Nypvp=ka on .

The boundary value problem (4.1) constitute the intrinsic von Kdrmdn equations cor-
responding to the same data ps, o, P1, this time by means of the functions ps and k.
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Proof. The definitions of a,5,; and M, imply that

41 .
Mg ::alX,BO'Ta(TT€3 = ﬁ;(agggg)5aﬁ+4ﬂa“5€3 m w,

so that

The definitions of bygor, Mup, Nug, and of the Monge-Ampere bilinear form
[-,-] (Section 3) imply that

le‘BO'TM(TTNDCﬁ = alX,BC?’ (A(Péﬂé,B _azx,B(P) = [(PI€3] in w.

Thus the first equation of the boundary value problem (4.1) follows from the
tirst equation of (3.1).
The definition of N,z implies that

The definitions of ¢yg,r and a,p, imply that (after a series of long, but straight-
forward, calculations)

1

3A+2
y( ) 5(5¢7‘5¢5+‘5¢5‘5¢7)) :

CaBorlotoplapys = At (5(1)1/:(575 -
Consequently,

C(X,BUTMUTMa,B = (CIX‘B(J'Ta(TT')/éalX‘B(pl[J )a(plp €3875€3

3A+2
= ,M(T—i-y]/l) (a(p(p@avvg»% —B(P¢§33(P¢C3)
M[C&Cﬂ in w.

Thus the second equation of the boundary value problem (4.1) follows from
the second equation of (3.1).
The third equation of (4.1) follows from the definition of N,

aﬁN,xﬁza/;(A(])é,x’B—a,x’B(P):O in w.

The fourth equation of (4.1) follows from the definitions of Mg, dxp,r and
baﬂUT

alx(b‘B’yO'TM(TT):a()é(a‘B’yC?)) a[}( 04’753) a[}( pc’y(rTMUT) in w.
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It remains to prove that the functions M,g and N, satisfy the boundary con-
ditions given by the last two equations of (4.1).

Let e,4 denote the Levi-Civita permutation symbol, defined by ¢,5=—¢g, and
€12 =1. Since

Na/;:swemamq), Tu =ExpVp, Va=—ExgTp ON 7,

we deduce from the boundary conditions ¢=¢g and d,p=¢; on -y (see the bound-
ary value problem (3.1)) and from the definition of N,z that

N[Xﬁvﬁ — 80{0’8#}/}/‘/#380’74) — _E“UTf)/ag'ryq) — _gpég'aT(ag'q))
= _5lxaaT(TaaT¢+VUav¢) =—0¢ (5MTaaT(P+5pc(7VUav(P)
= _aT(_v“aT(P_FTD(aV(P) :aT(V“aT(PO_Tacpl) :ka on ’)/.

We also deduce from the boundary conditions {3=09,{3=0 on 7y (see (3.1)) and
from the definition of M, that

buporMorTp =Tp0xp03 =07(0ul3) =07 (T07r(3+vady(3) =0 on 7.
Hence, the proof is complete. O

The next theorem shows that the system of equations (4.1) found in Theo-
rem 4.1 is well-posed, in the sense that its equations allow to determine uniquely
the bending moments M, and the stress resultants N,z arising in an elastic plate.
This justifies calling this system the intrinsic von Karman equations.

Theorem 4.2. Assume that w is simply-connected open subset of R? with a boundary
7v:=0dw of class C2.

Let (Myg) €C*(@;S?) and (Nyg) € C*(w;S?) be symmetric matrix fields that satisfy
the intrinsic von Kdrmdn equations (4.1) corresponding to the functions

p3€CO@),  ku:=0c(Vadrpo—Tatpr) €C°(7),

where ¢o € C%(y) and ¢y € CY(y) are two given functions.
Then there exists a unique function {3 € C*(w) such that

azx/%a‘rao‘fgev:sz/S in w,

(4.2)
(3=0, 0,03=0 on v,
and there exists a unique function ¢ € C*(w) such that
AP, —080=N,g in w,
$0up =00 = Nap (4.3)

p=do, dp=¢1 on .
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Moreover, the pair (¢,(3) satisfies the von Kdrmdn equations (3.1) corresponding to
the data

ps€C(@), ¢o€C*(7), $1ECH(7).

Proof. Since the set w is simply-connected, the equations

aﬂt(bﬁ’yO’TMU'T) _aﬁ(bwyaTMUT) =0 in w,
algN,X‘BZO in w,

which are respectively equivalent to the equations

al(b2')/(TTM(TT):a2(b1’)/(7TM0'T) in w,
01Ny1 =02(—Na2) in w,

imply that there exist functions ¢, € C3(@) and 77, € C3(@) (the regularity of these
functions follow from the regularity assumptions on Myr and N,g) such that

bzx'yUTMUT = alngy in w,
Nyp= Eﬁgagﬂa in w,

where ¢4, is the Levi-Civita permutation symbol.
Next, the symmetries byyor = byaor and N, p=Nga imply that

0182 =081 in w,
d1(—n1)=0pnp in w.

Therefore, using again the assumption that w is simply-connected, there exist
functions {3 € C*(w) and ¢ € C*(w) (the regularity of these functions follow from
the regularity of the functions ¢, and 7,) such that

Na =407 in w.
Then we infer from the above relations that
buc'yUTMUT :amé in w,

or equivalently, N
a(Xﬁ(TTa(TT€3 =M,p In w,
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and that
er,B zsﬁagaTaUT(P in w,

or equivalently,
Afpézxﬁ —8a/3<p = N,X,g in w.

Consequently, for any affine functions f,g:w — IR, the functions
¢p:=¢—f (3:=0-8
satisfy the equations
AuprrOor(3=Mup  In w,
AP Sup—0upp=Nyp in w.

It remains to prove that the functions ¢ and {3 satisfy the boundary conditions
announced in the theorem for a unique choice of the affine functions f and g. To
this end, we will use the boundary conditions of (4.1) and that <y is connected.

The boundary conditions satisfied by N,g, viz. (see Egs. (4.1)),

N,xﬁvﬁ =k, on 7,
and the relations
Nup=€a0€py00yP, Tu=EapVp, Va=—EapTp,
together imply that
ko = NupVp =E€a0€py Vo = —0r(€xo0sP) ON 7.

Hence, using the definition of the functions k,, as given in the statement of the
theorem, we have

Jr (Vtx aT(PO - TIX(Pl) =—0¢ (504(78(7(5) on 7,

so that there exists constants ¢, € R such that (we use here the assumption that y
is connected)

UaaT(PO_Ta(P]_ +€D¢0'ag'£ﬁ/=c“ on ’)/.

Consequently,
szaTCPO —TaP1—Cp= _Ezwaa(i;: —&uxo (Taaf4~7+vaav$)

= _EIX(TTU'aT(P - Ethaav(P

:V“a"{(’ﬁ/—frﬂava on ’)/.
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Then B B
VO ((P_(PO) +Ta ((Pl _av(,b) =Cy On 7%,

or equivalently

aT ((AP/_(PO) — Cg'l/g' on ,}/,
(Pl - ava: CO'TO' on ,}/.

Let L:IR?> — R be the linear function defined by

L(y):=(exoCo)ys forall y=(y,)ER>
Then

CoVo = (EaoCo ) Ta =Ta0uL=0.L on 7,

_CO'TU': (gag'Cg')va :‘VpcaaLzaVL on ’)/,
so that the previous system is equivalent to

r(p—¢o—L)=0 on 7,
d(p—L)=¢ on 1.

Since <y is connected, the first equation implies that there exists a constant c3 such
that
¢—¢Po—L=c3 on 7.
Thus the function
p:=¢—f,
where f:@w — R is the affine function defined by f(y) := L(y)+c3 for all y € @,
satisties the boundary conditions

¢=do on v,
dvp=¢1 on 7.

The uniqueness of such an affine function f follows from the fact that if fhas
the same properties as f, then the difference fy:= (]7— f) is an affine function from
w into R such that fy=0 on 7y and 9, fo =0 on +, this implies that fp =0 in w.

The existence and uniqueness of the affine function g appearing above in the
definition of the function (3 are established in a similar manner, with some minor
differences due to the absence of the permutation tensor ¢,4 in the definition of
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M,p, as compared with that of N,z. We sketch this proof below for completeness,
so as to provide an explicit way to compute the vertical component of the dis-
placement field ¢ = ({;) of the middle surface of the plate from the knowledge of
the bending moments M,z of this surface.

The boundary conditions satisfied by M,g, viz. (see Egs. (4.1)),

b“’BUTMUTTﬁ:O on r)/’

and the relations N
erﬁ :atxﬁUTaU'Tg?) n w,

together imply that N N
07 (9a(3) =Tpdapl3=0 on 7.
Since <y is connected, this implies the existence of constants b, € R such that

8“53 - ba on r),.
Consequently, _
9:((3—8)=0 on 7,
where §:IR?2 — R is the linear function defined by
g(y):=byy, forall y=(y,)€w.
Furthermore, since
0r((3—8) =Tl ((3-8) =0 on 7,

there exists a constant b3 (we use here the assumption that 7y is connected) such
that

g 3— §= b3 on 7.
Then we infer from the previous relations that the function

(=038,

where ¢: @ — R is the affine function defined by g(y) :=g(y)+b3 for all y € @,
satisties the boundary conditions

(3=0 on 7,
ayg3:1/p¢aa€3:0 on r),.
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The uniqueness of such an affine function g is proved by the same argument as
the one used above to prove the uniqueness of such an affine function f.

We have therefore established the existence of unique functions {3€C*(w) and
¢ € C*(w), respectively satisfying the systems (4.2) and (4.3).

It remains to prove that the pair (¢,{3) satisfies in addition the von Karmén
equations (3.1) corresponding to the data

ps€C(@), ¢o€C*(7), $1EC (7).

To begin with, we infer from the relations (4.2) established above and from the
definition of the tensor a,4,; given in Section 2 that, on the one hand,

A+2y m w.

a,xﬁM,Xﬁ = aulg (a(xlgaTaUTCZ%) =

Then we infer from the relations (4.2) and (4.3) and from the definition of the
tensor bygsr given in Section 2 that, on the other hand,

btx,BUTM(TTNzx/S = atxﬁg?’ (A¢5aﬁ - aﬂéﬁcp) = [4)/€3] in w,

where [-,-] denotes the Monge-Ampere bilinear form. Using these two relations
in the first equation of (4.1) gives

Su(A+ &3 .
3% g—ﬁ[ﬁb 03] = tx,Bszﬁ SbaﬁmMmN,xﬁ p3 in w,

which is precisely the first equation of the boundary value problem (3.1).
Next we infer from the relations (4.3) that, on the one hand,

Then we infer from the relations (4.2) and from the definitions of the tensors a,4,
(Section 2) and c,py¢ (Section 4) that, on the other hand,

CLK’BO'TMU'TMIXﬁ — C[XﬁO’T (aUT’)’(sa')/(5€3) (apc’Bq)l/)anll)gia)

_ p(B3A+2u) _ n(BA+2p)
="t daa (398503 p 9up039up03
;4(3/\-1-2;4)

pn [05,03] in w.
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Using these two relations in the second equation of (4.1) shows that

3A+2 .
A24)+ ‘u(T‘u‘u) 03,03 = atxszﬁﬁ + Ctx,BUTMUTMtxﬁ =0 in w,
which is precisely the second equation of the boundary value problem (3.1).
Finally, we infer from the relations (4.2) and (4.3) that the functions (3 and ¢
satisfy the last two equations of the boundary value problem (3.1). This completes
the proof. O

5 Weak solutions to the intrinsic von Karman
equations

As usual, D(w) denotes the space of all infinitely differentiable functions :w—R
with compact support contained in w and D’(w) denotes the space of distribu-
tions in w.

We use the notation L? (w) for the Lebesgue space with exponent p>1, H(w)
and H?(w) for the Sobolev spaces of functions in L?(w) with derivatives also in
[?(w), and H3(w) for the closure in H?(w) of its subspace D(w).

The notation H/2(v) denotes the image of H'(w) by the trace operator and
H~'/2() denotes the dual space of H'/2(+y). The notation H>/?(7) denotes the
image of H?(w) by the trace operator and H~3/2(+y) denotes the dual space of
H3/2(’y).

A weak solution to the intrinsic von Karman equations (4.1) corresponding to
the functions )

pell(w), keH 3(y),

is a pair of symmetric tensor fields
(Mup) € L*(w;S?),  (Nup) € L*(w;S?),

that satisfies the compatibility conditions

algN,X,g:O in w, 5.1)
au(bﬁ'yO'TM(TT) _a/s(bzx'yaTM(rT) =0 in w, ‘
the boundary conditions
buprrMorT3=0 on 7, 5.2)

NDC‘BV‘B :kp( on ’)//
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and the variational equations

53
5/wsz,Ba(x,Bndy_s/w(btx,@UTMUTNtx,B)ndy:/wp377dyl

(5.3)
/wNzxuca,B/Slpdy‘i‘/w(czxﬁanUTMtx,B)Lpd]/:O
for all 7 € H}(w) and all € H3(w).

The boundary conditions (5.2) make sense thanks to the compatibility condi-
tions (5.1) satisfied by M,z and Ny, which in effect provide these functions with
sufficient regularity in order to define their traces on -y appearing in (5.2). More
specifically, (Nygvg) and (bygor MorTp) are well-defined in H ~1/2(~) by

<N1x/31//3/77> = /w (Ntxﬁaﬁﬁ)dyr

(5.4)
<ba/SUTMUTT/3/1P>3:/ (bleaTMaraZLP_bzxZarM(rTallp)d]/
w

for all functions 7 € H! (w) and ¢ € H'(w), where (-,-) denotes the duality bracket
between H~/2(7y) and H/?(7).

Note that these trace operators extend the corresponding trace operators for
smooth tensor fields (M,g) € H'(w;5?) and (N,g) € H' (w;5?), since

/Y(Ntxﬂvﬁ)nd’)/: /w (Naﬁaﬁn+(aﬂNaﬁ)77)dy
for all functions 77 € H!(w), and

/(btxﬁarMUTTﬁ)lPd')’:/ (batotMor029 —ba2or My019)dy
v w

+/a) (82(b0¢10'TM0'T) —d; (bzx2UTMUT))1/Jd]/

for all functions € H!(w).
The above definition of weak solution to the intrinsic von Karman equations
(4.1) is justified by the following theorem.

Theorem 5.1. Two symmetric tensor fields (Myg) € C*(@;S?) and (Nyg) € C*(@;S?)
satisfy the intrinsic von Kdrmdn equations (4.1) if and only if they satisfy the compatibil-
ity conditions (5.1), the boundary conditions (5.2), and the variational equations (5.3).
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Proof. First, let (M) €C?(w;5?) and (N,g) €C?(@;S?) be tensor fields that satisfy
the Egs. (4.1). Then, for all 7 € H3(w) and all y € H3(w), we have

€3
/ pandy =+ / (9upMap)ydy —€ / (bapor Mo Nug)ydy
w w w
&3
= —/ Mtxﬁatxﬁﬂdy_e/ (btxﬁarMmNaﬁ)Wdy/

3 w w

and
0= /w(ameﬁﬁ)lPd]/—i‘/w(CaﬁmMmMaﬁ)lPd}/
= /leglga,x,ledy—l—/W(C,X’BUTMUTM,X’B)lde.
This proves that the functions M, g and N,z satisfy the variational equations (5.3).
That they also satisfy the compatibility conditions (5.1) and the boundary condi-
tions (5.2) is clear.
Secondly, let (M,g) € C*(@;5%) and (N,g) € C*(@;5?) be tensor fields that sat-

isfy the compatibility conditions (5.1), the boundary conditions (5.2), and the vari-
ational equations (5.3). In particular then,

€3
g/prc‘Ba(xﬁT]dy_g/w(b,X‘BUTMUTN(Xﬁ)T]dy:/wpg’ndy
for all 7 € D(w) and
/a)N,B:Ba[X“Lde—i_/(:U(C[XﬁO'TMO'TMIXﬁ)lde:0

forall pe D(w).
Consequently,

83
/w (? (azx/SMtx,B) _E(blxﬁUTMU'TNIXﬁ) - P3) ndy=0
for all € D(w), and

/a; ((awNﬁﬁ) + (ClXﬁ(TTM(TTszﬁ)) ¢pdy=0

forall p e D(w).
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Since # and 1 are arbitrary functions in the space D(w), the two relations
above show that the functions M, and N, satisfy the first two equations of
the system (4.1) in the distributional sense, hence in the classical sense since the
functions M, and N, belong to the space C 2(w). That the remaining equations
of the system (4.1) are satisfied is clear. The proof is complete. O

We conclude this section by establishing the existence of weak solutions to the
intrinsic von Karman equations.

Theorem 5.2. Assume that w is a simply-connected open subset of R? with a boundary
v:=0w of class C2. Let

p3€ ! (W), ko:=0¢(VaOrpo—Tatp1) € H™ (1),

where ¢ € H3'2(y) and ¢y € H?(7y) are two given functions.
Then the intrinsic von Kdrmdn equations (4.1) corresponding to the functions p3 and
ko possess a weak solution (Myg) € L*(w;S*) and (N,g) € L*(w;S?).

Proof. The assumptions of the theorem on p3, ¢p and ¢; imply that there exists
a pair of functions ¢ € H?(w) and {3 € H?(w) that satisfies the von Karman equa-
tions (3.1) corresponding to the data p3, ¢9 and ¢, cf. [3-5,16].

Define the functions

M,x/g = aaﬁmam&, N,x/g = A(P51Xﬁ - aa/;qb.

Then Mg = Mg, € L?*(w) and Nup = Ngy € [?(w). Besides, we infer from the
symmetry of the second derivatives of ¢ and (3 and from the definition of the
tensors ag,,r and b, (see Section 2) that

9pNap=0a (D) —05(dpp) =0 in D'(w),
and
azx(bﬁ'yaTMar)_a/s(bzx'wrMUT) :aa(aﬁ7€3)_aﬁ(aa7€3) =0 in D/(W)-

Next, using the boundary conditions satisfied by the function (3 (see (3.1))
and the definition (5.4) of the trace on 7y of (bygs Mo7Tg), we deduce that

bﬁ(ﬁUTMUTT‘B — T‘Baaﬁ€3 — aT(Tp(aTC?, +Uaa1/C3) — 0 in H_% (/}/).

Using the boundary conditions satisfied by the function ¢ (see (3.1)), the defini-
tion (5.4) of the traces of N,gvg on v, the definition of the Levi-Civita permutation
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symbol ¢,4, and the chosen orientation of the Cartesian bases along -y formed by
the tangent and normal vector fields (7,) and (vx), we deduce that

NaupVp =Vpenoeps006@ = Era T5056P = Ecadr (o)
=00 07(To 0+ Vr0yP) =01 (VaOrp — Ta0vp)
=3 (Vadedo—Tur) =ke in H2(7).
We established in the proof of Theorem 4.1 that

Su(A+ .
a“ﬂMaﬁ:7%+2yy)A2§3 m w,

le‘B(J'TM(TTlelB = [(P,C?,] in w

under the assumption that {3, €C*(@). A similar argument shows that the above
relations still hold in the distributional sense under the weaker assumption that
3,6 € H*(w). Then the first equation of (3.1), viz.,

83814(/\“‘#)

i o Yo Dl=ps in D),

implies that

3
3

or equivalently, that

aalgM,X‘B _ebaﬁUTMU'TNaﬁ = p3 in D’(w),

3
E/ M“ﬁaalgndy—s/ (b,xl;mMmN,xﬁ)ndyz/ psndy
w w w

for all 7 € H3(w). Thus the tensor fields My € [?(w) and Ny € L?(w) satisfy the
tirst equation of the variational equation (5.3).
We also established in the proof of Theorem 4.1 that

and .
WTJFHV)[&,@] in w

under the assumption that ¢,(3€C*(@). A similar argument shows that the above
relations still hold, albeit only in the distributional sense, under the weaker as-
sumption that ¢,{3 € H?(w). Then the second equation of (3.1), viz.,

3A+42u)
A2 u(
o+ A

Ctx,BUTMUTsz/S =

[03,3]=0=p3 in D'(w),
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implies that
aﬂﬂéNﬁﬁ+cﬂéﬁUTM0'TMDélB:0 in D/(w),

or equivalently,

/(;)Nmaaﬁﬁlpdy—i_[u(caﬁgTMgTMaﬁ)wdy:O

for all p € H3(w). Thus the tensor fields Myg € [?(w) and Nyg € L?(w) also satisfy
the second equation of the variational equation (5.3). This completes the proof of
the theorem. O
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