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Abstract. In this paper, we construct a two-dimensional third-order space-time con-
servation element and solution element (CESE) method and apply it to the magne-
tohydrodynamics (MHD) equations. This third-order CESE method preserves all the
favorable attributes of the original second-order CESE method, such as: (i) flux conser-
vation in space and time without using an approximated Riemann solver, (ii) genuine
multi-dimensional algorithm without dimensional splitting, (iii) the use of the most
compact mesh stencil, involving only the immediate neighboring cells surrounding
the cell where the solution at a new time step is sought, and (iv) an explicit, unified
space-time integration procedure without using a quadrature integration procedure.
In order to verify the accuracy and efficiency of the scheme, several 2D MHD test
problems are presented. The result of MHD smooth wave problem shows third-order
convergence of the scheme. The results of the other MHD test problems show that the
method can enhance the solution quality by comparing with the original second-order
CESE scheme.

AMS subject classifications: 65M08, 76W05
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1 Introduction

The space-time conservation element and solution element (CESE) method was origi-
nally proposed by Chang and co-workers [6,7] for solving conservation laws. In contrast
to conventional finite volume method (FVM) and finite difference method (FDM), the
CESE method has several unique features. It treats space and time in a unified manner
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when imposing local and global space-time flux conservation. There is no need to employ
the reconstruction or Riemann solver. The space-time domain is divided into space-time
Solution Elements (SEs), in which the primary unknowns and the fluxes are discretized
and represented by simple smooth functions. The space-time domain is also divided into
non-overlapping space-time Conservation Elements (CEs), over which flux conservation
is enforced in both space and time. It has the most compact stencil. Only the immedi-
ate neighboring mesh cells of the solution point are involved in the computational algo-
rithm. It achieves the same accuracy in time and space with a fully discrete one-stage
formulation. Owing to its numerical accuracy and robustness, the CESE method has
been successfully extended and applied to compute Euler, e.g., [3, 4, 36], Navier-Stokes,
e.g., [10, 15, 27], and magnetohydrodynamic (MHD) equations, e.g., [13, 14, 22, 33].

However, the original CESE scheme [6, 7] cannot be directly applied in the viscous
flow and inviscid flow problems with shocks due to its non-dissipative property. To over-
come the shortcoming, Zhang et al. [36] proposed its dissipative extension for solving the
unsteady Euler equations. But it is sensitive to the local Courant Friedrichs Lewy (CFL)
number. To overcome this limitation, a Courant number insensitive (CNI) CESE scheme
is proposed to adjust the dissipation via the local CFL number [8, 30, 34, 35]. Later, by
introducing approximate Riemann solvers or other upwind techniques to compute the
flux vector at the interfaces between sub-CEs, Shen et al. [24, 26] and Shen and Wen [25]
proposed upwind CESE schemes for capturing contact discontinuities. Efforts have also
been made to design higher-order CESE schemes. Liu and Wang [20] developed an
arbitrary-order one-dimensional CESE scheme based on arbitrary Taylor expansions in
the solution elements. Chang [9] proposed a highly-stable high-order CESE method for
solving the one-dimensional Burgers equation. Then Bilyeu et al. [3, 4] extended Chang’s
work to solve a system of linear and non-linear hyperbolic partial differential equations
in one- and two-dimensions. Shen et al. [23] extended it to high-order versions includ-
ing third and fourth order for the Euler equation on hybrid grids in two-dimensions.
Yang et al. [33] extended the CESE MHD solver to a fourth-order version. However, the
fourth-order CESE MHD solver can only be applied to the rectangular grids in Cartesian
coordinate. All the boundaries of the CEs are parallel to the coordinate surfaces, and the
normal direction is along the coordinate axis.

Moreover, so far, there is no detailed derivation of the third-order accuracy CESE
method for MHD equations. In the present study, we extend the second-order CESE
method to third orders for 2D MHD equations and report detailed derivation. Moveover,
the third-order CESE scheme can be directly applied to the unstructured meshes. The
third-order CESE method preserves all the features of the original second-order CESE
method. It can provide more accurate solutions. For testing the accuracy, resolution,
and efficiency of the third-order CESE method, we simulate several 2D MHD benchmark
problems, such as smooth Alfvén wave problem, oblique shock tube problem, Orszag-
Tang vortex and rotor problem.

The paper is organized as follows. Section 2 illustrates the 2D MHD governing equa-
tions. Section 3 presents the CESE method for calculating the flow variables. Section 4
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presents the method for calculating the spatial derivatives. Numerical examples are car-
ried out to demonstrate the accuracy and robustness of the present scheme in Section 5.
Conclusions are given in Section 6.

2 MHD governing equations

The ideal MHD equations include the continuity, the momentum, the energy, and the
magnetic induction equations [12, 19, 32]. The two dimensional ideal MHD equations in
conservative form are as follows:

∂U

∂t
+

∂F(U)

∂x
+

∂G(U)

∂y
=0, (2.1)

where U=(ρ,ρu,ρv,ρw,e,Bx ,By,Bz)T=(u1,u2,u3,u4,u5,u6,u7,u8)T is the state vector of the
conservative variables.

F(U)=

























ρu

ρu2+p0−Bx
2

ρuv−BxBy

ρuw−BxBz

(e+p0)u−Bx(uBx+vBy+wBz)
0

uBy−vBx

uBz−wBx

























=( f1, f2, f3, f4, f5, f6, f7, f8)
T

and

G(U)=

























ρv
ρvu−ByBx

ρv2+p0−By
2

ρvw−ByBz

(e+p0)v−By(uBx+vBy+wBz)
vBx−uBy

0
vBz−wBy

























=(g1,g2,g3,g4,g5,g6,g7,g8)
T.

Here, ρ and p are mass density and gas pressure, respectively; u = (u,v,w) and
B = (Bx,By,Bz) denote velocity and magnetic field, respectively. The total energy e

is e = p/(γ−1)+ρ
(

u2+v2+w2
)

/2+
(

Bx
2+By

2+Bz
2
)

/2 and the total pressure is p0 =

p+
(

Bx
2+By

2+Bz
2
)

/2.

3 Third-order CESE method

In this section, we will illustrate the third-order CESE method in 2D space. For the sake
of conciseness, we present the CESE method based on a uniform quadrilateral meshes.
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The third-order CESE scheme can be directly applied to the unstructured meshes.

3.1 Definitions of CE and SE

Conservation Elements (CEs) are the non-overlapping space-time regions, which cover
the whole space-time domain. Flux conservation is enforced over each of them. Solu-
tion elements are also space-time sub-domains, over which any physical flux vector is
approximated using simple smooth functions. In the original CESE scheme, the solution
is only updated at the cell centers. Later, Wang et al. [31] designed a new type of SE and
CE. They alternatively updated the solution between the cell centers and cell vertices. In
this paper, the geometry of CE and SE in the third-order CESE method follows that of
the original two-dimensional CESE method [36]. It is already considered in the previous
Euler/Navier-Stokes case [6, 10, 36]. For completeness, a brief illustration is provided.

We firstly divide the x-y plane into non-overlapping uniform quadrilaterals and any
two neighboring quadrilaterals share a common side (see Fig. 1). The centroids of quadri-
laterals are marked by hollow circles or solid circles. If the centroid of a quadrilateral is
marked by a solid (hollow) circle, the centroids of the four neighboring quadrilaterals are
marked by hollow (solid) circles.

In Fig. 1, point Q, centroid of a typical quadrilateral B1B2B3B4, is marked by a solid
circle, while the points Aℓ, ℓ= 1,2,3,4, respectively, are the centroids of the four quadri-
laterals neighboring to the quadrilateral B1B2B3B4 and are marked by hollow circles. So-
lution point Q∗ is defined at the centroid of A1B1A2B2A3B3A4B4. In general, the centroid
does not coincide with the solution point in a mesh cell, namely, for example, points Q
and Q∗ of quadrilateral B1B2B3B4 may not coincide. Moreover, the solution points are
where time-marching solutions are calculated and stored. Let n be index for t. Points Aℓ,
Bℓ, Q and Q∗ are at the time level n. A′

ℓ, B′
ℓ, Q′ and Q′∗ are at the time level n-1/2. A′′

ℓ ,
B′′
ℓ , Q′′ and Q′′∗ are at the time level n+1/2.

As shown in Fig. 2(a), the SE of point Q is the union of the five plane segments
B′

1Q′Q′′B′′
1 , B′

2Q′Q′′B′′
2 , B′

3Q′Q′′B′′
3 , B′

4Q′Q′′B′′
4 , and A1B1A2B2A3B3A4B4. The geom-

etry of the four conservation elements (CEs) associated with point Q is shown in

Figure 1: Space mesh in an x−y plane.
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(a)Solution Element (b)Conservation Element

Figure 2: The definitions of CE and SE associated with point Q.

Fig. 2(b). The four CEs are rectangular cylinders defined by points A′
1B′

1Q′B′
4A1B1QB4,

A′
2B′

2Q′B′
1A2B2QB1, A′

3B′
3Q′B′

2A3B3QB2 and A′
4B′

4Q′B′
3A4B4QB3. In each CE there are 6

rectangular surfaces. Three of them are part of the SE associated with point Q∗. The
other three are associated with the solution points at the previous time step. For example
the CE defined by points A′

1B′
1Q′B′

4A1B1QB4 has three rectangular surfaces associated
with point Q∗: B′

1Q′QB1, B′
4Q′QB4 and A1B1QB4. The other three rectangular surfaces

A′
1B′

1B1A1, A′
1B′

4B4A1 and A′
1B′

1Q′B′
4 are a part of the SE associated with point A∗

1.
The union of the four CEs associated with point Q∗ forms a Composite CE (CCE),

which is the hexahedron A1B1A2B2A3B3A4B4A′
1B′

1A′
2B′

2A′
3B′

3A′
4B′

4 as shown in Fig. 2(b).
When combining the four CEs to form the CCE, fluxes passing the four interfaces be-
tween the neighboring CEs, B′

1Q′QB1, B′
2Q′QB2, B′

3Q′QB3 and B′
4Q′QB4, cancel each

other. Therefore, if the space-time flux conservation is satisfied in each of the four CEs,
it would be satisfied over the CCE. Moreover, the solution point Q∗ is the centroid of the
top surface of the CCE defined by points A1B1A2B2A3B3A4B4.

3.2 Approximations within a solution element

Following Chang’s original approach [6], inside each SE the flow variables and the fluxes
are assumed smooth, and are represented by the second-order Taylor expansion in space
and time. For any (x,y,t)∈SE(Q∗), u∗

m(x,y,t), f ∗m(x,y,t), and g∗m(x,y,t), respectively, are
approximated by:

u∗
m(x,y,t)=(um)Q∗+(umx)Q∗∆x+(umy)Q∗∆y+(umt)Q∗∆t

+
1

2

{

(umxx)Q∗∆x2+(umyy)Q∗∆y2+(umtt)Q∗∆t2+
[

(umxy)Q∗+(umyx)Q∗
]

∆x∆y
}

+(umxt)Q∗∆x∆t+(umyt)Q∗∆y∆t, (3.1a)
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f ∗m(x,y,t)=( fm)Q∗+( fmx)Q∗∆x+( fmy)Q∗∆y+( fmt)Q∗∆t

+
1

2

{

( fmxx)Q∗∆x2+( fmyy)Q∗∆y2+( fmtt)Q∗∆t2+
[

( fmxy)Q∗+( fmyx)Q∗
]

∆x∆y
}

+( fmxt)Q∗∆x∆t+( fmyt)Q∗∆y∆t, (3.1b)

g∗m(x,y,t)=(gm)Q∗+(gmx)Q∗∆x+(gmy)Q∗∆y+(gmt)Q∗∆t

+
1

2

{

(gmxx)Q∗∆x2+(gmyy)Q∗∆y2+(gmtt)Q∗∆t2+
[

(gmxy)Q∗+(gmyx)Q∗
]

∆x∆y
}

+(gmxt)Q∗∆x∆t+(gmyt)Q∗∆y∆t, (3.1c)

where ∆x=x−x∗Q, ∆y=y−y∗Q and ∆t=t−tn . x∗Q, y∗Q and tn are the space-time coordinates
of point Q∗.

By using the chain rule, all the derivatives of flux f and g with respect to x, y and t
can be obtained as follows:

∂Tm

∂φ1
=

8

∑
p=1

∂Tm

∂up

∂up

∂φ1
, (3.2a)

∂2Tm

∂φ1∂φ2
=

8

∑
p=1

∂Tm

∂up

∂2up

∂φ1∂φ2
+

8

∑
p=1

8

∑
q=1

∂2Tm

∂up∂uq

∂up

∂φ1

∂uq

∂φ2
, (3.2b)

where Tm represents fm or gm, and (φ1,φ2) = {(x,x),(y,y),(t,t),(x,y),(y,x),(x,t),(y,t)}.
∂Tm
∂up

, ∂2Tm
∂up∂uq

are the elements of the Jacobian matrices. The Jacobian matrices can be ob-

tained by directly taking the derivative of flux with respect to every conservative variable
in sequence.

According to Eq. (3.2a), we can obtain fmx and gmy. By using the Cauchy-Kovalewski
procedure for non linear equations [11, 12], according to the conservation law expressed
by Eq. (2.1), we have

umt=− fmx−gmy. (3.3)

Then, we apply ∂/∂x,∂/∂y and ∂/∂t to Eq. (3.3) to have

umxt=− fmxx−gmyx, (3.4a)

umyt=− fmxy−gmyy, (3.4b)

umtt=− fmxt−gmyt, (3.4c)

where fmxx, gmyx, fmxy, gmyy, fmxt and gmyt can be obtained by Eq. (3.2b). Finally, all tem-
poral derivatives of um can be obtained through the derivatives of flux fm and gm which
are related to the spatial derivations of um. As a result, only the conserved variables um

and their spatial gradients, e.g., umx, umy, umxx, umxy, umyx and umyy are the independent
unknowns to be solved in the third-order CESE method. Once these seven variables are
calculated, the flow solution structure inside the SE is completely determined.
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3.3 Time-marching calculation of um

The solution of um can be obtained by integrating the second-order Taylor series expan-
sion of the flow variables and the fluxes over CEs defined above. Here, the design of
CE and SE is different from that in high-order CESE schemes in [23, 33]. Moreover, the
integration is more complex than that in the original second-order CESE method because
the flow variables and the fluxes are represented by the second-order Taylor series ex-
pansion. Below, we will illustrate the calculation of the flow variables um in third-order
CESE method in detail.

In the generalized 3D Euclidean space E3(x,y,t), by using Gauss’s divergence theo-
rem, Eq. (2.1) can be rewritten as the following integral equations:

∮

S(V)

hm ·ds=0, m=1,2,··· ,8. (3.5)

Here hm = (um, fm,gm), S(V) is the boundary of an arbitrary space-time region V in E3.
And hm ·ds is the space-time flux hm leaving the region V through the surface element ds,
where ds=ndσ with dσ being the area of a surface element on S(V), and n is the outward
unit normal to ds.

Thus, by integrating Eq. (3.5) over the CCE, we obtain:

4

∑
ℓ=1

∫∫

topℓ

umdσ=
4

∑
ℓ=1

∫∫

botℓ

umdσ−
4

∑
ℓ=1

2

∑
k=1

∫∫

sidek,ℓ

Tm ·ndσ, m=1,2,···8, (3.6)

where topℓ represents the four top surfaces of CEs: A1B1QB4, A2B2QB1, A3B3QB2,
and A4B4QB3. botℓ represents the four bottom surfaces of CEs: A′

1B′
1Q′B′

4, A′
2B′

2Q′B′
1,

A′
3B′

3Q′B′
2, and A′

4B′
4Q′B′

3. sidek,ℓ represents the eight side faces of CEs: A′
1B′

4B4A1,
A′

1B′
1B1A1, A′

2B′
1B1A2, A′

2B′
2B2A2, A′

3B′
2B2A3, A′

3B′
3B3A3, A′

4B′
3B3A4, and A′

4B′
4B4A4, re-

spectively. Tm = ( fm,gm) is the vector of the fluxes and n is the unit outward normal
vector of the corresponding surface. Similar to the original second-order CESE scheme,
we integrate the second-order Taylor expansion of um, fm and gm, i.e., Eq. (3.1), to calcu-
late um at the new step in the third-order CESE method. However, the integration in the
third-order CESE method is more complex than that in the original second-order CESE
method because um, fm and gm are represented by the second-order Taylor expansion in
the third-order CESE method.

Firstly, we present the calculation of the flux through the four bottom surfaces of CEs.
Take the bottom surface A′

1B′
1QB′

4 as an example, the flux through it is calculated based
on the second-order Taylor expansion of the solutions stored at point A′∗

1 located at (xA′∗
1

,

yA′∗
1

, tn−1/2):

∫∫

A′
1B′

1Q′B′
4

umdσ=
∫∫

A′
1B′

1Q′B′
4

2

∑
a=0

2−a

∑
b=0

1

a!b!

∂a+b(um)A′∗
1

∂xa∂yb
(x−xA′∗

1
)a(y−yA′∗

1
)bdxdy. (3.7)
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Figure 3: Schematic illustration of the coordinate transformation from physical to reference element.

For computational efficiency, we transform the quadrangle A′
1B′

1Q′B′
4 in the physical co-

ordinates (x,y) into a right square in the computational domain (ξ,η) as illustrated in
Fig. 3. Thereafter, the integration of the space-time flux um over quadrangle A′

1B′
1Q′B′

4,
i.e., Eq. (3.7), can be calculated as follows:

∫∫

A′
1B′

1Q′B′
4

umdσ

=
1

a!b!

∂a+b(um)A′∗
1

∂xa∂yb

1
∫

−1

1
∫

−1

2

∑
a=0

2−a

∑
b=0

(x(ξ,η)−xA′∗
1
(ξ,η))a(y(ξ,η)−yA′∗

1
(ξ,η))b|detJ|dξdη,

where J is the coordinate transformation Jacobi matrix given by

J=
∂(x,y)

∂(ξ,η)
=

(

xξ yξ

xη yη

)

=

(

∑
4
i=1 xi

∂Ni
∂ξ ∑

4
i=1yi

∂Ni
∂ξ

∑
4
i=1 xi

∂Ni
∂η ∑

4
i=1yi

∂Ni
∂η

)

.

Here, the transformation equation is given by

x=
4

∑
i=1

xiNi(ξ,η), y=
4

∑
i=1

yiNi(ξ,η),

with shape functions

{

N1=
1
4(1−ξ)(1−η), N2=

1
4(1+ξ)(1−η),

N3=
1
4(1+ξ)(1+η), N4=

1
4(1−ξ)(1+η).

Similarly, the fluxes through the other three bottom surfaces can be readily calculated at
points A′∗

2 ,A′∗
3 ,A′∗

4 . The flux through the top surface can be calculated at Q∗, but it is an
implicit function of the conserved variable um and its spatial derivatives stored at point
Q∗. Moreover, the integration associated with the first-order derivatives of um over the
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top surface of the CCE is null. Thus, the integration associated with (um)Q∗ over the top
surface of the CCE is

4

∑
ℓ=1

∫∫

topℓ

umdσ=(um)Q∗ Areaoct+
4

∑
ℓ=1

∫∫

topℓ

uI I
m dσ

=(um)Q∗ Areaoct+
4

∑
ℓ=1

(

2

∑
a=0

2−a

∑
b=0,a+b≥2

1

a!b!

∂a+b(um)Q∗

∂xa∂yb

1
∫

−1

1
∫

−1

(x(ξ,η)−xQ∗(ξ,η))a(y(ξ,η)−yQ∗ (ξ,η))b|detJℓ |dξdη



 ,

where Areaoct denotes the area of octagon A1B1 ···A4B4,
∫∫

topℓ
uI I

m dσ denotes the integra-

tion calculated by using the second-order derivatives of um stored at point Q∗.
Next, we present the calculation of the flux through the eight side surfaces of CEs.

Take the side surface A′
1B′

1B1A1 as an example, we illustrate the flux integration through
the side surface in Eq. (3.6). The unit outward normal vector n of the side surface
A′

1B′
1B1A1 is

n=

[

(yB′
1
−yA′

1
),−(xB′

1
−xA′

1
),0
]

√

(xB′
1
−xA′

1
)2+(yB′

1
−yA′

1
)2

.

Because the projection of the side face A′
1B′

1B1A1 to the spatial domain is the line segment
A1B1, we represent spatial displacement by a single parameter α. The differential area for

the integration is dσ=(∆t/2)
√

(xB′
1
−xA′

1
)2+(yB′

1
−yA′

1
)2dαdβ. Thus, we have

∫∫

A′
1B′

1B1 A1

Tm ·ndσ=
∆t

2

1
∫

0

1
∫

0

[

(yB′
1
−yA′

1
)( fm)−(xB′

1
−xA′

1
)(gm)

]

dαdβ. (3.8)

The value of Tm ( fm or gm) on the side surface A′
1B′

1B1A1 is expressed by the second-order
space-time Taylor series expansion at point A′∗

1 as

Tm =
2

∑
a=0

2−a

∑
b=0

2−a−b

∑
c=0

1

a!b!c!

∂a+b+c(Tm)A′∗
1

∂xa∂yb∂tc
(x−xA′∗

1
)a(y−yA′∗

1
)b(t−tn−1/2)

c.

Similarly, the fluxes through the other side surfaces can be readily calculated based on
the corresponding solution points in the previous time step.

Thus, the space-time flux through all surfaces of the CCE leads to an solution of
(um)Q∗

(um)Q∗ =
−1

Areaoct

4

∑
ℓ=1







∫∫

topℓ

uI I
m dσ−

∫∫

botℓ

umdσ−
2

∑
k=1

∫∫

sidek,ℓ

Tm ·ndσ






. (3.9)
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Here, the fluxes through the side and bottom surfaces of the CCE are calculated by using
the known solutions at the previous time step associated with the four neighboring solu-
tion points,i.e.,points A′∗

1 ,A′∗
2 ,A′∗

3 ,A′∗
4 . The flux through the top surface of the CCE is cal-

culated by using the solutions at point Q∗ at the new time step. To calculate
∫∫

topℓ
uI I

m dσ,

we need the new second-order derivatives at point Q∗. Therefore, the computational
sequence is as follows:

1 :updating the second−order derivatives;

2 :updating the conservative variables;

3 :updating the first−order derivatives.

4 Time-marching calculation for spatial derivatives

There exist second-order spatial derivatives of (um)Q∗ in the flux through the top surface
of CCE, so it is first necessary to obtain the second-order derivatives. Below, we illustrate
the procedure to calculate the second-order spatial derivatives at the new time level by
employing the central-difference method and the reweighing method, see [36] and [22].

We can obtain the second-order spatial derivatives by using the first-order Taylor
series expansion to approximate the first-order spatial derivatives. For example, we can
calculate one pair of (umxx)1

Q∗ and (umxy)1
Q∗ by using the two neighbor points A∗

1 and A∗
2

of Q∗. Using first-order Taylor series we can write

(umx)A∗
1
=(umx)

′
Q∗+(umxx)Q∗δx1+(umxy)Q∗δy1,

(umx)A∗
2
=(umx)

′
Q∗+(umxx)Q∗δx2+(umxy)Q∗δy2,

(4.1)

where δx1= xA∗
1
−xQ∗ , δy1=yA∗

1
−yQ∗ , δx2= xA∗

2
−xQ∗ , and δy2=yA∗

2
−yQ∗ .

(umx)A∗
1

and (umx)A∗
2

are the values at the new time step, and they can be evaluated
using the values at the previous time level:

(umx)A∗
1
=(umx)A′∗

1
+(umxt)A′∗

1
∆t/2,

(umx)A∗
2
=(umx)A′∗

2
+(umxt)A′∗

2
∆t/2.

(4.2)

(umx)′Q∗ is the temporary value at the new time step, which can be evaluated by applying
the original second-order CESE method to the second-order equations (3.4a), and treating
the first-order derivative terms as the unknowns.

To proceed, Eq. (3.4a) can be cast into the following divergence-free equations:

∇·hmx=0, (4.3)

where hmx=(umx, fmx,gmx) are the additional space-time flux vectors. Aided by the Gauss
theorem in the three-dimensional space-time domain, the above differential equations are
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recast into the following integral equations:

∮

S(V)

hmx ·ds=0. (4.4)

Next, we apply the original second-order CESE method [36] to calculate the temporary
value (umx)′Q∗ by imposing space-time flux conservation of hmx.

Then, by using Cramer’s rule, we can obtain (umxx)1
Q∗ and (umxy)1

Q∗ at point Q∗

(umxx)
1
Q∗ =

∆x

∆
, (umxy)

1
Q∗ =

∆y

∆
, (4.5)

where

∆=

∣

∣

∣

∣

δx1 δy1

δx2 δy2

∣

∣

∣

∣

, ∆x=

∣

∣

∣

∣

δu1
m δy1

δu2
m δy2

∣

∣

∣

∣

, ∆y=

∣

∣

∣

∣

δx1 δu1
m

δx2 δu2
m

∣

∣

∣

∣

,

and δu1
m =(umx)A∗

1
−(umx)′Q∗ , δu2

m =(umx)A∗
2
−(umx)′Q∗ . In a similar manner, by using the

first-order derivatives at the two neighbor points of Q∗, i.e., A∗
2,A∗

3, and (umx)′Q∗ , we can

get (umxx)2
Q∗ and (umxy)2

Q∗ . By using the first-order derivatives at A∗
3,A∗

4 and (umx)′Q∗ , we

get (umxx)3
Q∗ and (umxy)3

Q∗ . By using the first-order derivatives at A∗
4,A∗

1 and (umx)′Q∗ , we

get (umxx)4
Q∗ and (umxy)4

Q∗ .

By a simple weighted average method, we calculate (umxx)Q∗ and (umxy)Q∗ at Q∗

(umxx)Q∗ =











0, if θmk =0, k=1,2,··· ,4,

4

∑
k=1

[(Wk
m)

α(umxx)k
Q∗ ]/

4

∑
k=1

(Wk
m)

α, otherwise,
(4.6a)

(umxy)Q∗ =











0, if θmk=0, k=1,2,··· ,4,

4

∑
k=1

[(Wk
m)

α(umxy)k
Q∗ ]/

4

∑
k=1

(Wk
m)

α, otherwise,
(4.6b)

where

Wk
m =

4

∏
ℓ=1,ℓ 6=k

θmℓ, θmℓ=
√

(uℓ
mxx)

2+(uℓ
mxy)

2.

α is an adjustable parameter that can control the viscosity of the scheme, and it is usu-
ally = 0,1,2. To avoid dividing by zero, in practice a small positive number such as
10−60 is added to the denominators that appear in Eqs. (4.6a) and (4.6b). Similarly, the
second-order derivatives (umyx)Q∗ and (umyy)Q∗ at the new step are readily calculated.
The method of calculating the second-order spatial derivatives is slightly different from
that in [23] and [4]. It can be extended to calculate any even-order spatial derivatives.

Once the second-order spatial derivatives of (um)Q∗ have all been calculated, (um)Q∗

can be determined by Eq. (3.9). Then the first-order derivatives are also obtained by the
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same central-difference method. But the first-order derivatives are obtained from the
values of conservative variables at points A∗

1, A∗
2, A∗

3, A∗
4 approximated by the second-

order Taylor expansion from the point Q∗.

(um)A∗
ℓ
=(um)Q∗+(umx)Q∗δxℓ+(umy)Q∗δyℓ+

1

2

[

(umxx)Q∗(δxℓ)
2

+(umyy)Q∗(δyℓ)
2+
(

(umxy)Q∗+(umyx)Q∗
)

δxℓδyℓ
]

, (4.7)

where ℓ=1,2,3,4. (um)A∗
ℓ

can be evaluated from the preceding half time level

(um)A∗
ℓ
=(um)A′∗

ℓ
+

∆t

2
(umt)A′∗

ℓ
+

1

2
(umtt)A′∗

ℓ

(

∆t

2

)2

.

Thus, the first-order derivatives (umx)Q∗ and (umy)Q∗ can be readily determined by the
central-difference method described above.

However, the high-order numerical schemes easily produce spurious oscillations near
discontinuities, which may, indeed, lead to numerical instabilities. Here, in order to fur-
ther eliminate oscillations near discontinuities and preserve the high-order accuracy in
smooth regions simultaneously, limiting would only be used near discontinuities which
is detected by the discontinuity detection scheme. Krivodonova et al. [18] found that lim-
iting only where suggested by detection strategy preserved a high order of accuracy in
regions where solutions were smooth.

Similar to that of [38], a simple discontinuity detection method is used to detect the
‘trouble cells’ in discontinuity region. For convenience, we take notations [q]1 and q1 as
the jump and mean values at the interface B′

1B′
4B4B1.

[q]1 = |q1
r −q1

l |, q1=
|q1

r +q1
l |

2
,

where q1
l and q1

r are the variables on the left and the right sides of the interface B′
1B′

4B4B1.
We compute the left value q1

l from point A∗
1 and the right value q1

r from point Q∗ using
the second-order Taylor expansion

q1
l =qA∗

1
+(qx)A∗

1
∆x1

A∗
1
+(qy)A∗

1
∆y1

A∗
1
+(qt)A∗

1
∆tA∗

1
+

1

2

{

(qxx)A∗
1
(∆x1

A∗
1
)2

+(qyy)A∗
1
(∆y1

A∗
1
)2+(qtt)A∗

1
(∆tA∗

1
)2+

[

(qxy)A∗
1
+(qyx)A∗

1

]

∆x1
A∗

1
∆y1

A∗
1

}

+(qxt)A∗
1
∆x1

A∗
1
∆tA∗

1
+(qyt)A∗

1
∆y1

A∗
1
∆tA∗

1
,

q1
r =qQ∗+(qx)Q∗∆x1

Q∗+(qy)Q∗∆y1
Q∗+(qt)Q∗∆tQ∗+

1

2

{

(qxx)Q∗(∆x1
Q∗)2

+(qyy)Q∗(∆y1
Q∗)2+(qtt)Q∗(∆tQ∗)2+

[

(qxy)Q∗+(qyx)Q∗
]

∆x1
Q∗∆y1

Q∗

}

+(qxt)Q∗∆x1
Q∗∆tQ∗+(qyt)Q∗∆y1

Q∗∆tQ∗ ,
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where ∆x1
A∗

1
= x1−xA∗

1
, ∆y1

A∗
1
=y1−yA∗

1
, ∆tA∗

1
= t−tn−1/2, ∆x1

Q∗ = x1−xQ∗ , ∆y1
Q∗ =y1−yQ∗ ,

and ∆tQ∗= t−tn−1. (x1, y1) is the centroid of the interface B′
1B′

4B4B1. Similarly for those at
the other three interfaces: B′

1B′
2B2B1, B′

2B′
3B3B2, and B′

3B′
4B4B3, we can obtain [q]2, q2, [q]3,

q3, [q]4, q4. Then we can define shock indicator DQ∗ for point Q∗

DQ∗=
1

h1+1/2
max

[∣

∣

∣

∣

[q]1

q1

∣

∣

∣

∣

,

∣

∣

∣

∣

[q]2

q2

∣

∣

∣

∣

,

∣

∣

∣

∣

[q]3

q3

∣

∣

∣

∣

,

∣

∣

∣

∣

[q]4

q4

∣

∣

∣

∣

]

,

where h is the length of the grid, q is a solution component or a derived quantity from a
solution component (e.g., a characteristic variables, the density, or the entropy). In this
paper, the density is appointed as the detection variable. If DQ∗> θ, point Q∗ is a trouble
cell. Where θ is the indicator parameter, and we let θ=0.5.

For ‘trouble cells’, we use the widespread minmod function to limit the spatial deriva-
tives [28]. The minmod function is defined as

minmod(w1,w2,··· ,wn)= sgn(w1)max[0,min(|w1|,sgn(w1)w2,··· ,sgn(w1)wn)].

Take (umxx)Q∗ as an example, we limit it as

(umxx)Q∗=minmod
(

(umxx)
1
Q∗ ,(umxx)

2
Q∗ ,(umxx)

3
Q∗ ,(umxx)

4
Q∗

)

.

Similarly, the other spatial derivatives are limited.
A critical issue in computational MHD is to maintain the divergence-free condition

for the magnetic field. In order to keep the divergence-free condition for magnetic fields,
the same method of divergence-free in [33] is applied. In the following, we will briefly
illustrate the method for divergence-free magnetic field.

By combining Eq. (4.7) relative to conservative variables u6 and u7 at the four neighbor
points A∗

1, A∗
2, A∗

3, A∗
4 with the magnetic field divergence-free condition ∇·B=u6x+u7y=

0, we can obtain a overdetermined equations

AX=C, (4.8)

where

A=





























δx1 δy1 0 0
δx2 δy2 0 0
δx3 δy3 0 0
δx4 δy4 0 0
0 0 δx1 δy1

0 0 δx2 δy2

0 0 δx3 δy3

0 0 δx4 δy4

1 0 0 1





























, X=









(u6x)Q∗

(u6y)Q∗

(u7x)Q∗

(u7y)Q∗









, C=





























δu1
6

δu2
6

δu3
6

δu4
6

δu1
7

δu2
7

δu3
7

δu4
7

0





























.

The number of equations is greater than the number of unknowns. Then,
by using the least-squares method, we can obtain the first-order derivatives
(u6x)Q∗ ,(u6y)Q∗ ,(u7x)Q∗ ,(u7y)Q∗ . The other derivatives are still obtained using the central-
difference method previously presented in Eqs. (4.5), (4.6a) and (4.6b).
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5 Numerical examples

To assess the accuracy of the third-order CESE method and test its validity in simulating
2D MHD problems, we study the following benchmark problems. We choose the ad-
justable constant α=0 for the first example and α=2 for the other examples in Eqs. (4.6a)
and (4.6b).

5.1 Smooth Alfvén wave problem

We first solve the smooth Alfvén wave problem [29] to check the accuracy of our scheme.
The Alfvén wave propagates at an angle of θ=45◦ with respect to the x-axis in the domain
[0,1/cosθ]×[0,1/sinθ]. The initial conditions are taken as

ρ=1,v||=0, v⊥=0.1sin(2πx1), vz =0.1cos(2πx1),

p=0.1, B||=1, B⊥=v⊥, Bz=vz,

where x1 = xcos(θ)+ysin(θ). The adiabatic index is γ=5/3. In this problem, the Alfvén
wave propagates periodically towards the origin with a constant Alfvén wave speed
B⊥/

√
ρ=1 and returns to its initial state whenever t becomes an integer. The Alfvén wave

is a traveling wave. Note that the wave becomes standing if v||=1.

We rotate the coordinates with the propagation angle θ and let the new coordinates
be (x,y). The initial conditions of vector variables in x−y coordinate are obtained by
coordinate transformation as:

ζx = ζ||cos(θ)−ζ⊥sin(θ),

ζy= ζ||sin(θ)+ζ⊥cos(θ) (ζ=v or B).
(5.1)

The problem is solved on N×N meshes with N = 16, 32, 64, 128. Periodic boundary
conditions are imposed in both the x and y directions. The simulation is run to a final
time t= 2 with a time step ∆t= 0.4/N. We estimate the relative numerical error of any
fluid variable v by

δN(v)=
∑

N
j=1∑

N
k=1 |vN

j,k−vexact
j,k |

N×N
.

That average numerical errors are defined by δN= 1
4(δN(v⊥)+δN(vz)+δN(B⊥)+δN(Bz)).

The corresponding convergence rate is computed as: RN = log(δN1
/δN2

)/log(N2/N1).
Table 1 gives the average numerical errors and convergence rates of accuracy obtained
by the third-order CESE scheme for the traveling wave problem and the standing wave
problem. The results show that the method converges approximately at a third order rate
for smooth solutions.
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Table 1: Numerical errors (δN) and convergence order (RN) for the smooth Alfvén wave problem at t=2.

Traveling waves Standing waves
N

δN RN δN RN

16 3.5950E-3 - 5.1254E-3 -

32 4.4749E-4 3.0061 6.3753E-4 3.0071

64 5.5705E-5 3.0060 7.9119E-5 3.0104

128 6.9554E-6 3.0016 9.8659E-6 3.0035

5.2 Brio-Wu shock tube problem

This shock tube problem is originally from [5], which is a classical test problem for ideal
MHD codes [17, 29]. The initial left and right states of this one-dimensional Riemann
problem are

(ρ,v||,v⊥,vz,p,B||,B⊥,Bz)=

{

(1.000,0,0,0,1.0,0.75,1.0,0), left,

(0.125,0,0,0,0.1,0.75,−1.0,0), right,

with γ=2, where || refers to the direction along the normal of the shock front, ⊥ refers to
the direction perpendicular to the normal of the shock front. Through a simple coordinate
transformation, Eq. (5.1), the initial profiles of velocity and magnetic fields in the x−y
coordinates are obtained. We solve it as a fully 2-D problem with an angle θ=45◦ between
the shock interface and y-axes. The computational domain is [0,

√
2/2]×[0,

√
2/2].

Fig. 4 shows the comparison between one-dimensional reference results and two-
dimensional results from the second- and third-order CESE schemes at t = 0.1. One-
dimensional results computed with 2000 grid cells are plotted by black lines. The red and
blue lines represent the results of the third-order scheme and the second-order scheme,
respectively. We can see that the third-order results are in favorable agreement with the
one-dimensional ones. The results of the third-order CESE scheme are superior than
those of the second-order CESE scheme. However, we can see a little oscillation in the
results of the third-order scheme, which is similar to the result of the third-order CESE
scheme in [23] for shock tube problem of Euler.

5.3 Orszag-Tang vortex

The Orszag-Tang vortex problem [21] has been used in many papers, e.g., [11, 16, 19, 37]
as a two-dimensional numerical test for MHD codes. The computational domain is a
square [0,2π]×[0,2π] with periodic boundary conditions on boundaries in both x− and
y directions. The initial conditions of the flow field are:

ρ=γ2, p=γ, u=−sin(y), v=sin(x), w=0,

Bx=−sin(y), By=sin(2x), Bz=0.
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Figure 4: The solutions for the Brio-Wu shock tube problem on a 400×400 grid. The reference solution is
computed with 2000 grid cells in 1D problem.

The Orszag-Tang vortex problem starts from smooth initial data, but gradually the flow
becomes very complex as expected from a transition towards turbulence. Fig. 5 shows
the pressure contours of the third-order CESE results on a 400×400 grid at time t=0.5, 2
and 3, respectively. From the results, we can see that there is no obvious difference be-
tween the present results and those in previous papers [16, 37]. For quantitative details
of the calculated results, Fig. 6 shows the pressure profiles along the line of y= 0.625π
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Figure 5: The contour plots of pressure for the vortex problem with 400×400 grids at (a) t=0.5, (b) t=2, and
(c) t=3, respectively. 12 contour levels range from 1.0 to 5.8 for t=0.5, from 0.14 to 6.9 for t=2, and from
0.36 to 6.3 for t=3, respectively.

Figure 6: Pressure profiles of the vortex problem along line y=0.625π on a 400×400 grid at t=3. The reference
high resolution solution is computed with 800×800 grids using the original second-order CESE scheme.

at time t=3. The results from the second- and third-order schemes are compared to the
high resolution solution. The black line represents the reference high resolution solu-
tion obtained with the original second-order CESE scheme on an 800×800 grid. From
the results, it can be seen that the third-order scheme yields a better resolution than the
second-order scheme, and the third-order scheme can indeed enhance the accuracy of the
solution. It can also be seen that the third-order result has similar quality as compared to
the second-order result by using four times meshes.



Y. Zhou and X. Feng / Commun. Comput. Phys., 34 (2023), pp. 94-115 111

5.4 Rotor problem

This problem was considered in [1, 2, 12, 29]. We use exactly the same set-up of the prob-
lem as was described in [29]. The problem consists of having a dense, rapidly spinning
cylinder, in the center of a static, magnetized background with uniform pressure. The
initial fluid are

(ρ,vx,vy)=











(10,−v0(y−0.5)/r0,v0(x−0.5)/r0), r<0.1,

(1+9 f ,− f v0(y−0.5)/r, f v0(x−0.5)/r), 0.1≤ r≤0.115,

(1,0,0), r>0.115,

with p = 1,Bx = 5/
√

4π and adiabatic index γ = 1.4, where v0 = 2, r =
[

(x−0.5)2+(y−0.5)2
]1/2

, and f =(23−200r)/3 is a linear taper, which is applied to lin-
early join the density in the ambient. The rotor is not in equilibrium, since the centrifugal
forces are not balanced.

The computational domain is a square [0,1]×[0,1] with outflow boundary conditions
on all four sides. Fig. 7 shows the density, pressure, Mach number, and the magnitude
of the magnetic field, respectively, on a uniform 400×400 grid at time t = 0.15. These
results are in good agreement with the computations in [1, 2, 29], thereby showing that
the method presented in this paper is indeed very valuable for numerical MHD.

6 Conclusion

In this paper, we propose a third-order CESE method to simulate 2D MHD equations.
The ideas and treatments of the third-order CESE method are kept the same with those
of the original second-order CESE method. A second-order Taylor series in space and
time is used to discretize the unknowns and the fluxes inside each SE. Space and time are
treated in a unified manner in discretization. The present scheme preserve the beauty of
local and global conservativeness of the original CESE method. The flux at the cell inter-
face can be calculated directly without using an approximated Riemann solver. More-
over, the method only involve the immediate neighboring mesh cells of the solution
point.

In order to check the accuracy of the scheme, we solve the smooth Alfvén wave prob-
lem. The result shows that the method converges approximately at a third order rate for
smooth solutions. Then, to demonstrate the capabilities of the CESE method for MHD
problems, we simulate three 2D MHD benchmark problems, such as oblique shock tube
problem, Orszag-Tang vortex and rotor problem, and compare the results to those of
the original second-order CESE method. The results show that the third-order scheme
described in this paper have higher numerical accuracy than the second-order scheme.
The third-order CESE method is very easily straightforward extended to any odd-order
CESE method. Moreover, it can also be easily extended to three-dimensional scheme on
3D unstructured meshes. In the future work, we will construct the 3D third-order CESE
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Figure 7: The density, thermal pressure, Mach number, and magnetic pressure at t=0.15 for the rotor problem
on a 400×400 grid. The 30 contour lines are shown for the ranges 0.483 < ρ < 12.95, 0.0202 < p < 2.008,

0< |v|/cs<8.18, and 0.0787<B2/2<2.5315, respectively.

method and apply it to simulate solar wind background and disturbance propagation in
the corona and in interplanetary space and other astrophysical MHD flow problems.
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