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Abstract. A generalized homotopy-based Coiflet-type wavelet method for solving
strongly nonlinear PDEs with nonhomogeneous edges is proposed. Based on the im-
provement of boundary difference order by Taylor expansion, the accuracy in wavelet
approximation is largely improved and the accumulated error on boundary is suc-
cessfully suppressed in application. A unified high-precision wavelet approximation
scheme is formulated for inhomogeneous boundaries involved in generalized Neu-
mann, Robin and Cauchy types, which overcomes the shortcomings of accuracy loss
in homogenizing process by variable substitution. Large deflection bending analy-
sis of orthotropic plate with forced boundary moments and rotations on nonlinear
foundation is used as an example to illustrate the wavelet approach, while the ob-
tained solutions for lateral deflection at both smally and largely deformed stage have
been validated compared to the published results in good accuracy. Compared to
the other homotopy-based approach, the wavelet scheme possesses good efficiency in
transforming the differential operations into algebraic ones by converting the differen-
tial operators into iterative matrices, while nonhomogeneous boundary is directly ap-
proached dispensing with homogenization. The auxiliary linear operator determined
by linear component of original governing equation demonstrates excellent approach-
ing precision and the convergence can be ensured by iterative approach.
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1 Introduction

To obtain high-precision solution for nonlinear differential equations with inhomoge-
neous boundaries has been a critical issue in quantitative analysis of science and engi-
neering, which is of great significance in developing effective approaches. Many numeri-
cal techniques have been proposed and can be classified into global and local techniques,
with the former involving the derivatives of all points in the whole discrete domain, such
as Fourier and Chebyshev spectral method [1], Discontinuous Galerkin [2], spectral ele-
ment methods [3], spectral volume and difference method [4], while the local strategies
obtain derivatives in terms of adjacent element, such as Finite Difference Method [5],
Finite Element Method [6], Finite Volume Method [7], Boundary Element Method [8].

Homotopy Analysis Method (HAM) [9] has been an analytical powerful technique
for dealing with strongly nonlinear problems, due to its freedom in selection of basis
by leveraging the convergence properties in developing new numerical schemes. Von
Gorder [10] has combined the Fourier method and the HAM to solve the large deflec-
tion of thin Kármán plate based on orthogonally sinusoidal basis in good agreement
with exact solutions. Mosta et al. [11, 12] have formulated Spectral Homotopy Analy-
sis Method (SHAM) by introducing Chebyshev and Legendre basis in the framework,
which successfully overcome the limitations of initial guess and prove the convergence
in Sobolev Spaces. Cullen and Clarke [13] have constructed Gegenbauer orthogonal ba-
sis expanding Chebyshev polynomials by Schmidt orthogonalization and proposed a fast
and highly accurate Gegenbauer Homotopy Analysis Method, with the iterative matrix
converted into sparse banded one up to machine precision, while the matrices of col-
location points based on Chebyshev differential operators occupy large computational
memory resource.

As a bright pearl of modern functional mathematics, wavelet [14, 15] has been an ef-
ficient tool in solving partial differential equations, due to its significant superiority on
localized analysis. Early research on wavelet can be dated back to an orthogonal com-
pactly supported Haar wavelet [16], which has been subsquently developed by many
investigators [17–20]. Sweldens et al. [21, 22] have constructed a flexible wavelet lifting
scheme [23], which are not necessarily the translates and dilates of one fixed function
dependent of Fourier transformation. Dohono et al. [24–27] have applied a series of di-
rectional wavelets to study the characteristics of higher dimensional space introduced
into multi-scale geometric analysis, such as Curvelets, Wedgelets, Ridgelets, Contourlets.
Similar to early research all independent in various fields, present research of wavelet has
not been formed a relatively unified framework and still in the process of exploration.

Many wavelet numerical methods [28–30] have been developed in solving differ-
ential equation, firstly studied by Qian and Weiss [31], which are in turn broadly cate-
gorised into single scale wavelet and adaptive methods, with the former indicating ap-
plying scaling function directly as basis in traditional methods, such as wavelet Galerkin
method [32], wavelet collocation method [33], wavelet finite element method [34], closed
wavelet method [35], wavelet multi-resolution interpolation Galerkin method [36, 37],
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while adaptive methods involves multi-levels wavelet technique by searching a stable
and accurate interpolation operator at the intersection of different grids, such as adap-
tive multi-resolution method [38] and wavelet optimized adaptive method [39].

The compactly supported Coiflet-type wavelet proposed by Coifman et al. [40] was
a recently developed orthogonal wavelet base with scaling and wavelet functions both
possessing vanishing moments. Tian [41] has constructed the orthogonal and biorthog-
onal Coiflets system by adding wavelet vanishing moment of odd orders. Wei et al. [42,
43] have formulated the Generalized Orthogonal Coiflets system by substituting scal-
ing function with nonzero-centered vanishing moments into zero-centered ones. Wang
et al. [35, 44, 45] have improved the value of first-order vanishing moment of General-
ized Orthogonal Coiflets and proposed an effective closed wavelet method for nonlinear
problems. Yang and Liao [46,47] have applied the Coiflets in the framework of Homotopy
Analysis Method successfully solved the Bratu equation. Yu et al. [48] have developed a
homotopy-based Coiflet-type wavelet method to study the pure laminar cavity flow [49],
mixed convection flow [50] and double-diffusive nanofluid flow [51].

To deal with nonlinear problems on bounded interval by wavelet approximation,
modification of basis is indispensable with various boundary continuations so as to im-
prove the approaching accuracy. The employed zero continuation brings Gibbs’ phe-
nomenon [52] involving discontinuous derivatives at boundary points, which results in
larger coefficients of wavelet basis and unnecessary computations of refined scales. Peri-
odic continuation [53,54] is to extend the interval length of compactly supported wavelets
periodically over the whole real line, only effective in treatment of periodic boundary
conditions but invalid for more generalized types. Conformation of interpolated contin-
uation by Spline wavelet has been made by Chui et al. [55], while the interval wavelet
describing boundary conditions precisely has been constructed by Daubechies [56] where
the complementary boundary wavelets depend on problems needed repeated construc-
tion leading to difficulties in numerical implementation.

In views of boundary treatment of Coiflet-type wavelet in former work [35,46,47,57],
the third-order difference strategy is valid effective for low-order differential equation
with satisfactory precision, but not applicable for higher-order or higher-dimensional
nonhomogeneous problems, which greatly restricts its application. Moreover, the previ-
ous work [35, 46, 47] mainly focuses on the nonlinear problems with Dirichlet or homo-
geneous Neumann boundary, while the wavelet strategy is inadequate in dealing with
inhomogeneous boundary conditions especially with higher-order derivatives. In addi-
tion, selections of convergence control parameter and auxiliary linear operator [46, 47]
are based on advanced trial calculation lack of an effective approach to guide how to
determine an appropriate one to optimize the convergent process.

In this paper, based on the improvement of boundary difference order by Taylor
expansion, a generalized wavelet improvement strategy is developed to suppress the
boundary approaching error in application of Coiflet-type wavelet. A unified high-
precision wavelet approximation scheme is formulated for inhomogeneous boundaries
involving in generalized nonhomogeneous Neumann, Robin and Cauchy types, which
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overcomes the shortcomings of accuracy loss in homogenization. A unified homotopy-
based wavelet method for nonlinear partial differential equation with nonhomogeneous
boundaries is proposed by illustrating the large deflection bending of orthotropic plate
with forced boundary moments and rotations on nonlinear elastic foundation as an ex-
ample.

The paper is illustrated as follows. In Section 2, the wavelet improvement strat-
egy is formulated and the unified approaching scheme is demonstrated. In Section 3,
the detailed implementation of homotopy-based wavelet approach for nonlinear PDEs
with nonhomogeneous boundary is proposed. Application by nonlinear bending of or-
thotropic plate with forced boundary restraints is given in Section 4. In Section 5, nu-
merical validation has been made and convergence by iteration are investigated. Some
conclusions are made in Section 5.

2 Wavelet improvement strategy

2.1 Construction of Coiflet-type wavelet approximation

A multi-resolution analysis at interval [a,b] by generalized orthogonal Coiflets [35] is
constructed by a sequence of orthogonally hierarchical subspaces as

0⊂···V0⊂V1⊂···⊂Vj⊂Vj+1⊂···⊂L2[a,b], Vj+1=Vj⊕Wj, (2.1)

where x= a,b are the boundary points,

Vj =Span
{

φj,k =2
j
2 φ(2jx−k)

}
k∈Z and Wj =Span

{
ψj,k(x)=2

j
2 ψ(2jx−k)

}
k∈Z

are the nested subspaces of square-integrable space L2[a,b], j is the wavelet resolution
level.

The scaling and wavelet functions φ(x), ψ(x) are localized and smooth governed by
a set of coefficients formulated by dual-scale equations as

φ(x)=
L−1

∑̄
k=0

pk̄φ(2x− k̄), ψ(x)=
L−1

∑̄
k=0

(−1)k̄ pL−1−k̄φ(2x− k̄), (2.2)

where L is the compactly supported branch length, pk̄ is the low-pass filtering coefficient.
Distinguished from Daubechies wavelet, the scaling and wavelet functions of gener-

alized orthogonal Coiflets possess the properties of vanishing moment as∫ +∞

−∞
(x−M1)

iφ(x)dx=δ0,i, i=0,··· ,N−1, (2.3a)∫ +∞

−∞
xiψ(x)dx=0, i=0,··· ,N−1, (2.3b)
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where M1 is the first-order moment, N=L/3 is the order of vanishing moment.
To consider an arbitrary function f (x)∈L2(R) approached by the Coiflets at interval

I j
k as

f (x)≈Pj f (x)=∑
k

cj,kφj,k(x), x∈ I j
k =

[
k
2j ,

k+L−1
2j

]
, (2.4)

where Pj is the projective operator, the coefficients cj,k by inner product is

cj,k =
∫

I j
k

f (x)φj,k(x)dx. (2.5)

The Nth order Taylor expansion at x0 with ξ∈ [x0,x] is employed as

f (x)=
N−1

∑
m=0

f (m) (x0)

m!
(x−x0)

m+
f (N)(ξ)

N!
(x−x0)

N , x0=
k+M1

2j . (2.6)

By substituting Eq. (2.6) with respect to Eq. (2.3a), Eq. (2.5) is simplified as

cj,k =
N−1

∑
m=0

1
m!

f (m)

(
k+M1

2j

)
Am+

f (N)(ξ)

N!
AN, m=0,··· ,N, (2.7)

where

Am =
∫ k+L−1

2j

k
2j

(
x− k+M1

2j

)m

φj,k(x)dx

=2−j( 1
2+m)

∫ L−1

0
(z−M1)

m φ(z)dz=0, m=1,··· ,N−1. (2.8)

Then cj,k can be reduced to

cj,k =2−
j
2 f
(

k+M1

2j

)
+2−j( 1

2+N) f (N)(ξ)

N!

∫ L−1

0
(z−M1)

N φ(z)dz, (2.9)

with error estimation as ∣∣∣∣cj,k−2−
j
2 f
(

k+M1

2j

)∣∣∣∣≤C02−j( 1
2+N), (2.10)

where constant C0 is

C0=

∣∣ f N(ξ)
∣∣
max

N!

∫ L−1

0
|z−M1|N φ(z)dz. (2.11)

With substitution of Eq. (2.9), wavelet expansion of Eq. (2.4) is behaved as

f (x)≈Pj f (x)=
2jb−1

∑
k=2ja−3N+2

f
(

k+M1

2j

)
φ(2jx−k), x∈ [a,b], (2.12)
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which can be reformulated by the transformation k′= k+M1 as

f (x)≈Pj f (x)=
2jb−1+M1

∑
k′=2ja−3N+2+M1

f
(

k′

2j

)
φ(2jx−k′+M1), (2.13)

with the restriction as 2ja,2jb should be integers.

2.2 Generalized boundary interpolation extension

To overcome the accumulated errors in boundary approximation of Coiflet-type wavelet,
a higher order and generalized wavelet boundary difference strategy is constructed in
application. As the values of approaching function f (x) in Eq. (2.13) are unknown at in-
tervals [a− 3N−2−M1

2j ,a) and (b,b+ M1−1
2j ], generalized interpolating continuation by inner

difference is employed as

f (x)=



Itp

∑
i=0

da,i

i!
(x−a)i, x< a,

f (x), x∈ [a,b],
Itp

∑
i=0

db,i

i!
(x−b)i, x>b,

(2.14)

where Itp is the interpolating order, da,i, db,i are the coefficients of difference. On the basis
of the Itpth Taylor expansion of f (x) at x0= a,b as

f (x)=
Itp

∑
i=0

f (i)(a)
i!

(x−a)i+o[(x−a)Itp ], x= a+
k
2j , k=0∼ Itp, (2.15a)

f (x)=
Itp

∑
i=0

f (i)(b)
i!

(x−b)i+o[(x−b)Itp ], x=b− k
2j , k=0∼ Itp, (2.15b)

the difference equations in matrix form are obtained by

[Ca]Itp×1=[Qa]Itp×1[Da]Itp×Itp , [Cb]Itp×1=[Qb]Itp×1[Db]Itp×Itp , (2.16)

where Ca=[ f j,2ja+k= f (a+k/2j)], Cb=[ f j,2jb−k= f (b−k/2j)] are the matrices of unknown
values at boundary interpolation points, Da = [ f (i)(a)], Db = [ f (i)(b)] are the matrices of
boundary derivatives, Qa =[qa,k,i], Qb =[qb,k,i] are the matrices by Taylor expansion as

qa,k,i =
ki

i!
1

2ij , qb,k,i =(−1)iqa,k,i, k,i=0∼ Itp. (2.17)

Owing to Qa, Qb are square and full of rank, their inverses Pa, Pb can be expressed as

Pa =Q−1
a =[2−ij pa,i,k]Itp×Itp , Pb =Q−1

b =[2−ij pb,i,k]Itp×Itp , (2.18)
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where the difference matrices P̂a, P̂b at Itp =5 are

P̂a =[pa,i,k]=



1 0 0 0 0 0

−137
60

5 −5
10
3

−5
4

1
5

15
4

−77
6

107
6

−13
61
12

−5
6

−17
4

71
4

−59
2

49
2

−41
4

7
4

3 −14 26 −24 11 −2
−1 5 −10 10 −5 1


, (2.19a)

P̂b =[pb,i,k]=



1 0 0 0 0 0
137
60

−5 5 −10
3

5
4
−1

5
15
4
−77

6
107
6

−13
61
12
−5

6
17
4
−71

4
59
2
−49

2
41
4
−7

4
3 −14 26 −24 11 −2
1 −5 10 −10 5 −1


. (2.19b)

Then the coefficients da,i, db,i in Eq. (2.14) can be further rewritten as

da,i =
Itp

∑
k=0

pa,i,k f j,2ja+k, db,i =
Itp

∑
k=0

pb,i,k f j,2jb−k, (2.20)

with Eq. (2.20) denoted as

f (x)=



Itp

∑
k=0

f j,2ja+kTa,k(x), x< a,

f (x), x∈ [a,b],
Itp

∑
k=0

f j,2jb−kTb,k(x), x>b,

(2.21)

where the boundary interpolating functions Ta,k(x), Tb,k(x) are

Ta,k(x)=
Itp

∑
i=0

pa,i,k

i!
(x−a)i, Tb,k(x)=

Itp

∑
i=0

pb,i,k

i!
(x−b)i. (2.22)

With substitution of Eq. (2.21) into Eq. (2.13), the wavelet approximation is reformulated
as

f (x)≈Pj
[a,b] f (x)=

2jb

∑
k=2ja

f
(

k
2j

)
ϕ
[a,b]
j,k (x), x∈ [a,b], (2.23)
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where the Coiflets ϕ
[a,b]
j,k (x) with modified interpolating continuation is

ϕ
[a,b]
j,k (x)=



2ja−1

∑
i=2ja−3N+2+M1

Ta,k−2ja

(
i

2j

)
φj,i+φj,k, k∈ [2ja,2ja+Itp],

φj,k, k∈ [2ja+Itp+1,2jb−Itp−1],
2jb−1+M1

∑
i=2jb+1

Tb,2jb−k

(
i

2j

)
φj,i+φj,k, k∈ [2jb−Itp,2jb],

(2.24)

in which
φj,k(x)=φ(2jx−k+M1), φj,i(x)=φ(2jx−i+M1).

In addition, operatorR acting on f (x) can be transformed on the approaching basis as

R[ f (x)]≈R[Pj
[a,b] f (x)]=

2jb

∑
k=2ja

f
(

k
2j

)
R[ϕj,k(x)], R=L,N , (2.25)

where L, N are the linear and nonlinear operators, respectively.
To validate the approaching accuracy of Eq. (2.23) by improving the difference order

Itp, the overall absolute error ‖E f ‖1 and mean square error ‖E f ‖2 are formulated as

‖E f ‖1=
∫ b

a
E f dx≈ 1

Nj

2jb

∑
k=2ja

∣∣∣∣ f( k
2j

)
− fe

(
k
2j

)∣∣∣∣, (2.26a)

‖E f ‖2=

[∫ b

a
E2

f dx
] 1

2

≈ 1
Nj

√√√√ 2jb

∑
k=2ja

[
f
(

k
2j

)
− fe

(
k
2j

)]2

, (2.26b)

in which the error distributed function Err f is

E f = | f (x)− fe(x)|, x∈ [a,b], (2.27)

where Nj =2j(b−a)+1 is the number of dyadic points, f (x) and fe(x) are the calculated
and exact solutions.

As showed in Table 1, the absolute error ‖E f ‖1 and mean square error ‖E f ‖2 of deriva-
tives at different orders and single integration of test function f (x)=sin(x) are elaborated
at wavelet resolution level j=8. By the improvement of boundary difference order Itp, the
global errors gradually decline and all converge to a constant magnitude when Itp≥ 5,
which reveals the approaching precision is largely improved and further validates the
effectiveness of the wavelet strategy. Besides, it can be found that differential operation
by wavelet approximation results in certain accuracy loss, while the integral operation is
conducive to the improvement of approaching precision.
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Table 1: Absolute errors ‖E f ‖1 and mean square errors ‖E f ‖2 of derivatives and first integration of test function

f (x)=sin(x) by improving boundary interpolating order Itp =1∼8 at wavelet resolution level j=8.

Itp f ′(x) f ′′(x) f ′′′(x) f ′′′′(x) θ(x)=
∫ x

0 f (z)dz

‖E f ‖1

1 3.72849786E-07 1.66492005E-03 1.46153183E-01 3.49298562E+01 3.66460816E-11
2 1.53779050E-06 3.10423722E-03 4.06624956E-01 5.98299301E+01 1.68219847E-10
3 2.25883288E-10 4.86297576E-07 7.06245775E-05 1.33350147E-02 2.52028420E-14
4 1.52296806E-10 3.20280054E-07 8.30486538E-05 4.10317567E-02 1.55138257E-14
5 3.71212441E-12 1.00235707E-07 4.10639271E-06 7.26396972E-03 1.08993341E-17
6 3.68760445E-12 1.00348172E-07 4.09701866E-06 7.26930974E-03 1.51591026E-17
7 3.67465529E-12 1.00244960E-07 4.08506979E-06 7.25725395E-03 1.43786107E-17
8 3.67466296E-12 1.00244928E-07 4.08506325E-06 7.25725125E-03 1.43786811E-17

‖E f ‖2

1 2.31148631E-07 8.75704429E-04 8.94226605E-02 1.82842514E+01 2.31006303E-12
2 8.56149898E-07 1.34336684E-03 2.04901705E-01 2.54620122E+01 1.05431881E-11
3 1.22529771E-10 1.64585474E-07 3.40285997E-05 2.96676449E-03 1.57878809E-15
4 8.11117873E-11 1.04734132E-07 4.56807608E-05 1.52161165E-02 9.71885409E-16
5 2.55992713E-13 6.95886803E-09 2.83930238E-07 5.03820891E-04 7.84702793E-19
6 2.55221623E-13 6.95911611E-09 2.83673187E-07 5.03840040E-04 1.04247197E-18
7 2.55073309E-13 6.95887635E-09 2.83567735E-07 5.03796338E-04 9.99124868E-19
8 2.55073319E-13 6.95887629E-09 2.83567729E-07 5.03796334E-04 9.99128718E-19

2.3 Strategy for nonhomogeneous linear boundaries

2.3.1 Dirichlet boundary

To consider a linear Dirichlet boundary where µa,µb are constant as

f (a)=µa, f (b)=µb, (2.28)

the Coiflet-type wavelet expansion of f (x) is elaborated by

f (x)≈Pj
[a,b] f (x)=

2jb−1

∑
k′=2ja+1

f
(

k′

2j

)
ϕj,k′(x)+µa ϕj,2ja(x)+µb ϕj,2jb(x), (2.29)

while its derivatives with respect to the Eq. (2.25) is employed as

f (n)(x)≈
2jb−1

∑
k′=2ja+1

f
(

k′

2j

)
ϕ
(n)
j,k′ (x)+µa ϕ

(n)
j,2ja(x)+µb ϕ

(n)
j,2jb(x), n≥1, (2.30)

where n is the differential order.

2.3.2 Generalized Neumann boundary

If subjects to the generalized Neumann-type boundaries, higher-order derivatives of f (x)
on boundaries are in advance given by

dα f (x)
dxα

∣∣∣∣
x=a

=νa,α,
dβ f (x)

dxβ

∣∣∣∣
x=b

=νb,β, (2.31)
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where α,β≥1 are the boundary differential orders, νa,α, νb,β are constants.

To attach the inhomogeneous values, difference coefficients in Eq. (2.20) are substi-
tuted by

da,i =
Itp

∑
k=0

pa,i,k f j,2ja+k(1−δi,α)+δi,ανa,α, (2.32a)

db,i =
Itp

∑
k=0

pb,i,k f j,2jb−k(1−δi,β)+δi,βνb,β, (2.32b)

where δi,k is the Kronecker operator. Eq. (2.21) is renewed as

f (x)=



Itp

∑
k=0

[
f j,2ja+kTN

a,k(x)+δk,α
νa,α

k!
(x−a)k

]
, x< a,

f (x), x∈ [a,b],
Itp

∑
k=0

[
f j,2jb−kTN

b,k(x)+δk,β
νb,β

k!
(x−b)k

]
, x>b,

(2.33)

and the interpolating functions TN
a,k(x), TN

b,k(x) for Neumann type are

TN
a,k(x)=

Itp

∑
i=0

pa,i,k

i!
(x−a)i(1−δi,α), (2.34a)

TN
b,k(x)=

Itp

∑
i=0

pb,i,k

i!
(x−b)i(1−δi,β). (2.34b)

Substituting Eq. (2.33) into Eq. (2.13), it can be obtained by

f (x)=
2ja−1

∑
i=2ja−3N+2+M1

Itp

∑
k=0

[
f j,2ja+kTN

a,k

(
i

2j

)
φj,k(x)+δk,α

νa,α

k!
(x−a)k

]
+

2jb

∑
k=2ja

f j,kφj,k(x)

+
2jb−1+M1

∑
i=2jb+1

Itp

∑
k=0

[
f j,2jb−kTN

b,k(x)
(

i
2j

)
φj,k(x)+δk,β

νb,β

k!
(x−b)k

]
. (2.35)



Q. Yu, S. Wang, J. Xiao and H. Xu / Adv. Appl. Math. Mech., 15 (2023), pp. 1473-1514 1483

By exchanging summation orders, it is behaved as

f (x)=



2ja+Itp

∑
k=2ja

f j,k

{ 2ja−1

∑
i=2ja−3N+2+M1

TN
a,k−2ja

(
i

2j

)
φj,i+φj,k

}

+νa,α

2ja−1

∑
i=2ja−3N+2+M1

(x−a)α

α!
φj,i, k∈ [2ja,2ja+Itp],

+
2jb−Itp−1

∑
k=2ja+Itp+1

f j,kφj,k, k∈ [2ja+Itp+1,2jb−Itp−1],

+
2jb

∑
k=2jb−Itp

f j,k

{2jb−1+M1

∑
i=2jb+1

TN
b,2jb−k

(
i

2j

)
φj,i+φj,k

}

+νb,β

2jb−1+M1

∑
i=2jb+1

(x−b)β

β!
φj,i, k∈ [2jb−Itp,2jb].

(2.36)

Finally, wavelet expansion of f (x) with nonhomogeneous Neumann-type edges in
Eq. (2.31) is employed as

f (x)≈Pj
[a,b] f (x)=

2jb

∑
k=2ja

f
(

k
2j

)
hj,k(x)+νa,αva

j,α(x)+νa,βvb
j,β(x), (2.37)

with its derivatives with respect to Eq. (2.25) employed as

f (n)(x)≈
2jb

∑
k=2ja

f
(

k
2j

)
h(n)j,k (x)+νa,αv

a,(n)
j,α +νa,βv

b,(n)
j,β , n≥1, (2.38)

where the modified Coiflet-type wavelet hj,k(x) at interval [a,b] is

hj,k(x)= ϕ
[a,b]
j,k (x)

∣∣∣
Ta,k(x)→TN

a,k(x),Tb,k(x)→TN
b,k(x).

(2.39)

Particularly, boundary Coiflets va
j,α,vb

j,β at x=a,b corresponding to the nonhomogeneous
information are

va
j,α =

2ja−1

∑
i=2ja−3N+2+M1

(x−a)α

α!
φj,i, (2.40a)

vb
j,β =

2jb−1+M1

∑
i=2jb+1

(x−b)β

β!
φj,i, (2.40b)

which are determined by the orders of boundary derivatives.
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2.3.3 Generalized Robin boundary

The nonhomogeneous Robin-type boundary is a specification of a linear combination of
f (x) and its higher-order derivatives at both sides as[

dα f (x)
dxα

+γa f (x)
]∣∣∣∣∣

x=a

=νa,α,
[

dβ f (x)
dxβ

+γb f (x)
]∣∣∣∣∣

x=b

=νb,β, (2.41)

where γa, γb and νa,α, νb,α refer to the constant coefficients and sources.
Since f (x) is bounded on boundaries, Eq. (2.41) can be simplified into

dα f (x)
dxα

∣∣∣∣∣
x=a

=νa,α−γa f (a),
dβ f (x)

dxβ

∣∣∣∣∣
x=b

=νb,β−γb f (b). (2.42)

Analogously to the Neumann-type strategy thereinbefore, Eq. (2.33) can be substituted
by

f (x)=



Itp

∑
k=0

[
f j,2ja+kTN

a,k(x)+δk,α
νa,α−γa f (a)

k!
(x−a)k

]
, x< a,

f (x), x∈ [a,b],
Itp

∑
k=0

[
f j,2jb−kTN

b,k(x)+δk,β
νb,β−γb f (b)

k!
(x−b)k

]
, x>b,

(2.43)

which can be rewritten as

f (x)=



Itp

∑
k=0

[
f j,2ja+kTB

a,k(x)+δk,α
νa,α

k!
(x−a)k

]
, x< a,

f (x), x∈ [a,b],
Itp

∑
k=0

[
f j,2jb−kTB

b,k(x)+δk,β
νb,β

k!
(x−b)k

]
, x>b,

(2.44)

where interpolating functions TB
a,k(x), TB

b,k(x) for Robin boundary are

TB
a,k(x)=

Itp

∑
i=0

pa,i,k

i!
(x−a)i(1−δi,α)−γaδ0,k

(x−a)α

α!
, (2.45a)

TB
b,k(x)=

Itp

∑
i=0

pb,i,k

i!
(x−b)i(1−δi,β)−γbδ0,k

(x−b)β

β!
. (2.45b)

Then, wavelet expansion of f (x) subjected to the nonhomogeneous Robin-type edges
with respect to Eq. (2.41) is

f (x)≈Pj
[a,b] f (x)=

2jb

∑
k=2ja

f
(

k
2j

)
hj,k(x)+νa,αva

j,α(x)+νa,βvb
j,β(x), (2.46)
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where
hj,k(x)= ϕ

[a,b]
j,k (x)

∣∣∣
Ta,k(x)→TB

a,k(x),Tb,k(x)→TB
b,k(x),

(2.47)

with its derivatives identical to the formulation of Eq. (2.38).

2.3.4 Generalized Cauchy boundary

Different from Robin boundary, the generalized Cauchy condition specifies both bound-
ary value and its normal derivative of f (x), which imposes aligned Dirichlet and higher-
order Neumann conditions as

f (a)=µa, f (b)=µb,
dα f (x)

dxα

∣∣∣∣
x=a

=νa,α,
dβ f (x)

dxβ

∣∣∣∣
x=b

=νb,β. (2.48)

Combing Eqs. (2.29), (2.37) with respect to Eq. (2.48), wavelet expansion is given as

f (x)≈Pj
[a,b] f (x)=

2jb−1

∑
k=2ja+1

f
(

k
2j

)
hj,k(x)+µa ϕj,2ja(x)+µb ϕj,2jb(x)

+νa,αva
j,α(x)+νa,βvb

j,β(x), (2.49)

where hj,k(x) is chosen the same as Eq. (2.39).
For the hybrid mixed Robin boundary presented as

f (a)=µa, f (b)=µb,[
dα f (x)

dxα
+γa f (x)

]∣∣∣∣∣
x=a

=νa,α,
[

dβ f (x)
dxβ

+γb f (x)
]∣∣∣∣∣

x=b

=νb,β,

 (2.50)

the corresponding wavelet approximation is identical as the Eq. (2.49) but hj,k(x) should
be substituted for Eq. (2.47). Nevertheless, in terms of Eq. (2.42), the Robin ingredient of
Eq. (2.50) can be degraded to Neumann-type as

dα f (x)
dxα

∣∣∣∣∣
x=a

=νa,α−γaµa,
dβ f (x)

dxβ

∣∣∣∣∣
x=b

=νb,β−γbµb. (2.51)

The wavelet expansion can be replaced by

f (x)≈Pj
[a,b] f (x)=

2jb−1

∑
k=2ja+1

f
(

k
2j

)
hj,k(x)+νa,αva

j,α(x)+νa,βvb
j,β(x)

+(νa,α−γaµa)ϕj,2ja(x)+(νb,β−γbµb)ϕj,2jb(x), (2.52)

where
hj,k(x)= ϕ

[a,b]
j,k (x)

∣∣∣
Ta,k(x)→TN

a,k(x),Tb,k(x)→TN
b,k(x).

(2.53)
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2.4 Application in linear ODEs with nonhomogeneous boundaries

To evaluate the numerical accuracy of scheme above, two ordinary differential equa-
tions separatively subjected to nonhomogeneous Neumann and Robin boundaries are
employed as

Case I:


L1[u1(x)]=

d2u1(x)
dx2 −2π

du1(x)
dx

+2π2u1(x)=0,

u1(x)
∣∣

x=a =1,
dβu1(x)

dxβ

∣∣∣∣
x=b

=−1,
(2.54a)

Case II:


L2[u2(x)]=

d2u2(x)
dx2 −2

du2(x)
dx

+2u(x)=0,[
du2(x)

dx
−u2(x)

]∣∣∣∣
x=a

=1,
[

du2(x)
dx

−u2(x)
]∣∣∣∣

x=b
=−1,

(2.54b)

with exact solutions as

u1e(x)= e−π(a+b−x) ·
{

β1(x), β=1,
β2(x), β=2,

(2.55a)

u2e =−ex−a−b csc(a−b)
[
ea cos(a−x)+eb cos(b−x)

]
, (2.55b)

where

β1(x)=
eπa sinπ(a−x)+πeπb sinπ(b−x)+πeπb cosπ(b−x)]

π[cosπ(a−b)−sinπ(a−b)]
,

β2(x)=
eπa sinπ(a−x)+2π2eπb cosπ(b−x)

2π2cosπ(a−b)
.

Wavelet expansions of u1, u2 in consideration of Eq. (2.37) are separatively given as

u1(x)≈
2jb

∑
k′=2ja+1

u1

(
k′

2j

)
h1

j,k′(x)+h1
j,2ja(x)−vb

j,β, (2.56a)

u2(x)≈
2jb

∑
k=2ja

u2

(
k
2j

)
h2

j,k(x)+va
j,1−vb

j,1, (2.56b)

where the selected Coiflets basis are

h1
j,k(x)= ϕj,k(x)

∣∣
Tb,k→T̂b,k , T̂b,k =

Itp

∑
i=0

pb,i,k

i!
(x−b)i(1−δi,β),

h2
j,k(x)= ϕj,k(x)

∣∣∣
Ta,k(x)→T̃a,k(x),Tb,k(x)→T̃b,k(x),
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T̃a,k(x)=
Itp

∑
i=0

pa,i,k

i!
(x−a)i(1−δi,1)+δ0,k(x−a),

T̃b,k(x)=
Itp

∑
i=0

pb,i,k

i!
(x−b)i(1−δi,1)+δ0,k(x−b).

Substituting Eq. (2.56a) into Eq. (2.54a) and Eq. (2.56b) into Eq. (2.54b), we give

2jb

∑
k′=2ja+1

u1

(
k′

2j

)
L1[h1

j,k′(x)]+L1[h1
j,2ja(x)]−L1[v

b
j,β]=0, (2.57a)

2jb

∑
k=2ja

u2

(
k
2j

)
L2[h2

j,k(x)]+L2[v
a
j,1]−L2[v

b
j,1]=0. (2.57b)

To respectively multiply hj,l′(x), hj,l(x) at both ends of Eq. (2.57a) and Eq. (2.57b), algebra
equations are formulated by Galerkin method as

Ãi ·Ûi =−B̃i+C̃i, i=1,2, (2.58)

where straight vectors and iterating matrices are

Û1=

{
u′k =u1

(
k′

2j

)}
, Û2=

{
uk =u2

(
k
2j

)}
,

ÃT
1 = Γ̃

j,2
k′,l′−2πΓ̃

j,1
k′,l′+2π2Γ̃

j,0
k′,l′ , ÃT

2 = Γ̃
j,2
k,l−2Γ̃

j,1
k,l+2Γ̃

j,0
k,l ,

B̃T
1 = Γ̃

j,2
2ja,l′−2πΓ̃

j,1
2ja,l′+2π2Γ̃

j,0
2ja,l′ , B̃T

2 = Γ̂
j,2
L,l−2Γ̂

j,1
L,l+2Γ̂

j,0
L,l ,

C̃T
1 = Γ̂

j,2
R,l′−2πΓ̂

j,1
R,l′+2π2Γ̂

j,0
R,l′ , C̃T

2 = Γ̂
j,2
R,l−2Γ̂

j,1
R,l+2Γ̂

j,0
R,l ,

k′,l′=2ja+1∼2jb, k,l=2ja∼2jb.

The connection coefficient by inner product of modified Coiflets Γ̃
j,n
k,l is

Γ̃
j,n
k,l =

{
γq =

∫ b

a

dnhj,k

dxn hj,ldx
}

, q=[2j(b−a)+1](k−2ja)+l−2ja+1, (2.59)

which can be computed in view of Eqs. (2.24), (2.40) as

Υ
j,n
k,l =2j(n−1)[Λn

k−l(2
jb−l)−Λn

k−l(2
ja−l)], (2.60)

while the calculated algorithms of Λn
k (x) can be referred in [58].

The connection coefficients Γ̂
j,n
L,l , Γ̂

j,n
R,l composed by inner product of boundary Coiflets

with modified Coiflet are given as

Γ̂
j,n
L,l =

{
γl =

∫ b

a

dnva
j,α

dxn hj,ldx

}
, Γ̂

j,n
R,l =

{
γl =

∫ b

a

dnvb
j,β

dxn hj,ldx

}
. (2.61)
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Figure 1: Absolute approaching error distribution of linear PDEs in Case I (β = 1,2) and Case II at wavelet
resolution level j=6.

As depicted in Fig. 1, distribution of absolute approaching error in linear PDEs of Case I
(β=1,2) and Case II at resolution level j=6 are demonstrated, which reveals the wavelet
strategy is effective for both nonhomogeneous generalized Neumann and Robin bound-
aries with satisfactory precision. The global mean square error ‖Eu‖2 and CPU time il-
lustrated in Table 2 indicates the approaching accuracy will be improved by adding j but
more time consumption is needed. However, due to the accumulation of numerical er-
rors in obtaining inverse of matrix Ã in Eq. (2.58), the tendency of precision enhancement
gradually slows down. To balance the accuracy and efficiency, we select j= 6, Itp = 5 as
appropriate resolution level and reasonable difference order in the calculations thereafter.

Table 2: Mean square error and CPU time consumption in approximation of linear Case I and II at resolution
level j=3∼9 when Itp =5.

j Case I (β=1) Case I (β=2) Case II
‖Eu‖2 Time (s) ‖Eu‖2 Time (s) ‖Eu‖2 Time (s)

4 8.43E-05 3.08 7.01E-04 2.83 4.05E-07 3.62
5 2.19E-06 3.97 5.45E-05 3.58 2.32E-07 4.44
6 9.01E-07 6.14 5.06E-05 5.95 1.59E-07 6.87
7 7.20E-07 13.76 7.33E-05 12.52 1.18E-07 13.92
8 5.26E-07 38.07 1.11E-04 35.97 1.24E-07 37.51
9 3.93E-07 132.01 1.77E-04 130.35 1.75E-07 124.93
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3 Unified wavelet algorithm for nonhomogeneous nonlinear
PDE

3.1 Homotopy-based decoupled linearization

To detailed illustrate the wavelet scheme, an inhomogeneous boundary value problem in
rectangular domain Ω with length Lx and width Ly is studied governed by a nonlinear
partial differential equation employed as

N̂ [u(X,Y)]=ψ(X,Y), (X,Y)∈Ω=[0,Lx]×[0,Ly], (3.1)

which can be nondimensionalized in regularization by (x,y)=(X,Y)/Lx into

N̂ [u(x,y)]=L[u]+N [u]=ψ(x,y), (x,y)∈Ω=[0,1]×[0,λ], (3.2)

where N̂ is the nonlinear differential operator with L,N referring the linear and nonlin-
ear parts, λ=Ly/Lx is the aspect ratio of domain.

The associated generalized nonhomogeneous Cauchy boundary is

u|x=0=Bd
L,

∂αx u
∂xαx

∣∣∣∣
x=0

=Bn
L, u|x=1=Bd

R,
∂βx u
∂xβx

∣∣∣∣
x=1

=Bn
R, (3.3a)

u|y=0=Bd
D,

∂αy u
∂yαy

∣∣∣∣
y=0

=Bn
D, u|y=λ =Bd

U ,
∂βy u
∂yβy

∣∣∣∣
y=λ

=Bn
U , (3.3b)

where Bd
i , Bn

i are the boundary values and derivatives of u with subscripts i= L,R,D,U
referring the left (x=0), right (x=1), down (y=0), up (y=λ) sides, αx, βx, αy, βy are the
boundary differential orders, ψ(x,y) is a dual function.

If Neumann part of Eq. (3.3) is replaced by the Robin-type denoted as

∂αx u
∂xαx

+kLu= B̄n
L(y) on x=0,

∂βx u
∂xβx

+kRu= B̄n
R(y) on x=1, (3.4a)

∂αy u
∂xαy

+kDu= B̄n
D(x) on y=0,

∂βy u
∂xβy

+kUu= B̄n
U(x) on y=λ, (3.4b)

where ki are the coefficients of source terms. With the substitution of Bn
i = B̄n

i −kiBd
i ,

Eq. (3.4) can be equivalently degraded into Eq. (3.3).
A transformation between a trial solution u0(x,y) with exact one u(x,y) is constructed

by the zeroth-order homotopy deformed equation as

(1−p)L̂[Φ(x,y;p)−u0(x,y)]= pc0
{
N̂ [Φ(x,y;p)]−ψ(x,y)

}
, (3.5)

where p∈[0,1] denotes an embedding parameter, c0 is the convergence-control parameter,
L̂ is the auxiliary linear operator, respectively. As p evolves from 0 to 1, Φ(x,y;p) varies
from the initial guess to the exact one with

p=0, Φ(x,y;0)=u0(x,y), p=1, Φ(x,y;1)=u(x,y). (3.6)
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Here Φ(x,y;p) can be expanded in Taylor series with respect to p as

Φ(x,y;p)=φ(x,y;0)+
+∞

∑
m=1

1
m!

∂mΦ(x,y;p)
∂pm

∣∣∣∣
p=0

pm

=u0(x,y)+
+∞

∑
m=1

um(x,y)pm, (3.7)

where deformation derivative is

um(x,y)=
1

m!
∂mΦ(x,y;p)

∂pm

∣∣∣∣
p=0

.

Differentiating Eq. (3.5) M times with respect to p, we obtain the Mth-order deformation
equations (M≥1) as

L̂[uM−χMuM−1]= c0{L[uM−1]+RM−(1−χM)ψ}, (3.8)

subjected to

uM =(1−χM+1)Bd
L(y),

∂αx uM

∂xαx
=(1−χM+1)Bn

L(y) on x=0, (3.9a)

uM =(1−χM+1)Bd
R(y),

∂βx uM

∂xβx
=(1−χM+1)Bn

R(y) on x=1, (3.9b)

uM =(1−χM+1)Bd
D(x),

∂αy uM

∂yαy
=(1−χM+1)Bn

D(x) on y=0, (3.9c)

uM =(1−χM+1)Bd
U(x),

∂βy uM

∂yβy
=(1−χM+1)Bn

U(x) on y=λ, (3.9d)

where

RM =
1

(M−1)!
∂M−1

∂pM−1

{
N
[

M−1

∑
i=0

ui(x,y)pi

]}
, χM =

{
0, M≤1,
1, M>1.

(3.10)

If the auxiliary linear operator L̂, the initial guess u0(x,y), as well as the convergence-
control parameter c0 are properly chosen to ensure the series converge at p=1, homotopy-
series solution in Mtth truncation for i∈ [0,Mt−1] are in the form of

UMt(x,y)=u0(x,y)+
Mt−1

∑
i=1

ui(x,y). (3.11)
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3.2 Wavelet approximation in two-dimensional domain

To avoid complex wavelet connection coefficients [58], nonlinear item RM and ψ can be
seen as a dual function generally approximated by

F(x,y)≈Pj[F]=
2j

∑
k=0

λ2j

∑
l=0

F
(

k
2j ,

l
2j

)
ϕj,k(x)ϕj,l(y), F=RM,ψ. (3.12)

The Coiflet-type wavelet expansion of homotopy solution uM(x,y) at each order and its
derivatives with respect to Eq. (2.49) is

∂s+tuM

∂xs∂yt ≈
2j−1

∑
k′=1

2jλ−1

∑
l′=1

uM

(
k′

2j ,
l′

2j

)
h(s)j,k′(x)h(t)j,l′(y)+(1−χM+1)(Bu

d+Bu
n), (3.13)

where Bu
d is formulated by the boundary values (Dirichlet-type) and Bu

n is decided by the
boundary derivatives (Neumann-type) presented as

Bu
d =

λ2j

∑
l=0

Bd
L

(
l
2j

)
h(s)j,0 (x)h(t)j,l (y)+Bd

R

(
l
2j

)
h(s)j,2j(x)h(t)j,l (y)

+
2j

∑
k=0

Bd
D

(
k
2j

)
h(s)j,k (x)h(t)j,0 (y)+Bd

U

(
k
2j

)
h(s)j,k (x)h(t)j,2jλ

(y), (3.14a)

Bu
n =

λ2j

∑
l=0

h(t)j,l (y)
[

Bn
L

(
l
2j

)
v

0,(s)
j,αx

(x)+Bn
R

(
l
2j

)
v

1,(s)
j,βx

(x)
]

+
2j

∑
k=0

h(s)j,k (x)
[

Bn
D

(
k
2j

)
v

0,(t)
j,αy

(y)+Bn
U

(
k
2j

)
v

λ,(t)
j,βy

(y)
]

, (3.14b)

and the wavelet basis with respect to Eq. (3.3) is selected as

hj,k(x)= ϕ
[0,1]
j,k

∣∣∣
T0,k→TN

0,k ,T1,k→TN
1,k ,

hj,l(y)= ϕ
[0,λ]
j,l

∣∣∣
T0,l→TN

0,l ,Tλ,l→TN
λ,l ,

(3.15a)

TN
0,k(x)=

Itp

∑
i=0

p0,i,k

i!
xi(1−δi,αx), TN

1,k(x)=
Itp

∑
i=0

p1,i,k

i!
(x−1)i(1−δi,βx), (3.15b)

TN
0,l(y)=

Itp

∑
i=0

p0,i,l

i!
xi(1−δi,αy), TN

λ,l(y)=
Itp

∑
i=0

pλ,i,l

i!
(y−λ)i(1−δi,βy), (3.15c)

where s, t are the differential orders with admissible condition 0≤ s+t≤N.
Specially, for the generalized Robin-type boundary in Eq. (3.4), the wavelet basis in

Eq. (3.15) will be substituted by

hj,k(x)= ϕ
[0,1]
j,k

∣∣∣
T0,k→TB

0,k(x),T1,k→TB
1,k ,

hj,l(y)= ϕ
[0,λ]
j,l

∣∣∣
T0,l→TB

0,l ,Tλ,l→TB
λ,l ,

(3.16)
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where

TB
0,k(x)=

Itp

∑
i=0

p0,i,k

i!
xi(1−δi,αx)−kLδ0,k

xαx

αx!
, (3.17a)

TB
1,k(x)=

Itp

∑
i=0

p1,i,k

i!
(x−1)i(1−δi,βx)−kRδ0,k

(x−1)βx

βx!
, (3.17b)

TB
0,l(y)=

Itp

∑
i=0

p0,i,l

i!
xi(1−δi,αy)−kDδ0,k

yαy

αy!
, (3.17c)

TB
λ,l(y)=

Itp

∑
i=0

pλ,i,l

i!
(y−λ)i(1−δi,βy)−kUδ0,k

(y−λ)βy

βy!
. (3.17d)

3.3 Algebra iterative equation formulation

In view of Eq. (2.25), linear operator L acting on u(x,y) can be transformed into Coiflet-
type wavelets as

L[u(x,y)]≈L[Pju(x,y)]=∑
k

∑
l

u
(

k
2j ,

l
2j

)
L[ϕj,k(x)ϕj,l(y)]. (3.18)

Substituting Eq. (3.13) into Eq. (3.8) with respect to Eq. (3.18) and applying Galerkin
method by multiplying hj,n′(x)hj,m′(y) at both sides, we integrate on domain Ω to for-
mulate the iterating algebra equation as

Ãu
(
Û′M−χMÛ′M−1

)
=c0

{
B̃uÛ′M−1+C̃uR̂M+(1−χM+1)(B̂u−C̃uQ̂)

}
, (3.19)

where the straight vectors of uM,RM, ψ are formulated as

Û′M =

{
uq′=uM

(
k′

2j ,
l′

2j

)}
, (3.20a)

R̂M =

{
rq =R

(
k
2j ,

l
2j

)}
, (3.20b)

Q̂=

{
rq =ψ

(
k
2j ,

l
2j

)}
, (3.20c)

k′=1∼2j−1, l′=1∼2jλ−1, k=0∼2j, l=0∼2jλ. (3.20d)

Iterative matrices Ãu and B̃u composed by wavelet connection coefficients corresponding
to the auxiliary linear operator L̂ and the transformation of operators of linear part in
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Eq. (3.1) are

ÃT
u =

{
γq′,o′=

∫ 1

0

∫ λ

0
L̂[hj,k′(x)hj,l′(y)]hj,n′(x)hj,m′(y)dxdy

}
, (3.21a)

B̃T
u =

{
γq′,o′=

∫ 1

0

∫ λ

0
L[hj,k′(x)hj,l′(y)]hj,n′(x)hj,m′(y)dxdy

}
, (3.21b)

where
q′(k′,l′)=(2jλ−1)(k′−1)+l′, o′(n′,m′)=(2jλ−1)(n′−1)+m′. (3.22)

The matrix C̃u indicating the transformation of nonlinear item in Eq. (3.1) by Galerkin
method is demonstrated as

C̃T
u =

{
γq,o′=

∫ 1

0
ϕj,k(x)hj,n′(x)dx ·

∫ λ

0
ϕj,l(y)hj,m′(y)dy

}
, (3.23)

in which q(k,l)=2jλk+l+1 and the crossing connection coefficients by hj,k with original
ϕj,k is

Γ
j,n,1
k,l =

{
γk,l =

∫ b

a

dn ϕj,k(x)
dxn hj,l(x)dx

}
, (3.24a)

Γ
j,n,2
k,l =

{
γk,l =

∫ b

a

dnhj,k(x)
dxn ϕj,l(x)dx

}
. (3.24b)

It should be noted that matrices Ãu, B̃u, C̃u are not need to be updated in iterating process
and irreverent to the unsolved problems.

The linear part of Eq. (3.1) is generally formulated expressed as

L[ f ]=
{

Cmn
∂m+n

∂xm∂yn +···+C11
∂2

∂x∂y
+C10

∂

∂x
+C01

∂

∂y
+C00

}
f

=
m

∑
s=0

n

∑
t=0

Cst
∂s+t f
∂xs∂yt , 0≤ s≤m, 0≤ t≤n, (3.25)

where Cst are the constant coefficients.
By substituting Eq. (3.25) into Eqs. (3.21b), (3.23), B̃u, C̃u can be further expressed by

tensor products in terms of Eq. (2.59) as

B̃T
u =

m

∑
s=0

n

∑
t=0

CstΓ̃
j,s
k′,n′⊗Γ̃

j,t
l′,m′ , C̃T

u =Γ
j,0,1
k,n′ ⊗Γ

j,0,1
l,m′ , (3.26)

where ⊗ denotes the Kronecker product operator.
Since the wavelet approximation in Eq. (3.13) is largely influenced by nonhomoge-

neous boundaries in Eqs. (3.3), (3.4) generated iterative correction B̂u as

B̂u = B̂u
d+B̂u

n, B̂u
d =∑

i
Ẽd

i P̂d
i , B̂u

n =∑
i

Ẽn
i P̂n

i , i=L,R,D,U, (3.27)
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where iterating matrices and straight vectors are

(Ẽd
L)

T =
m

∑
s=0

n

∑
t=0

CstΓ̃
j,s
0,n′⊗Γ̃

j,t
l,m′ , (Ẽd

R)
T =

m

∑
s=0

n

∑
t=0

CstΓ̃
j,s
2j,n′⊗Γ̃

j,t
l,m′ , (3.28a)

(Ẽd
D)

T =
m

∑
s=0

n

∑
t=0

CstΓ̃
j,s
k,n′⊗Γ̃

j,t
0,m′ , (Ẽd

U)
T =

m

∑
s=0

n

∑
t=0

CstΓ̃
j,s
k,n′⊗Γ̃

j,t
2jλ,m′ , (3.28b)

(Ẽn
L)

T =
m

∑
s=0

n

∑
t=0

CstΓ̂
j,s
L,n′⊗Γ̃

j,t
l,m′ , (Ẽn

R)
T =

m

∑
s=0

n

∑
t=0

CstΓ̂
j,s
R,n′⊗Γ̃

j,t
l,m′ , (3.28c)

(Ẽn
D)

T =
m

∑
s=0

n

∑
t=0

CstΓ̃
j,s
k,n′⊗Γ̂

j,t
L,m′ , (Ẽn

U)
T =

m

∑
s=0

n

∑
t=0

CstΓ̃
j,s
k,n′⊗Γ̂

j,t
R,m′ , (3.28d)

and

P̂d
i =

{
fk =Bd

i

(
k
2j

)}
, P̂n

i =

{
fk =Bn

i

(
k
2j

)}
, i=D,U, (3.29a)

P̂d
i =

{
fl =Bd

i

(
l
2j

)}
, P̂n

i =

{
fl =Bn

i

(
l
2j

)}
, i=L,R. (3.29b)

3.4 Nonlinear item approximation

Since the numerical approximation of nonlinear item in Eq. (3.8) plays a prominent role in
iterative process, it can be further seen as a complicated dual coupling function composed
of the vectors of ui(x,y) and its partial derivatives ∂s+tui(x,y)

∂xs∂yt along with their products
expressed as

RM(x,y)= f

[
~u,

∂s+t~u
∂xs∂yt , ∑

i+k=M−1
ui ·

∂s+tuk

∂xs∂yt

]
, (3.30)

where

∂s+t~u
∂xs∂yt =

{
∂s+tu0

∂xs∂yt ,
∂s+tu1

∂xs∂yt ,··· , ∂s+tuM−1

∂xs∂yt

}
, (3.31a)

~u={u0,u1,··· ,uM−1}, 0≤ s≤m−1, 0≤ t≤n−1. (3.31b)

To solve the Mth iterative Eq. (3.19), the straight vector of ~UM has been calculated in
low-order in matrix form of Eq. (3.31b) as

~UM =
{

Û0,Û1,··· ,ÛM−1
}

, Ûi =

{
uq =ui

(
k
2j ,

l
2j

)}
, (3.32)

in which Û0 is formulated by dyadic values of initial guess u0(x,y).
To approximate the derivatives in Eq. (3.31a) on the basis of dyadic values of homo-

topy solutions in Eq. (3.31b), the values at dyadic points of Eq. (3.13) is considered as

ÛM,j
s,t =

(
Ĥj

s⊗Ĥj
t

)T
ÛM+(1−χM+1)∆Ûj

s,t, (3.33)
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where ∆Uj
s,t is generated by derivatives of nonhomogeneous boundary as

∆Ûj
s,t =

(
Φ̂

j
s,L⊗P̂n

L+Φ̂
j
s,R⊗P̂n

R
)
Ĥj

t+(Ĥj
s)

T(P̂n
D⊗Φ̂

j
t,D+P̂n

U⊗Φ̂
j
t,U
)
, (3.34)

along with the derivative vectors of modified Coiflets and boundary Coiflets are

Ĥj
s =

{
fk =h(s)j,k

(
k
2j

)}
, Ĥj

t =

{
fl =h(t)j,l

(
l
2j

)}
, (3.35a)

Φ̂
j
s,L =

{
fk =v

0,(s)
j,αx

(
k
2j

)}
, Φ̂

j
s,R =

{
fk =v

1,(s)
j,βx

(
k
2j

)}
, (3.35b)

Φ̂
j
t,D =

{
fl =v

0,(t)
j,αy

(
l
2j

)}
, Φ̂

j
t,U =

{
fl =v

λ,(t)
j,βy

(
l
2j

)}
. (3.35c)

Then, matrices of dyadic values with respect to the Eq. (3.31a) are further implemented
by

~UM,j
s,t =

{
Û0,j

s,t ,Û
1,j
s,t ,··· ,Û

M−1,j
s,t

}
. (3.36)

Combining the Eqs. (3.30), (3.32), (3.36) within the framework of wavelet method, non-
linear item is finally approximated by

R̂M = f

[
~UM,~UM,j

s,t , ∑
i+k=M−1

Ûi�Ûk,j
s,t

]
, (3.37)

where � denotes the operator of Schur product.
Finally, in view of Eqs. (3.32), (3.34), the Mtth truncated solution UMt(x,y) in Eq. (3.11)

is numerically reconstituted at dyadic points form as

ÛMt = Û0+
Mt−1

∑
i=1

Ûi+∆Ûj
0,0, ÛMt =

{
fq =UMt

(
k
2j ,

l
2j

)}
. (3.38)

Compared to the other homotopy-based methods, the typical characteristic of wavelet-
based approach takes full advantage of high-precision approximating property of Coiflet
in nonhomogeneous nonlinear boundary value problems on arbitrary rectangular do-
main, which specifically adopts Galerkin method in solving higher-order deformed
Eq. (3.8).

3.5 Computational complexity analysis

To further study the computational process, iterative Eq. (3.19) is rewritten as

ÛM =(c0+χM)B̃uÛM−1+c0C̃uR̂M+c0(1−χM+1)P̂, (3.39)

where
B̃u = Ã−1

u B̃u, C̃u = Ã−1
u C̃u, P̂= Ã−1

u

(
B̂u

d+B̂u
n−C̃uQ̂

)
, (3.40)
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which can be written at each step as

Û1= c0B̃uÛ0+c0C̃uR̂1+c0P̂, (3.41a)

Û2=(c0+1)B̃uÛ1+c0C̃uR̂2,··· , (3.41b)

ÛMt−1=(c0+1)B̃uÛMt−2+c0C̃uR̂Mt−1. (3.41c)

The foremost procedure in the exhibited wavelet technique is to set up a database of
highly accurate connection coefficients [58] in Eqs. (2.59), (3.24) and exchange algorithm
of data layers. To delve into the computational cost in solving the iterative Eq. (3.39), the
construction of dense matrices B̃u, C̃u, P̂ can be stored advanced in memory at different
resolution level j, which should be considered in terms of a single dense matrix operator
Ãu.

Matrices formulation of Ãu, B̃u, C̃u stems from tensor products of connection coeffi-
cients in Eqs. (3.26), (3.28) with O(N2

1 ) operations as

Cmlt[Ãu]=KaN2
1 , Cmlt[B̃u]=KbN2

1 , Cmlt[C̃u]=N1N2, (3.42a)

Cadd[Ãu]=KaN2
1 , Cadd[B̃u]=KbN2

1 , Cadd[C̃u]=0, (3.42b)

N1=(2j−1)(2jλ−1), N2=(2j+1)(2jλ+1), (3.42c)

in which Cmlt, Cadd are the operating numbers of multiplication and addition, the constant
Ka is determined by auxiliary linear operator L̂, while constant Kb = (m+1)(n+1) is
decided by the operator in Eq. (3.25).

Then, a solution process is implemented to obtain (Ãu)−1 by inverting the RN1×N1

matrix in O(N3
1 ) multiplicative complexity, while the remaining cost of constructing B̃u,

C̃u in Eq. (3.40) by O(N3
1 ) matrix multiplication is

Cmlt[B̃u]=Cmlt[C̃u]=N3
1 , Cadd[B̃u]=Cadd[C̃u]=N2

1 (N1−1). (3.43)

The computing complexity of correction matrix P̂ is studied appeared only in zeroth itera-
tive equation, in which B̂u is composed of connection coefficients from nonhomogeneous
boundaries in Eq. (3.27) as

Cmlt[B̂u]=4N1[2j+2jλ+2](Kb+1)∼O(N3/2
1 ), (3.44a)

Cadd[B̂u]=4N1[2j+2jλ+2]Kb+4N12j(1+λ)+6N1∼O(N3/2
1 ). (3.44b)

Hence, the computing cost of P̂ is behaved as

Cmlt[P̂]=N2N1+N3
1 +Cmlt[B̂u]∼O(N3

1 ), (3.45a)

Cadd[P̂]=2N1+(N2−1)N1+N1(N1−1)+Cadd[B̂u]∼O(N3
1 ). (3.45b)

The calculation of matrices B̃u, C̃u, P̂ is significant part of the overall computational cost
without repeatedly formulated at each iterative step.
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The primary work of investigating the nonlinear term RM is to evaluate ÛM,j
s,t com-

posed by tensor products Ĥj
s⊗Ĥj

t and ∆Ûj
s,t defined in Eq. (3.33), which can be con-

structed in advanced with complexity of Cmlt[Ĥ
j
s⊗Ĥj

t]=N2, Cadd[∆Ûj
m,n]=3N2 and

Cmlt[∆Ûj
m,n]=N2(2j+1+2jλ+1)∼O(N3/2

2 ). (3.46)

4 Bending of orthotropic plate with forced restraints

4.1 Governing equation

To apply the wavelet strategy in solving nonlinear problem with nonhomogeneous
boundaries, large-deflection bending analysis of orthotropic plate with length Lx, width
Ly and thickness h on nonlinear orthotropic foundation [59] with forced rotational bound-
ary restraints is considered in Fig. 2. The origin of coordination system is located at the
corner and the X,Y axes are along the orientations of plate length and width with gov-
erning equations by

Dx
∂4W
∂X4 +2H

∂4W
∂X2∂Y2 +Dy

∂4W
∂Y4 +K1W+K2W3

−Gξ

(
cos2 Θ

∂2W
∂X2 +sin2Θ

∂2W
∂X∂Y

+sin2 Θ
∂2W
∂Y2

)
−Gη

(
sin2 Θ

∂2W
∂X2 −sin2Θ

∂2W
∂X∂Y

+cos2 Θ
∂2W
∂Y2

)
−h
(

∂2W
∂X2

∂2Ψ
∂Y2 +

∂2W
∂Y2

∂2Ψ
∂X2−2

∂2W
∂X∂Y

∂2Ψ
∂X∂Y

)
=Q, (4.1a)

1
Ey

∂4Ψ
∂X4 +

(
1
G
−2

νx

Ex

)
∂4Ψ

∂X2∂Y2 +
1

Ex

∂4Ψ
∂Y4 +

[
∂2W
∂X2

∂2W
∂Y2 −

(
∂2W

∂X∂Y

)2
]
=0, (4.1b)

subjected to W|∂Ω =0 and

Mx =−Dx

(
∂2W
∂X2 +νy

∂2W
∂Y2

)
=−ML on X=0, (4.2a)

Mx =−Dx

(
∂2W
∂X2 +νy

∂2W
∂Y2

)
=−MR on X=Lx, (4.2b)

θy =
∂W
∂Y

= θD on Y=0, θy =
∂W
∂Y

= θU on Y=Ly, (4.2c)

where W, Ψ are the transverse displacement and Airy stress function, Q is the external
load, G is the shear modulus, Dx, Dy and Ex, Ey are the flexural rigidity and the elasticity
modulus in X,Y orientations, H = νyDx+2Dxy = νxDy+2Dxy is the effectively torsional
rigidity where Dxy is the torsional rigidity and νx, νy are the Poisson’s ratios, ML, MR and
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Figure 2: Schematic diagram of orthotropic plate on foundation with forced boundary rotations and moments.

θD, θU are the forced moments and rotations, K1, K2 are the linear and nonlinear Winkler-
type foundation parameters, Gξ , Gη are the orthotropic Pasternak-type shear foundation
parameters in ξ and η principle directions respectively, the angle Θ describes the local ξ
orientation of orthotropic foundation with respect to the global X-axis.

By introducing

x=
X
Lx

, y=
Y
Lx

, w=
W
h

, ϕ=
Ψh
Dx

, λ=
Ly

Lx
, (4.3a)

q=
QL4

x
Dxh

, Mi =
MiL2

x
Dxh

, θi =
θiLx

h
, ε1=

Dy

Dx
, ε2=

H
Dx

, (4.3b)

ε3=
Ex

G
−2νx, k1=

K1L4
x

Dx
, k2=

K2h2L4
x

Dx
, gξ =

Gξ L2
x

Dx
, gη =

Gη L2
x

Dx
, (4.3c)

Eqs. (4.1), (4.1b), (4.2) are nondimensionalized into Ω=[0,1]×[0,λ] as

∂4w
∂x4 +2ε2

∂4w
∂x2∂y2 +ε1

∂4w
∂y4 +k1w+k2w3−LP[w]

−
(

∂2w
∂x2

∂2ϕ

∂y2 +
∂2w
∂y2

∂2ϕ

∂x2 −2
∂2w
∂x∂y

∂2ϕ

∂x∂y

)
=q, (4.4a)

1
ε1

∂4ϕ

∂x4 +ε3
∂4ϕ

∂x2∂y2 +
∂4ϕ

∂y4 +Ke

[
∂2w
∂x2

∂2w
∂y2 −

(
∂2w
∂x∂y

)2
]
=0, (4.4b)

where Ke =12(1−µ2) and

LP[w]=gξ

(
cos2 Θ

∂2

∂x2 +sin2Θ
∂2

∂x∂y
+sin2 Θ

∂2

∂y2

)
+gη

(
sin2 Θ

∂2

∂x2−sin2Θ
∂2

∂x∂y
+cos2 Θ

∂2

∂y2

)
w, (4.5)
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associated with nonhomogeneous Cauchy boundary as w|∂Ω̄ =0 and

∂2w
∂x2

∣∣∣∣
x=0

=ML,
∂2w
∂x2

∣∣∣∣
x=1

=MR,
∂w
∂y

∣∣∣∣
y=0

= θD,
∂w
∂y

∣∣∣∣
y=λ

= θU , (4.6)

where λ is the aspect ratio of orthotropic plate, q denotes the lateral load and w, ϕ are the
deflection and Airy function in dimensionless form, ML, MR and θU , θD are the dimen-
sionless forced boundary moments and rotations, ε1, ε2, ε3 are the orthotropic parame-
ters, k1, k2 are the dimensionless linear and nonlinear Winkler parameters, gξ , gη are the
dimensionless Pasternak shear foundation parameters, respectively. Specially for linear
bending of orthotropic plate on nonlinear Winkler-Pasternak foundation, Eq. (4.4a) will
be degraded into

∂4w
∂x4 +2ε2

∂4w
∂x2∂y2 +ε1

∂4w
∂y4 +k1w+k2w3−LP[w]=q. (4.7)

4.2 Homotopy-based wavelet implementation

Homotopy-based transformation is constructed formulating zeroth deformed equations
with respect to Eq. (3.5) as

(1−p)L̂w[Φ(x,y;p)−w0(x,y)]= pc1N̂w[Φ(x,y;p),Θ(x,y;p)]
(1−p)L̂ϕ[Θ(x,y;p)−ϕ0(x,y)]= pc2N̂ϕ[Φ(x,y;p),Θ(x,y;p)]

}
, (4.8)

where w0, ϕ0 are the initial guesses, c1, c2 are the convergence control parameters, L̂w, L̂ϕ

are the auxiliary linear operators employed as

L̂w =
∂4

∂x4 +2ε2
∂4

∂x2∂y2 +ε1
∂4

∂y4 , L̂ϕ =
1
ε1

∂4

∂x4 +ε3
∂4

∂x2∂y2 +
∂4

∂y4 , (4.9)

while the nonlinear operators N̂w, N̂ϕ are

N̂w[Φ,Θ]=Lw[Φ]+k1Φ+k2Φ3−LP[Φ]

−
(

∂2Φ
∂x2

∂2Θ
∂y2 +

∂2Φ
∂y2

∂2Θ
∂x2 −2

∂2Φ
∂x∂y

∂2Θ
∂x∂y

)
−q, (4.10a)

N̂ϕ[Φ,Θ]=Lϕ[Θ]+Ke

[
∂2Φ
∂x2

∂2Φ
∂y2 −

(
∂2Φ
∂x∂y

)2]
. (4.10b)

The Mth decoupled equations (M≥1) with respect to Eq. (3.8) are

L̂w[wM−χMwM−1]= c1{Lw[wM−1]+Rw
M+(χM−1)q}

L̂ϕ[ϕM−χM ϕM−1]= c2
{
Lϕ[ϕM−1]+Rϕ

M
} }

, (4.11)
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subjected to

wM|∂Ω̄ = ϕM|∂Ω̄ =
∂2ϕM

∂n2

∣∣∣∣
∂Ω̄

=0,

∂2wM

∂x2

∣∣∣∣
x=0

=(1−χM+1)ML,
∂2wM

∂x2

∣∣∣∣
x=1

=(1−χM+1)MR,

∂wM

∂y

∣∣∣∣
y=0

=(1−χM+1)θD,
∂wM

∂y

∣∣∣∣
y=λ

=(1−χM+1)θU ,


, (4.12)

where

Lϕ = L̂ϕ, Lw =
∂4

∂x4 +2ε2
∂4

∂x2∂y2 +ε1
∂4

∂y4 +k1w−Lp[w], (4.13a)

Rw
M = k2

M−1

∑
s=0

M−1−s

∑
t=0

wswtwM−1−s−t

−
M−1

∑
t=0

(
∂2ws

∂x2
∂2ϕM−1−s

∂y2 +
∂2ws

∂y2
∂2ϕM−1−s

∂x2 −2
∂2ws

∂x∂y
∂2ϕM−1−s

∂x∂y

)
, (4.13b)

Rϕ
M =Ke

M−1

∑
s=0

(
∂2ws

∂x2
∂2wM−1−s

∂y2 − ∂2ws

∂x∂y
∂2wM−1−s

∂x∂y

)
. (4.13c)

The Coiflets expansions of wM, ϕM and their second-order partial derivatives in nonlinear
partsRw

M,Rϕ
M can be further approximated by

∂u+vwM

∂xu∂yv ≈
2j−1

∑
k=1

2jλ−1

∑
l=1

wM

(
k
2j ,

l
2j

)
h(u)j,k (x)h(v)j,l (y)+(1−χM+1)Bw

n , (4.14a)

∂u+v ϕM

∂xu∂yv ≈
2j−1

∑
k=1

2jλ−1

∑
l=1

ϕM

(
k
2j ,

l
2j

)
h(u)j,k (x)h(v)j,l (y), (u,v)=(2,0),(0,2),(1,1), (4.14b)

where

hw
j,k(x)=φ

[0,1]
j,k (x)|p0,2,i→0,p1,2,i→0, hw

j,k(y)=φ
[0,λ]
j,k (y)|p0,1,i→0,p1,1,i→0, (4.15a)

hϕ
j,k(x)=φ

[0,1]
j,k (x)|p0,2,i→0,p1,2,i→0, hϕ

j,k(y)=φ
[0,λ]
j,k (y)|p0,2,i→0,pλ,2,i→0, (4.15b)

and

Bw
n =

λ2j

∑
l=0

hw,(v)
j,l (y)

[
ML

(
l
2j

)
v

0,(u)
j,αx

(x)+MR

(
l
2j

)
v

1,(u)
j,βx

(x)
]

+
2j

∑
k=0

hw,(u)
j,k (x)

[
θD

(
k
2j

)
v

0,(v)
j,αy

(y)+θU

(
k
2j

)
v

λ,(v)
j,βy

(y)
]

. (4.16)
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By substituting Eqs. (4.14a), (4.14b) into Eq. (4.11) applying Eq. (3.18) to construct decou-
pled iterative equations, Eq. (3.30) can be specified as

Rw
M(x,y)= f

[
~w(x,y),

∂2~w(x,y)
∂x2 ,

∂2~w(x,y)
∂y2 ,

∂2~ϕ(x,y)
∂x2 ,

∂2~ϕ(x,y)
∂y2

]
, (4.17a)

Rϕ
M(x,y)= f

[
~w(x,y),

∂2~w(x,y)
∂x2 ,

∂2~w(x,y)
∂y2

]
. (4.17b)

Finally, the decoupled iterating algebra equations by wavelet Galerkin method are

ŴM =(χM+c1Ã−1
w B̃w)ŴM−1+c1Ã−1

w C̃R̂w
M−1+(χM−1)c1P̂, (4.18a)

Φ̂M =(χM+c2)Φ̂M−1+c2Ã−1
ϕ C̃R̂ϕ

M−1, P̂= Ã−1
w (B̂w

n −C̃Q̂), (4.18b)

where straight vectors and iterating matrices are

F̂=
{

fp′= f
(

k′

2j ,
l′

2j

)}
, f =wM,ϕM, F=WM,ΦM,

F̂=
{

fp = f
(

k
2j ,

l
2j

)}
, f =Rw

M,Rϕ
M,q, F=Rw

M,Rϕ
M,Q,

and

ÃT
w = Γ̃

j,4
k′,n′⊗Γ̃

j,0
l′,m′+2ε2Γ̃

j,2
k′,n′⊗Γ̃

j,2
l′,m′+ε1Γ̃

j,0
k′,n′⊗Γ̃

j,4
l′,m′ , C̃T = Γ̄

j,0,1
k,n′ ⊗Γ̄

j,0,1
l,m′ , (4.19a)

B̃T
w = ÃT

w+k1Γ̃
j,0
k′,n′⊗Γ̃

j,0
l′,m′

−gξ

(
cos2 ΘΓ̃

j,2
k′,n′⊗Γ̃

j,0
l′,m′+sin2ΘΓ̃

j,1
k′,n′⊗Γ̃

j,1
l′,m′+sin2 ΘΓ̃

j,0
k′,n′⊗Γ̃

j,2
l′,m′

)
−gη

(
sin2 ΘΓ̃

j,2
k′,n′⊗Γ̃

j,0
l′,m′−sin2ΘΓ̃

j,1
k′,n′⊗Γ̃

j,1
l′,m′+cos2 ΘΓ̃

j,0
k′,n′⊗Γ̃

j,2
l′,m′

)
, (4.19b)

ÃT
ϕ = B̃T

ϕ =1/ε1Γ̃
j,4
k′,n′⊗Γ̃

j,0
l′,m′+ε3Γ̃

j,2
k′,n′⊗Γ̃

j,2
l′,m′+Γ̃

j,0
k′,n′⊗Γ̃

j,4
l′,m′ . (4.19c)

The matrices for nonlinear items R̂w
M, R̂ϕ

M are specified as

R̂w
M = k2

M−1

∑
i=0

M−1−i

∑
s=0

Ŵi,j
0,0�Ŵs,j

0,0�ŴM−1−s−i,j
0,0

−
M−1

∑
s=0

{
Ŵj,s

2,0�Π̂
j,t
0,2+Ŵj,s

0,2�Π̂
j,t
2,0−2Ŵj,s

1,1�Π̂
j,t
1,1

}
, (4.20a)

R̂ϕ
M =Ke

M−1

∑
s=0

{
Ŵj,s

2,0�Ŵj,t
0,2−Ŵj,s

1,1�Ŵj,t
1,1

}
, t=M−1−s. (4.20b)
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in which

Ŵj,M
u,v =(Φ̂

j
u⊗Φ̂

j
v)

TŴU
M+(1−χM+1)∆Ŵj

u,v, Π̂
j,M
u,v =(Φ̂

j
u⊗Φ̂

j
v)

TΦ̂U
M, (4.21a)

ŴU
M =

{
wp =wM

(
k
2j ,

l
2j

)}
, Φ̂U

M =

{
ϕp = ϕM

(
k
2j ,

l
2j

)}
, (4.21b)

Φ̂
j
u =

{
fk =h(u)j,k

(
k
2j

)}
, Φ̂

j
v =

{
fl =h(v)j,l

(
l
2j

)}
. (4.21c)

5 Results and discussion

5.1 Numerical validation

Before conducting the validation, all the calculations are implemented in a Laptop (In-
ter(R) Core(TM) i7-8565U CPU @1.80GHz) by Mathematica 12.3. The sufficient conver-
gent criterion is defined by the mean square error ErrSQu tending to zero

ErrSQu =

[∫ 1

0

∫ λ

0
E2

udxdy
] 1

2

≈ 1
Nj

√√√√ 2j

∑
k=0

2jλ

∑
l=0

E2
u

(
k
2j ,

l
2j

)
, (5.1)

in which

Eu(x,y)= |UMt(x,y)−Ue(x,y)|, (x,y)∈Ω, Nj =(2j+1)(2jλ+1), (5.2)

where UMt , Ue are the calculated and exact solutions. Nevertheless, for most cases the
analytical solutions are nonexistent. The necessary convergent condition for series is
uMt(x,y)→0 equivalent to the residual error ErrResuMt

→0 given by

ErrResu =

[∫ 1

0

∫ λ

0
u2

Mt
dxdy

] 1
2

≈ 1
Nj

√√√√ 2j

∑
k=0

2jλ

∑
l=0

u2
Mt

(
k
2j ,

l
2j

)
. (5.3)

Specially when θU , θD, ML, MR = 0, Eq. (4.2) will be degraded into the clamped (C) or
simply supported edge (S)

Clamped: W=
∂W
∂n̂

=0, Simply supported: W=
∂2W
∂n̂2 =0, (5.4)

where n̂ denotes the boundary normal direction. An orthotropic plate (ε1 = 2, ε2 = 1) in
linear bending on linear Winkler-Pasternak foundation (k1=gξ=gη=1, k2=0) with aspect
ratio (λ= 1∼ 5) is investigated loaded with forced moments on circled boundaries. The
absolute error ‖Ew‖1 and mean square error ‖Ew‖2 of deflection solution are elaborated in
Table 3, which reveals adding the wavelet resolution level from j=3 to j=6 is significantly
conducive to improving the approaching precision exponentially from 10−2 to 10−8, but it
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Figure 3: Absolute approaching error distribution of deflection Ew(x,y) of simply supported orthotropic square
plate in linear bending at wavelet resolution level j=6.

is not efficient by the increase of aspect ratio λ with the precision kept in the same order.
In Fig. 3, the absolute error distribution at j = 6 of deformation in orthotropic square
plate is illustrated at the magnitude of 10−6. The error at the circled edges is obviously
suppressed with good accuracy superior to that at the plate center, which further verifies
the effectiveness of foregoing wavelet strategy by improved boundary difference.

Bending of another orthotropic plate on nonlinear foundation governed by the
weakly nonlinear Eq. (4.7) is studied respectively subjected to homogeneous mixed oppo-
site edges (BC I), nonhomogeneous edges with only forced moments(BC II), only forced
rotations (BC III) and both forced moments and rotations (BC IV), with the exact deflec-
tion we and lateral load qe given as

BC I: we =sin(πx)
[
1−cos

(
2π

y
λ

)]
, (5.5a)

BC II: we =64x2(1−x)2y2(λ−y)2, ML =MR =128y2(λ−y)2, (5.5b)

BC III: we =64x3(1−x)3y(λ−y), θD =−θU =64λ(1−x)3x3, (5.5c)

BC IV: we =64x2(1−x)2y(λ−y), ML =MR =128y(λ−y), (5.5d)

θD =−θU =64λ(1−x)2x2, (5.5e)

qe =
∂4we

∂x4 +2ε2
∂4we

∂x2∂y2 +ε1
∂4we

∂y4 +k1we+k2w3
e−LP[we]. (5.5f)

As tabulated in Table 5, by selecting c0 =−88/100 and k1, k2, gξ , gη = 1, ε2 = 1, ε1 = 2,
the approaching error of overall deflection in all cases is around 10−5 ∼ 10−8 at j = 5.
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 Timoshenko(1959)
 Galerkin(Mbakogu and Pavlovic, 2000)
 FITM(Li et al, 2009)
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Figure 4: Comparisons of central deflection w̃ and bending moment M̃x for a uniformly loaded rectangular
isotropic plate with results by Timoshenko [60], Bubnov-Galerkin method [61], Finite Integral Transform Method
(FITM) [62,63]. (a) circled clamped edge (CCCC), (b) circled simply supported (SSSS) or mixed opposite edge
(CSCS).

It indicates the nonhomogeneous edges by forced boundary rotational constraints will
cause the accuracy loss of transverse displacement in wavelet approximation, which is
not prominently affected by the plate aspect ratio λ.

To make comparison with published results, dimensionless deflection w̃ and bending
moment M̃x, M̃y of plate under unit load are given as

w̃=
103Dx

QL4
x

W, M̃x =
102Mx

QL2
x

, M̃y =
102My

QL2
x

. (5.6)

In Fig. 4, wavelet solutions at j = 5 of deflection and bending moment at the center of
uniformly loaded isotropic plate (ε1 = ε2 =1) subjected to circled clamped (CCCC), sim-
ply supported (SSSS) and mixed opposite (CSCS) edges are given in good accordance
with benchmark by double trigonometric series [60], Bubnov-Galerkin method [61], Fi-
nite Integral Transform Method (FITM) [62, 63]. To conduct the quantitative analy-
sis, Table 4 tabulates the transverse displacement and bending moments of uniformly
loaded isotropic plate in different aspect ratio λ=1∼5 subjected to various boundaries,
which demonstrate more significant digits in contrast with results by the Small Parameter
Method(SPM) [64]. In general, the homotopy-based wavelet strategy has been validated
to give highly accurate solutions for both small and large bending of orthotropic plate
with forced boundary restraints performing good efficiency.

5.2 Convergence acceleration by iteration

An orthotropic rectangular plate (λ=3/2) in small deflection subjected to homogeneous
mixed edges (BC I) under load q=5000 on nonlinear elastic foundation (k1 = gξ = gη =1,
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Figure 5: Residual error ErrResw of overall deflection in (a) smally deformed orthotropic plate with homogeneous
boundaries in small deflection under q=5000 when ε1=2, ε2=1, k1=gξ=gη=1, k2=50 and (b) largely deformed
clamped isotropic plate under q=20000 by CPU time without and with iteration (Mt =1∼5).

k2 =50) and an isotropic plate (λ=3/2) in extremely large deformation subjected to the
circled clamped edge under load q = 20000 lack of foundation are investigated, which
are governed by Eq. (4.7) and the coupled system of Eqs. (4.4a), (4.4b), respectively. In
Fig. 5, the deflection solutions can not be guaranteed in convergence as the residual error
ErrResw diverges gradually by the homotopy-based technique (black line). By adding
the truncated order Mt, the computing complexity of Eq. (4.13b) dramatically amplifies
with more computing resources needed and iterative errors accumulated. In term of
Eq. (4.21a), the wavelet solutions in Eq. (4.18) largely depend on the initial guess, which
are also influenced by nonhomogeneous boundaries in approximation of each homotopy
order resulting in difficulties of convergence.

To overcome the above obstacles, iteration is adopted by updating the initial guess
Uiter

0 with the Mtth homotopy solution Ûiter−1
Mt

as

Ûiter
Mt

=Uiter
0 +

Mt−1

∑
i=1

Ûiter
i , Ûiter

0 = Ûiter−1
Mt

, Û0
0= Û0+∆Ûj

0,0. (5.7)

By selecting c0 =−1/10 and c1 = c2 =−5/100 updating the initial guess, the iterative
process is implemented in convergence with the residual error ErrResw decreasing to
nearly 10−18 and 10−16, respectively.

To further study the effectiveness of iterative technique by different truncated order
Mt =1∼5, large deflection bending of orthotropic plate on weakly nonlinear foundation
(k1 = k2 = gξ = gη = 1, λ = 3/2) with nonhomogeneous edges (Case IV) is conducted as
an example. Fig. 6 illustrates the mean square error of plate deflection varying with
CPU time, which reveals the convergent rates is largely affected by the truncated order,
but the accuracy of ultimate convergence is irrelevant to it. To conclude, the iterative
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Figure 6: Mean square error ErrSQw of deflection of orthotropic plate on weakly nonlinear foundation with
nonhomogeneous boundaries (BC IV) by iteration with different truncated orders (Mt=1∼5) when ε1=2,ε2=
1,k1 = k2 = gξ = gη =1.

technique is effective to ensure convergence in solving nonlinear bending of orthotropic
plate with homogeneous or nonhomogeneous boundaries, but with no contributions to
the improvement of approaching accuracy, which is only decided by wavelet resolution
level.

5.3 Effect of convergence control parameter

In view of Eq. (3.5), the convergent properties of the wavelet method is largely influenced
by the parameter c0 and auxiliary linear operator L̂, while reasonable selection plays a
vital role in the iterative process. The system error is defined by substituting homotopy
truncated solution of Eq. (3.11) into Eq. (3.1) as

EMt(c0,x,y)= N̂ [UMt(x,y)]−ψ(x,y), (5.8)

with the mean square error given by

ErrSQs
Mt

=‖EMt‖2=
∫ 1

0

∫ λ

0
E2

Mt
(c0,x,y)dxdy

≈ 1
Nj

2j

∑
k=0

2jλ

∑
l=0

E2
Mt

(
c0,

k
2j ,

l
2j

)
= f (~UMt ,~U

Mt,j
m,n ,c0). (5.9)
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Figure 7: Convergent process of mean square error ErrSQw of deflection of orthotropic plate on strongly
nonlinear foundation (ε1 =2, ε2 =1, k1 = gξ = gη =1, k2 =200) with nonhomogeneous boundaries (BC IV) by
c0 =−3/10∼−5/10. (a) j=4, (b) j=5, (c) j=6.

Specially, if the analytical solution Ue exists, the system error ErrSQs
Mt

is simplified into

ErrSQu =
∫ 1

0

∫ λ

0
|Ue(x,y)−UMt(c0,x,y)|2dxdy= f (~UMt ,~U

Mt,j
m,n ,c0)

≈ 1
Nj

2j

∑
k=0

2jλ

∑
l=0

[
Ue

(
k
2j ,

l
2j

)
−UMt

(
c0,

k
2j ,

l
2j

)]2

. (5.10)

Bending of an orthotropic plate with inhomogeneous boundaries (Case IV) on
strongly nonlinear foundation (k1 = gξ = gη = 1, λ = 3/2, k2 = 200) is investigated
(Mt = 1) in Fig. 7, while the mean square error of deflection ErrSQw converges to
1.35×10−6,2.14×10−7,9.67×10−8 consuming CPU time of 0.16s,1.8s,9s at j = 4∼ 6. It
reveals different selection of c0 demonstrate various convergent rate but with duplicate
accuracy at same resolution level j, while the optimal one is around c0 =−0.4 with more
distinct numerical oscillation in ultimate stage of convergence.

Furthermore, to study the effect of convergent parameter c0 in a larger range showed
in Fig. 8, there exist a critical value clim =−51/100 distinguishing the convergent range
(c0≥ clim) with the divergent region (c0 < clim) of the obtained deflection solutions inde-
pendent of resolution level j. Based on the above analysis, c0 can be selected firstly by
rapidly trial calculation at lower wavelet resolution level to determine the critical clim and
convergent range c0 > clim, while the iterative computation at higher resolution level is
then proceed by selecting effective c0 to give more accurate solutions.

5.4 Effect of auxiliary linear operators

The auxiliary linear operator in the homotopy-based wavelet approach plays a vital role
in the formulation of iterative matrix Ãw, Ãϕ in Eq. (4.18) derived from the nonlinear
Eqs. (4.4a) and (4.4b). To explore the freedom in implications, a series of auxiliary linear
operators are constructed by investigating the large deflection bending of circled clamped
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Figure 8: Convergent range of mean square error ErrSQw of deflection of orthotropic plate on strongly nonlinear
foundation (ε1 =2, ε2 =1, k1 = gξ = gη =1, k2 =200) by different convergence control parameter c0 =−7/10∼
−3/10 at resolution level j=4∼6.
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Figure 9: Convergent process of mean square error ErrSQ of deflection of orthotropic plate on elastic foundation
(ε1 =2, ε2 =1, k1 = gξ = gη =1, k2 =50) by selecting different auxiliary linear operators L̂∼ L̂4 when c1 = c2 =
−35/100. (a) j=5, Nj =33×49, (b) j=6, Nj =65×97.

orthotropic plate on elastic foundation (λ = 1.5, k1 = gξ = gη = 1, k2 = 50) with L̂[w] in
Eq. (4.9) substituted by

L̂1=
∂4

∂x4 +2ε2
∂4

∂x2∂y2 +ε1
∂4

∂y4 +k1, (5.11a)

L̂2=
∂4

∂x4 +2ε2
∂4

∂x2∂y2 +ε1
∂4

∂y4−
(

gξ
∂2

∂x2 +gη
∂2

∂y2

)
, (5.11b)
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L̂3=
∂4

∂x4 +2ε2
∂4

∂x2∂y2 +ε1
∂4

∂y4 +k1−
(

gξ
∂2

∂x2 +gη
∂2

∂y2

)
, (5.11c)

L̂4=
∂4

∂x4 +2ε2
∂4

∂x2∂y2 +ε1
∂4

∂y4 +k1−
(

gξ
∂2

∂x2 +gη
∂2

∂y2

)
−
(

∂2

∂x2 +
∂2

∂y2−
∂2

∂x∂y

)
. (5.11d)

By selecting c1 = c2 =−55/100, the convergent process and values of mean square
error of deflection ErrSQw is illustrated in Fig. 9, which reveals different selection of
auxiliary operators exhibits various convergent properties. As tabulated in Table 6, the
original operator L̂ is the most concise with the fastest initial iterative speed but in the
worst approaching accuracy. To refine L̂ by adding ingredients k1w or −

(
gξ

∂2w
∂x2 +gη

∂2w
∂y2

)
corresponding to the linear Winkler or Pasternak foundation, the latter reveals more ef-
fective in the improvement of precision from 10−4 to 10−7 at j=6, while adding both in

Table 3: Absolute error ‖Ew‖1 and mean square error ‖Ew‖2 for deflection solution of orthotropic plate (ε1=2,
ε2=1, k1=gξ=gη=1) in linear bending with different aspect ratios λ=1∼5 at wavelet resolution levels j=3∼6.

Ly/Lx
j=3, Itp =3 j=4, Itp =5 j=5, Itp =5 j=6, Itp =5

‖Ew‖1 ‖Ew‖2 ‖Ew‖1 ‖Ew‖2 ‖Ew‖1 ‖Ew‖2 ‖Ew‖1 ‖Ew‖2
1 5.9E-02 4.9E-02 1.2E-05 9.7E-06 3.0E-07 2.4E-07 8.4E-08 6.7E-08

1.5 4.3E-02 4.1E-02 6.4E-06 6.1E-06 1.8E-07 1.7E-07 6.8E-08 6.7E-08
2 3.3E-02 3.6E-02 6.4E-06 7.0E-06 1.6E-07 1.8E-07 5.9E-08 6.7E-08

2.5 2.7E-02 3.3E-02 6.0E-06 7.3E-06 1.5E-07 1.8E-07 5.1E-08 6.7E-08
3 2.2E-02 3.0E-02 5.5E-06 7.4E-06 1.3E-07 1.8E-07 4.4E-08 6.7E-08
4 1.7E-02 2.7E-02 5.5E-06 7.4E-06 1.1E-07 1.7E-07 3.5E-08 6.5E-08
5 1.4E-02 2.4E-02 3.8E-06 6.6E-06 9.1E-08 1.6E-07 2.8E-08 6.4E-08

Table 4: Comparison of wavelet solution at j= 5 for central deflection w̃ and bending moments M̃x, M̃y of
uniformly loaded isotropic plate (ε1 = ε2 =1) with results by the Small Parameter Method(SPM) [64].

BCs Ly/Lx
SPM [64] This work (j=5)

M̃x M̃y w̃ M̃x M̃y w̃

SSSS

1 0.4062 0.4789 0.4789 0.406314 0.478873 0.478873
1.5 0.7724 0.8116 0.4984 0.772465 0.811621 0.498418
2 1.0129 1.0168 0.4635 1.01290 1.01684 0.463492
3 1.2233 1.1886 0.4063 1.22329 1.18861 0.406259
4 1.2819 1.2346 0.3842 1.28186 1.23458 0.384146
5 1.2971 1.2463 0.3775 1.29707 1.24624 0.377450

SCSC

1 0.1917 0.2439 0.3324 0.191739 0.243811 0.332379
1.5 0.5326 0.5848 0.4595 0.532673 0.584768 0.459403
2 0.8445 0.8687 0.4736 0.844520 0.868664 0.473601
3 1.1681 1.1436 0.4213 1.16813 1.14356 0.421256

SSSC
1 0.2785 0.3389 0.3918 0.278593 0.338825 0.391741

1.5 0.6445 0.6906 0.4776 0.644555 0.690607 0.477611
2 0.927 0.9413 0.4687 0.927048 0.941290 0.468647
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Table 5: Absolute error ‖Ew‖1 and mean square error ‖Ew‖2 of deflection solution of smally deformed orthotropic
plate on foundation (ε1 = 2, ε2 = 1, k1 = k2 = gξ = gη = 1) subjected to homogeneous opposite edges (BC I),
nonhomogeneous edges with forced moments (BC II), forced rotations (BC III) and both forced moments and
rotations (BC IV) when λ=1∼4, j=5.

λ
BC I BC II BC III BC IV

‖Ew‖1 ‖Ew‖2 ‖Ew‖1 ‖Ew‖2 ‖Ew‖1 ‖Ew‖2 ‖Ew‖1 ‖Ew‖2
1 1.3E-07 1.3E-07 3.3E-08 2.2E-08 2.8E-06 1.9E-06 2.3E-07 1.7E-07

1.25 1.3E-07 9.4E-08 1.2E-07 9.0E-08 6.2E-06 4.8E-06 4.1E-07 3.4E-07
1.5 2.0E-07 1.7E-07 3.0E-07 2.5E-07 1.1E-05 9.4E-06 6.5E-07 5.8E-07
1.75 2.3E-07 2.1E-07 6.1E-07 5.6E-07 1.6E-05 1.5E-05 9.0E-07 8.7E-07

2 2.4E-07 2.4E-07 1.0E-06 1.0E-06 2.2E-05 2.3E-05 1.1E-06 1.2E-06
2.5 2.4E-07 2.7E-07 1.5E-06 1.7E-06 3.4E-05 4.0E-05 1.4E-06 1.7E-06
3 2.3E-07 2.8E-07 1.1E-06 1.6E-06 4.4E-05 5.8E-05 1.3E-06 1.8E-06
4 1.9E-07 2.7E-07 7.4E-07 1.5E-06 5.8E-05 9.0E-05 9.2E-07 1.7E-06

Table 6: Mean square error of convergent deflection of orthotropic plate on elastic foundation (k1=gξ =gη =1,
k2 =50) with circled clamped edges by different selection of linear operators when c1 = c2 =−35/100.

level ErrSQ L̂ L̂1 L̂2 L̂3 L̂4

j=4 w 3.0E-05 2.6E-05 5.5E-07 1.2E-06 5.3E-05
ϕ 1.7E-03 1.6E-03 3.6E-04 3.2E-04 2.2E-05

j=5 w 4.6E-05 4.1E-05 8.9E-08 5.1E-09 4.4E-05
ϕ 6.1E-04 5.5E-04 5.3E-06 1.4E-06 4.3E-04

j=6 w 8.7E-05 4.3E-05 1.3E-07 2.4E-11 4.4E-05
ϕ 3.0E-04 5.2E-04 1.5E-06 6.2E-09 4.9E-04

L̂3 performs the best precision of deflection is around 10−11 but with the longest conver-
gent time. To append linear ingredient of w in nonlinear item on the basis of L̂3, L̂4 is
further calculated but with poor precision resulting in more complexity in construction
of iterative matrix Ãw. As discussed, the linear component of original nonlinear equation
can be selected as the auxiliary linear operator in the homotopy-based wavelet approach
which is convenient and demonstrates superior approaching precision.

6 Concluding remarks

In the paper, a generalized homotopy-based wavelet method for nonlinear partial differ-
ential equation with nonhomogeneous boundaries is developed by means of construct-
ing a homotopy to transform the original equation or a system of coupled equations into
an infinite decoupled sequence of linear differential equations and solved by wavelet
Galerkin method. Based on Taylor expansion by the improvement of boundary difference
order, the accuracy of wavelet approximation is largely improved and the accumulated
error at boundary is successfully suppressed in application. A unified high-precision
wavelet approximation scheme is formulated for inhomogeneous boundaries including
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generalized Dirichlet, Neumann, Robin and Cauchy types, which overcomes the short-
comings of accuracy loss in homogenization. Large deflection bending of orthotropic
plate with forced boundary moments and rotations on nonlinear foundation is used as
an example to illustrate the homotopy-based wavelet scheme, while the obtained de-
flection solution of plate at both smally and largely deformed stage has been validated
in good accuracy with published results. Compared to the other homotopy-based ap-
proach, there are some advantages within the wavelet scheme

1. Differential operations are degraded into algebra operations by converting the dif-
ferential operators into approximately symmetrical iterative matrices independent
of the problem to be solved greatly reducing computational complexity.

2. Nonhomogeneous edges are directly approached by boundary Coiflets as an itera-
tive correction dispensing with homogenization by variable substitution, while the
convergence can be ensured by the iteration approach.

3. The auxiliary linear operator can be determined by linear component of original
nonlinear equation which is convenient and demonstrates excellent approaching
precision.

While the method has been validated accurate for nonlinear nonhomogeneous
boundary value problem, further work is required in order to generalise it to initial
boundary value problems so as to expand broader applications.

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China
(Grant No. 11902189)

References

[1] T. TANG, The hermite spectral method for gaussian-type functions, SIAM J. Sci. Comput., 14(3)
(1993), pp. 594–606.

[2] B. COCKBURN, G. E. KARNIADAKIS, AND C.-W. SHU, Discontinuous Galerkin Methods:
Theory, Computation and Applications, Vol. 11, Springer Science and Business Media, 2012.

[3] P. F. FISCHER, AND E. M. RØNQUIST, Spectral element methods for large scale parallel Navier–
Stokes calculations, Comput. Methods Appl. Mech. Eng., 116(1-4) (1994), pp. 69–76.

[4] K. VAN DEN ABEELE, C. LACOR, AND Z. J. WANG, On the connection between the spectral
volume and the spectral difference method, J. Comput. Phys., 227(2) (2007), pp. 877–885.

[5] J. VIRIEUX, P-sv wave propagation in heterogeneous media: Velocity-stress finite-difference method,
Geophys., 51(4) (1986), pp. 889–901.

[6] O. C. ZIENKIEWICZ, R. L. TAYLOR, P. NITHIARASU, AND J. ZHU, The Finite Element
Method, Vol. 3, McGraw-Hill London, 1977.



1512 Q. Yu, S. Wang, J. Xiao and H. Xu / Adv. Appl. Math. Mech., 15 (2023), pp. 1473-1514

[7] J. KIM, D. KIM, AND H. CHOI, An immersed-boundary finite-volume method for simulations of
flow in complex geometries, J. Comput. Phys., 171(1) (2001), pp. 132–150.

[8] A. PORTELA, M. ALIABADI, AND D. ROOKE, The dual boundary element method: effective im-
plementation for crack problems, Int. J. Numer. Methods Eng., 33(6) (1992), pp. 1269–1287.

[9] S. J. LIAO, The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Prob-
lems, Ph.D. thesis, Shanghai Jiao Tong University, (1992).

[10] R. A. VAN GORDER, Analytical method for the construction of solutions to the föppl–von kármán
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