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Abstract. Based on a subspace method and a linear approximation method, a con-
vex algorithm is designed to solve a kind of non-convex PDE constrained fractional
optimization problem in this paper. This PDE constrained problem is an infinite-
dimensional Hermitian eigenvalue optimization problem with non-convex and low
regularity. Usually, such a continuous optimization problem can be transformed into a
large-scale discrete optimization problem by using the finite element methods. We use
a subspace technique to reduce the scale of discrete problem, which is really effective
to deal with the large-scale problem. To overcome the difficulties caused by the low
regularity and non-convexity, we creatively introduce several new artificial variables
to transform the non-convex problem into a convex linear semidefinite programming.
By introducing linear approximation vectors, this linear semidefinite programming
can be approximated by a very simple linear relaxation problem. Moreover, we the-
oretically prove this approximation. Our proposed algorithm is used to optimize the
photonic band gaps of two-dimensional Gallium Arsenide-based photonic crystals as
an application. The results of numerical examples show the effectiveness of our pro-
posed algorithm, while they also provide several optimized photonic crystal structures
with a desired wide-band-gap. In addition, our proposed algorithm provides a techni-
cal way for solving a kind of PDE constrained fractional optimization problems with a
generalized eigenvalue constraint.
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1 Introduction

A PDE constrained optimization problem refers to the optimization of systems governed
by partial differential equations (PDEs), which appear as constraints in the optimization
problem [8]. In recent years, the PDE constrained optimization problem has become
an important research field due to its wide application in engineering and other related
fields, such as photonic crystal (PhC) structure design, liquid flow, flow control, weather
forecasting, and so on [5, 6, 11, 24].

In this paper, we investigate a kind of PDE constrained optimization problem, which
is in the study of the periodic band structure of micro-nanometer materials [7]. This
problem can be written in the form of (1.1) max

y
J(y)=

f (y)
g(y)

s.t. A(u(y))=λ(y)B(u(y)),
(1.1)

where y is the variable, and J(y) is the cost functional. f (y), g(y), u(y) and λ(y) are
functions of y. The constraint equation of (1.1) is written as a generalized eigenvalue
equation, with A and B being functionals caused by the actual constraint. The problem
(1.1) is an infinite-dimensional and nonlinear optimization problem with a fractional ob-
jective. These bring great difficulties to the theoretical analysis and numerical solution of
this non-convex PDE constraint problem.

The photonic band gaps (PBGs) optimization problem of PhC is such a PDE con-
strained optimization problem in the form of the problem (1.1). As an artificial mate-
rial with a periodic structure, PhCs have PBGs that can prohibit electromagnetic waves
(EMWs) from propagating in certain frequency regions [2, 14, 17]. The PBGs have a wide
range of industrial applications such as microwave engineering, semiconductor, laser
technology, and so on [9, 10, 20, 23]. When designing PhCs, the controllable frequency
bands of EMWs, i.e., the bandgap should be as big as possible to meet the actual needs.
Due to the lack of fundamental length scale in Maxwell’s equations, it can be shown that
the magnitude of the bandgap scales by a factor of s when the crystal is expanded by a
factor of 1/s. It is more meaningful to maximize the gap ratio instead of the absolute
bandgap [17]. Therefore, the objective of the PBGs optimization problem in our work is
the gap ratio which is a fractional function. The propagation of electromagnetic waves
can finally be governed by generalized eigenvalue equations, which is a non-convex PDE
constraint of the PBGs optimization problem.

There are many approaches to solve the PBGs optimization problem, such as level
set methods and other gradient-based optimization methods with prescribed inclusion
shapes, fixed topology, or geometric considerations [19, 21, 29, 30]. However, gradient-
based solution methods often suffer from the lack of regularity of the underlying prob-
lem when eigenvalue multiplicities are present, as they are typically at or near the so-
lution [24, 33]. The discretization of PDE is involved when a traditional optimization
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method is used to solve the PBGs optimization problem. Examples of common dis-
crete methods include: the finite element method (FEM), the finite difference method,
the Galerkin spectral approximations, and the mixed finite element method [?, ?, 12, 18,
28, 36–39]. The FEM is usually used to discrete the continuous problem due to its higher
calculation accuracy and advantages in solving problems posed on complex domains [15,
16, 32, 35]. For the problem (1.1), the constraint equations can be discretized by using the
FEM. Then how to design an effective optimization algorithm is a challenge for solving
the discrete system. In recent years, an algorithm combining a subspace method and
convex optimization is used to solve PBGs optimization problems, which improves the
calculation accuracy to a certain extent [24,25]. This algorithm provides an idea to design
a more simple and efficient algorithm for the PBGs optimization problem, which is the
motivation of our work. We want to design a fast algorithm to solve the PBGs optimiza-
tion problem and present the corresponding theoretical analysis.

In this paper, we design a new algorithm to solve the PBGs optimization problem,
which is based on a finite element method, subspace method and linear approximation
method. First, we use a FEM to transform the continuous optimization problem into
a discrete optimization problem. This discrete problem is a large-scale non-convex low
regularity problem with a fractional objective. To overcome these difficulties, a new ap-
proach combining the subspace method and linear approximation method is designed.
The large number theorem is used to prove the effectiveness of the linear approxima-
tion method. The subspace methods have been proved to be an effective algorithm to
reduce the scale of the discrete problem [4, 24, 26]. In our approach, the parameters of
the subspace method are redesigned based on several small numerical tests to improve
computational efficiency. We keep the subspaces fixed at a given decision parameter vec-
tor and use a reparametrization of the decision variables to obtain a semidefinite PBGs
optimization problem. This semidefinite PBGs optimization problem is transformed into
a convex linear SDP by introducing several new artificial variables. Then, via approxima-
tion of the semidefinite cones by judiciously chosen linear bases, a new linear program-
ming (LP) formulation of the PBGs optimization is obtained. Although being a somewhat
heuristic method, the LP relaxation has shown improved performance when solving the
PBGs optimization problems. Furthermore, we theoretically prove that the LP relaxation
problem can approximate the linear SDP problem.

To show the effectiveness of our proposed algorithm, the optimal structures of Gal-
lium Arsenide (GaAs)-based PhC are designed. The existing results have shown that
the GaAs-based PhC improved the optical performance of one-dimensional PhCs de-
vices significantly [3, 13]. A two-dimensional GaAs-based PhC may also improve the
optical properties of PhCs devices. We use our algorithm to optimize two-dimensional
GaAs-based PhCs with square lattice and hexagonal lattice respectively. The optimized
results demonstrate the superiority of our algorithm. The calculation time is reduced
after the semidefinite PBGs optimization problem is transformed into the LP form. The
optimized structures of PhCs with wide-band-gap provide the possibility for the fabri-
cation of PhCs. Our works not only design an efficient algorithm for the optimization
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problem proposed in this paper, but also provide a new technical way for solving PDE
constrained fractional optimization problems with generalized eigenvalue constraints. In
addition, our works provide the mathematical model, numerical algorithm and simula-
tion guidance for the fabrication of PhCs.

2 A generalized eigenvalue constrained optimization problem

Given a medium distribution, we can calculate the band structure of the material. The
common crystal systems of two-dimensional PhCs include square lattice and hexagonal
lattice (inside), and their PhC structure and band structure are shown in Fig. 1 and Fig. 2
respectively. The gaps are also shown in these two figures. In the structure design of
PhCs, we focus on which periodic structure of two materials can produce the largest
PBG around a particular frequency, i.e., maximize m-th gap ratio.

The objective of PBGs optimization problem that maximizes the gap ratio between λm

and λm+1 is defined as [24]

max
ε

J(ε(r))=
inf

k∈∂B
λm+1(ε,k)− sup

k∈∂B
λm(ε,k)

inf
k∈∂B

λm+1(ε,k)+ sup
k∈∂B

λm(ε,k)
, (2.1)

where ∂B represents the irreducible Brillouin zone boundary as shown on the right of
Fig. 3 and Fig. 4, and k is a wave vector in ∂B. As we mentioned in Section 1, the con-
straint of the PBGs optimization problem is a generalized eigenvalue equation. And note
λm as the m-th eigenvalue of the generalized eigenvalue equation, assume that these
eigenpairs are numbered in ascending order: 0≤λ1≤λ2≤···≤λ∞.

Now, we present the specific process of transforming Maxwell’s equations into a
generalized eigenvalues equation. For general time dependent electromagnetic fields,

Figure 1: A initial PhC structure with square lattice (inset) and its band structure.
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Figure 2: A initial PhC structure with hexagonal lattice (inset) and its band structure.

Maxwell’s equations in the differential form are given by [1]

∇×E=−∂B
∂t

, ∇×H=
∂D
∂t

+J, ∇·D=ρ, ∇·B=0,

where E is the electric field intensity, D is the electric flux density, H is magnetic field
intensity, B is magnetic flux density, J is the electric current density, and ρ is electric
charge density.

Consider that the field is a time-harmonic field, the medium is linear and isotropic, the
magnetic permeability is constant and in the absence of sources with a monochromatic
wave. E and H can be written as follows:

H(r,t)=H(r)e−iωt and E(r,t)=E(r)e−iωt,

then Maxwell’s equations can be written in the following form:

∇×
(

1
ε(r)
∇×H(r)

)
=
(ω

c

)2
H(r) in R3,

1
ε(r)
∇×(∇×E(r))=

(ω

c

)2
E(r) in R3,

where ε(r) is the dielectric function and c is the speed of light.
In transverse electric field (TE), the electric field is in the x−y plane and the magnetic

field H(r)=(0,0,H(r)) is perpendicular to this plane. In transverse magnetic field (TM),
the magnetic field is in the x−y plane and the electric field E(r)= (0,0,E(r)) is perpen-
dicular to this plane. Thus, the equations become

TE: −∇·
(

1
ε(r)
∇H(r)

)
=
(ω

c

)2
H(r) in R2, (2.2a)

TM: −∇·(∇E(r))=
(ω

c

)2
ε(r)E(r) in R2. (2.2b)
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Figure 3: Left: a cross section of a square lattice. The box represents the primitive unit cell Ω, Λ is the
periodicity length of the lattice, r is the radius of dielectric, and Γi, i=1,··· ,4 is the boundary of Ω. Right: the
first Brillouin zone B. The irreducible zone is the black triangular wedge, and its boundary is denoted by ∂B.

For two-dimensional square lattices and hexagonal lattices, the dielectric function sat-
isfies ε(r)=ε(r+R), where R are the crystal lattice vectors. R denote the vectors spanned
by
{

Λex,Λey
}

, where ex and ey are the unit basis vectors and Λ is the periodicity length
of the crystal.

By applying the Bloch-Floquet theory for periodic eigenvalue problems, we obtain
that

H(r)= eik·rHk(r) and E(r)= eik·rEk(r). (2.3)

Hk(r) and Ek(r) are periodic solutions such that H(r) and E(r) are quasi-periodic func-
tions. This means

Hk(r)|Γ1 =Hk(r)|Γ3 , Hk(r)|Γ2 =Hk(r)|Γ4 ,
Ek(r)|Γ1 =Ek(r)|Γ3 , Ek(r)|Γ2 =Ek(r)|Γ4 ,

and the Γi, i=1,··· ,4, are boundaries of a unit cell Ω as shown in Fig. 3 and Fig. 4.
Then substitute (2.3) into (2.2a) and (2.2b) respectively, we can get:

TE : −(∇+ik)·
(

1
ε(r)

(∇+ik)Hk(r)
)
=
(ω

c

)2
Hk(r) in Ω, (2.4)

TM: −(∇+ik)·((∇+ik)Ek(r))=
(ω

c

)2
ε(r)Ek(r) in Ω. (2.5)

For notational convenience, note that λ=ω2/c2. The above equations (2.4) and (2.5) can
be written in the following operator form:

−(∇+ik)·[ρ(∇+ik)u]=λκu in Ω, (2.6)
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Figure 4: Left: a cross section of a hexagonal lattice. The box represents the primitive unit cell Ω, Λ is the
periodicity length of the lattice, r is the radius of dielectric, and Γi, i=1,··· ,4 is the boundary of Ω. Right: the
first Brillouin zone B. The irreducible zone is the black triangular wedge, and its boundary is denoted by ∂B.

where

u=

{
Ek(r) in TM case,

Hk(r) in TE case,
ρ=


1 in TM case,

1
ε(r)

in TE case,

κ=

{
ε(r) in TM case,

1 in TE case.

And we denote the m-th pair of eigenfunction and eigenvalue of (2.6) by (um, λm).
With the periodic boundary condition, the PBGs optimization problem can be written

as: 
max

ε
J(ε(r))=

inf
k∈∂B

λm+1(ε,k)− sup
k∈∂B

λm(ε,k)

inf
k∈∂B

λm+1(ε,k)+ sup
k∈∂B

λm(ε,k)

s.t. −(∇+ik)·[ρ(∇+ik)u]=λκu in Ω,
u|Γ1 =u|Γ3 , u|Γ2 =u|Γ4 on Γ=∪4

i=1Γi.

(2.7)

3 Variational formulation and finite element discretization

According to the discussion in Section 2, the electromagnetic propagation law in PhCs
can be described by the following system: for given k∈∂B, find u and λ satisfy{

−(∇+ik)·[ρ(∇+ik)u]=λκu in Ω,
u|Γ1 =u|Γ3 , u|Γ2 =u|Γ4 on Γ=∪4

i=1Γi,
(3.1)
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where

ρ=


1 in TM case,

1
ε(r)

in TE case,
κ=

{
ε(r)I in TM case,

I in TE case.

Here we first define a Sobolev space

V=
{

v|v∈H1(Ω), v|Γ1 =v|Γ3 , v|Γ2 =v|Γ4

}
.

Using the Galerkin variational principle, (3.1) can be rewritten as: For given k∈∂B, find
u∈V and λ∈R such that

〈ρ(∇+ik)u,(∇+ik)v〉= 〈λκu,v〉, ∀v∈V, (3.2)

where 〈·,·〉 represents the standard inner product of L2(Ω).
It is easy to know that the bilinear form 〈ρ(∇+ik)u,(∇+ik)v〉 is a bounded func-

tional in the space V, and according to the classical theory of eigenvalues [22], it is known
that the solution of the variational problem (3.2) exists.

Next, we discretize the bilinear form (3.2) by using a FEM. The unit cell Ω is divided
into a finite number of n-simplex subcells denoted by T. We consider a family of triangu-
lations {Th} consist of n-simplex T which satisfy

Ω= ∑
T∈Th

T

and suppose all the triangulations used in this work are shape regular. For T ∈ Th, hT
denotes the maximal diameter of each n-simplex T and h=maxT∈Th hT. Let P denote the
set of vertices of the triangulation. And let N denote the number of subcells and L be the
number of vertices.

A typical characterization of the dielectric function ε(r) is the distribution of two dis-
tinct materials. Suppose that we are given two different materials with dielectric con-
stants εmin and εmax, and εmin≤ εmax. Our dielectric function ε(r) takes a unique value
between εmin and εmax on each subcell. And the dielectric function ε(r) is discretized into
a finite-dimensional vector ε=(ε1,ε2,··· ,εN). Moreover, to render this problem compu-
tationally tractable, we replace the irreducible Brillouin zone boundary ∂B with a finite
subset

S={kt|kt∈∂B, 1≤ t≤nk},

where kt, 1≤ t≤nk, are wave vectors chosen along the irreducible Brillouin zone bound-
ary.

Define the following finite dimensional subspaces:

Vh =
{

vh∈H1(Ω)| vh|T∈P1, vh|Γ1 =vh|Γ3 , vh|Γ2 =vh|Γ4 , ∀T∈Th
}

,
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where P1 is the space of polynomials of degree less than or equal to 1.
Thus, the finite element discretizations of (3.2) are given by the following: For given

k∈S , find uh∈Vh and λh∈R such that

〈ρ(∇+ik)uh,(∇+ik)vh〉−〈λhκuh,vh〉=0, ∀vh∈Vh. (3.3)

Let φi(x,y), i= 1,··· ,L, be the basis functions corresponding to the point xi. And we
can define

uh =
L

∑
i=1

uiφi(x,y),

where ui =uh(xi) for xi∈P .
Define

R=(φ1(x,y),φ2(x,y),··· ,φL(x,y)) and uh =
(

u1
h,u2

h,··· ,uL
h

)T
.

Obviously, we can get that uh =Ruh. Then, the finite element discretization for the state
constraints can be rewritten in the following form:

Ah(ε,k)uh =λhBh(ε)uh, k∈S .

The matrices Ah are Bh are given by:

Ah =
[〈

ρj(∇+ik)φj,(∇+ik)φi
〉]
∈CL×L,

Bh =
[〈

κjφj,φi
〉]
∈RL×L.

These matrices are sparse and typically very large. And, we consider the approximate
eigenvalues in ascending order: λ1

h≤λ2
h≤···≤λL

h .
Now, we can express the finite element approximation of the PBGs optimization prob-

lem (M1) as

(M1) :


max

ε
J(ε(r))=

min
k∈S

λm+1
h (ε,k)−max

k∈S
λm

h (ε,k)

min
k∈S

λm+1
h (ε,k)+max

k∈S
λm

h (ε,k)

s.t. Ah(ε,k)uj
h =λ

j
hBh(ε)u

j
h, j=m,m+1, ∀k∈S ,

εmin≤ ε i≤ εmax, 1≤ i≤N.

(3.4)

Here, Ah(ε,k) ∈CN×N is a Hermitian stiffness matrix and Bh(ε) ∈ RN×N is a symmet-
ric positive definite mass matrix. The matrices Ah and Bh can be written as the sum of
augmented stiffness matrices on each element. For the convenience of subsequent calcu-
lations, they are recorded in the following form. In TE case,

Ah =
N

∑
i=1

1
ε i

ATE
h,i
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depends on ε=(ε1,ε2,··· ,εN) while Bh does not. In TM case,

Bh =
N

∑
i=1

ε iBTM
h,i

depends on ε=(ε1,ε2,··· ,εN) while Ah does not.
Unfortunately, with a fractional objective, this problem is large-scale non-convex and

low regularity. There are no existing algorithms that can directly solve such a complex
optimization problem.

4 Optimal algorithm

In this section, we design a new algorithm based on a new subspace method to reduce the
scale of the problem (M1). Further, a convex optimization technique is used to transform
the non-convex problem into a linear programming problem.

4.1 A new subspace method

The PBGs optimization problem (M1) is a large-scale problem after the FEM discretiza-
tion. In order to improve the computational efficiency, we first consider a subspace
method to reduce the size of problem (M1).

Let ε̂ be the current iterate. We construct two subspace matrices for each of the target
bandgaps at each k∈∂B. For each k∈∂B, we have

Φε̂
l =[um−ak+1

h (ε̂,k),··· ,um
h (ε̂,k)] and Φε̂

u =[um+1
h (ε̂,k),··· ,um+bk

h (ε̂,k)],

where ui
h(ε̂,k) are the orthonormal eigenvectors of the Hermitian eigenvalue equation,

the constraint of problem (M1), with ε= ε̂. Ideally, Φε̂
l and Φε̂

u should include all the lower
m eigenvectors and all the higher N−m eigenvectors, respectively. But the numerical
simulations would be too expensive under the circumstances. In this paper, we use a
small important subset of these eigenvectors to reduce the computation cost. A new
subspace method is designed to determine the parameters ak, bk. The specific form is as
follows:

ak =min{7,m}, bk =min{7,N−m}.

We did many small numerical simulations to determine the parameters of the subspace
method to improve the computational efficiency. Numerous numerical experiments have
shown that the number 7 can maximize the efficiency of the calculation while maintaining
the accuracy of the calculation.

Define two additional decision variables:

λu
h = min

k∈∂B
λm+1

h (ε,k) and λl
h =max

k∈∂B
λm

h (ε,k). (4.1)
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Then the problem (M1) can be rewritten as follows:

max
ε

J(ε(r))=
λu

h−λl
h

λu
h+λl

h

s.t. Φε̂∗
l (k)

[
Ah(ε,k)−λl

hBh(ε)
]
Φε̂

l (k)�0, ∀k∈S ,
Φε̂∗

u (k)
[
Ah(ε,k)−λu

h Bh(ε)
]
Φε̂

u(k)�0, ∀k∈S ,
εmin≤ ε i≤ εmax, i=1,··· ,N,
λl

h, λu
h≥0.

(4.2)

The scale of problem (4.2) is much smaller than that obtained by the full subspaces,
and this problem can be easily reformulated as linear semidefinite programming. Keep-
ing subspaces fixed at ε̂ can reduce the nonlinearity of the underlying problem.

4.2 Linear SDP form of the problem (M1)

In order to simplify the problem and improve the computational efficiency, we first trans-
form the problem (4.2) into linear SDP. The problem (4.2) can be rewritten as:

max
y

λu
h−λl

h

λu
h+λl

h

s.t. Φε̂∗
l (k)

[
N

∑
i=1

yi Mi(k)+yN+1MN+1(k)

]
Φε̂

l (k)�0, ∀k∈S ,

Φε̂∗
u (k)

[
N

∑
i=1

yi Mi(k)+yN+2MN+2(k)

]
Φε̂

u(k)�0, ∀k∈S ,

εmin≤ ε i≤ εmax, i=1,··· ,N,
λl

h, λu
h≥0.

(4.3)

In TM case,

y :=(y1,y2,··· ,yN ,yN+1,yN+2)=

(
ε1,ε2,··· ,εN ,

1
λl

h
,

1
λu

h

)
,

Mi =−BTM
h,i , i=1,··· ,N, and MN+1=MN+2=ATM

h (k). In TE case,

y :=(y1,y2,··· ,yN ,yN+1,yN+2)=

(
1
ε1

,
1
ε2

,··· , 1
εN

,λl
h,λu

h

)
,

Mi =ATE
h,i (k), i=1,··· ,N, and MN+1=MN+2=−BTE

h .
Now, introduce the following new decision variable notation

z :=(z1,z2,··· ,zN ,zN+1,zN+2,zN+3)=(sy1,sy2,··· ,syN ,syN+1,syN+2,s),
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where

s=


( 1

λl
h
+

1
λu

h

)−1
in TM case,

1
λl

h+λu
h

in TE case.

The problem (4.3) can be equivalently translated into the following linear SDP:

max
z

(−1)dzN+1+(−1)d+1zN+2

s.t. Φε̂∗
l (k)

[
N

∑
i=1

zi Mi(k)+zN+1MN+1(k)

]
Φε̂

l (k)�0, ∀k∈S ,

Φε̂∗
u (k)

[
N

∑
i=1

zi Mi(k)+zN+2MN+2(k)

]
Φε̂

u(k)�0, ∀k∈S ,

zi+h1zN+3≥0, i=1,··· ,N,
zi+h2zN+3≤0, i=1,··· ,N,
zN+1+zN+2=1,
zN+1, zN+2, zN+3≥0,

(4.4)

where

d=

{
2 in TM case,

1 in TE case,
h1=

−εmin in TM case,

− 1
εmax

in TE case,

h2=

−εmax in TM case,

− 1
εmin

in TE case.

The problem (4.4) is a simple convex linear SDP, and this problem can be efficiently solved
by using an interior point method [34].

4.3 Linear programming

4.3.1 LP form of the problem (M1)

From the definition of a positive semidefinite matrix, we know that a matrix H is positive
semidefinite if and only if νT Hν≥ 0 for all non-zero vectors ν. That is, a linear matrix
inequality of the form

H(x)w×w =H0+
n

∑
i=1

Hixi�0
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is equivalent to

νT H(x)ν≥0, ∀ν∈Rw.

Then, we approximate the above inequality by generating a finite number of approxi-
mating vectors ν1,ν2,··· ,νNν ∈Rw. The method for choosing and updating these sets of
vectors will be discussed in the next subsection. We can multiply the two linearized SDP
constraints in (4.4) with appropriate approximating vectors, and obtain the following two
linear inequalities:

N

∑
i=1

Ψ1
i,j(k)zi+Ψ1

N+1,j(k)zN+1≤0, ∀k∈S , j=1,··· ,Nν, (4.5a)

N

∑
i=1

Ψ2
i,j(k)zi+Ψ2

N+2,j(k)zN+2≥0, ∀k∈S , j=1,··· ,Nν, (4.5b)

where

Ψ1
i,j(k)=νT

j Φε̂∗
l (k)Mi(k)Φε̂

l (k)νj∈R,

Ψ2
i,j(k)=νT

j Φε̂∗
u (k)Mi(k)Φε̂

u(k)νj∈R.

Replacing the semidefinite constraints in the problem (4.4) with their linear inequalities
(4.5) and (4.6), we obtain the following linear programming problem (M2):

(M2) :



max
z

(−1)dzN+1+(−1)d+1zN+2

s.t.
N

∑
i=1

Ψ1
i,j(k)zi+Ψ1

N+1,j(k)zN+1≤0, ∀k∈S , j=1,··· ,Nν,

N

∑
i=1

Ψ2
i,j(k)zi+Ψ2

N+2,j(k)zN+2≥0, ∀k∈S , j=1,··· ,Nν,

zi+h1zN+3≥0, i=1,··· ,N,
zi+h2zN+3≤0, i=1,··· ,N,
zN+1+zN+2=1,
zN+1, zN+2, zN+3≥0.

4.3.2 Constructing the approximating vectors

Now, we describe our approach for constructing the approximating vectors ν1,ν2,··· ,νNν∈
Rw. Ideally, the approximating vectors should be uniformly distributed over w-dimensional
half-spherical surface:

HSw =
{

ν=(ν1,··· ,νw)T∈Rw : ||ν||2=1, νw≥0
}

.

We only need to consider a half-sphere because

νTΨν=(−ν)TΨ(−ν)
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for any ν∈Rw, Ψ∈Rw×w. When Nν is big enough, vectors ν1,ν2,··· ,νNν∈HSw that follow
a uniform distribution can approximate the half spherical surface.

Theorem 4.1. Suppose the matrix Ψ∈Rw×w is symmetric, and νk ∈HSw, (k= 1,2,3,···) are
samples that uniformly distributed over HSw. Then, when νT

k Ψνk≥0, (k=1,2,3,···), the matrix
Ψ is positive semidefinite.

Proof. We know that the square of w-dimensional half-spherical surface is π
w
2

Γ( w
2 )

, where
Γ(·) is Gamma function. Define that

ΩΨ =
{

ν∈HSw : νTΨν<0
}

.

Now, let’s prove this theorem by contradiction. Suppose that matrix Ψ has negative
eigenvalues. Then we know that the square of the set ΩΨ must be greater than 0, which
is written as SΩΨ . For any vector ν∈HSw which is uniformly distributed over HSw, the
probability P(νTΨν<0) of ν satisfying νTΨν<0 is calculated as follows:

q :=P(νTΨν<0)=SΩΨ

( π
w
2

Γ(w
2 )

)−1

>0.

Since νT
k Ψνk ≥ 0, (k = 1,2,3,···), we have µN ≡ 0, (N = 1,2,3,···). µN is the number of

samples who satisfy νT
k Ψνk <0 in the first N samples νk, (k=1,··· ,N).

According to Bernoulli’s law of Large numbers, we have

lim
N→+∞

P
(∣∣∣µN

N
−q
∣∣∣<ε

)
= lim

N→+∞
P
(∣∣∣∣ 0

N
−q
∣∣∣∣<ε

)
=1, ∀ε>0.

This means P(q<ε)=1, ∀ε>0. Then q=0, which contradicts q>0. Thus, the assumption
that matrix Ψ has negative eigenvalues is invalid. That means the matrix Ψ is positive
semidefinite.

Remark 4.1. In the numerical simulation, when the number of samples νk is large enough,
we can consider the matrix Ψ is positive semidefinite. And these vectors can be generated
directly by using commercial softwares.

4.4 Main algorithm

We summarize our numerical approach for solving the PBGs optimization problem in
the following Algorithm 4.1.
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Algorithm 4.1 Implementation steps.

1: Confirm to optimize the m-th PBG, input an initial value z0, and an error tolerance
εtol . Set ẑ :=z0.

2: For each wave vector k∈ Snk , assemble the corresponding stiffness matrices Ah and
Bh. And solve the generalized eigenvalue problem Ahuh =λhBhuh.

3: Determine the subspace dimensions ak = min{7,m} and bk = min{7,N−m},
and compute the matrices Φε̂

l (k) = [um−ak+1
h (ε̂,k),··· ,um

h (ε̂,k)] and Φε̂
u(k) =

[um+1
h (ε̂,k),··· ,um+bk

h (ε̂,k)].
4: Generate the approximating vectors ν1,ν2,··· ,νNν .
5: Calculate the matrices Ψ1

i,j(k), and Ψ2
i,j(k).

6: Form the linear programming (M2) and solve this problem for an optimal solution z∗

by interior point method.
7: If ‖z∗− ẑ‖ ≤ εtol , stop and return the optimal solution z∗. Else update ẑ= z∗ and go

to Step 2.

5 Numerical simulation

To verify the quality of our proposed algorithm, it is used to optimize several PBGs of
GaAs-based PhCs respectively in this section. For the two common lattices of photonic
crystal: square lattice and hexagonal lattice, corresponding numerical experiments are
done. The optimized gaps are obviously wider compared with the initial value. We also
demonstrate the 3×3 arrays of the unit lattice for the optimized structures of PhCs.

5.1 GaAs-based PhC with square lattice

We first consider two-dimensional GaAs-based PhCs confined to the computational do-
main of a unit cell of the square lattice. a=Λex and b=Λey with lattice constant Λ. The
dielectric function ε is composed of two materials with dielectric constants εmin = 1(air)
and εmax = 11.4(GaAs), and the radius r/Λ = 0.375. The mesh size is 1

32 , and we take
nk =60, Nν =40. Band diagrams plotted in the figures below show the eigenvalues mov-
ing along the boundary of B, from X to K to M and back to X as shown in Fig. 3.

Fig. 1 shows the initial PhC structure and its band structure in Section 2. Our pro-
posed algorithm is used to maximize the m-th gap with m=2,4 and 7. Fig. 5(a), Fig. 6(a)
and Fig. 7(a) show the final optimized band structure of photonic crystal for TM po-
larization when optimizing the m-th gap. Compared with Fig. 1, it is obvious that the
optimized gaps have been significantly improved. Even when there was no band gap
before, the band structure with wide-band-gap can be getted. Fig. 5(b), Fig. 6(b) and
Fig. 7(b) show the corresponding optimized structures. The light color indicates the low
dielectric constant and the dark color denotes the high dielectric constant. As can be seen
from the optimized band structure figures, the width of optimized gap increases signif-
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(a) (b)

Figure 5: The band structure (a) and the crystal structure (b) for optimizing the second band gap.

(a) (b)

Figure 6: The band structure (a) and the crystal structure (b) for optimizing the fourth band gap.

icantly, which means that the controllable frequency waves are increases. Furthermore,
we find that the optimized band gaps are exhibited in isolated high-ε structures. This
observation has also been pointed out in [17] “the TM bandgaps are favored in a lattice
of isolated high-ε regions” and observed in [19] previously.

Fig. 8 shows the relationship between the photonic band gap and the iterative step,
which also verifies the convergence of our proposed algorithm. From this figure, we can
see that the gap is convergent with the increase in the iteration step.

Table 1 shows the average time for each iteration, the initial m-th gap, and the opti-
mized gap to solve the LP problem when optimizing the m-th gap. We note that the gaps
mentioned in this paper are the results of normalization. The average times required for
each iteration of LP problem are faster than that of SDP, although the optimized gaps of
LP are lower than those of SDP. This phenomenon is caused by the finite number of ap-
proximate vectors in the simulation. According to Theorem 4.1, we have that the matrix
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(a) (b)

Figure 7: The band structure (a) and the crystal structure (b) for optimizing the seventh band gap.

Figure 8: The relationship between the photonic band gap and the iterative step of square lattice.

Ψ is positive semidefinite when νT
k Ψνk≥0, (k=1,2,3,···). However, in the simulation, the

number of approximate vectors can only be limited. The decrease in the degree of free-
dom affects the final calculation result to a certain extent, that is, the optimized bandgap
is a little reduced. In fact, considering a balance between computing time and accuracy,
such a result is permissible. In engineering applications, we often do not need particu-
larly high-precision of bandgap, but rather focus on saving calculation time. Reducing
calculation time and cost is the focus of engineering [17, 31].

5.2 GaAs-based PhC with hexagonal lattice

We also investigate two-dimensional PhCs confined to the computational domain of a
unit cell of the hexagonal lattice and present the optimization results for the design of
photonic crystals made up of two materials: air and GaAs. a=Λex and b=−Λ

2 ex+
√

3Λ
2 ey
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(a) (b)

Figure 9: The band structure (a) and the crystal structure (b) for optimizing the fourth band gap.

(a) (b)

Figure 10: The band structure (a) and the crystal structure (b) for optimizing the fifth band gap.

with the radius r = 0.375Λ. Also the dielectric function ε is composed of two materials
with dielectric constants εmin=1(air) and εmax=11.4(GaAs). The mesh size is 1

20 , and we
take nk =60, Nν =40.

Fig. 2 shows the initial PhC structure with hexagonal lattice and its band structure in
Section 2. We use our proposed algorithm to optimize the m-th gap for TM polarization
with m = 4,5 and 7. From Fig. 2, it is clear that the initial gaps all are 0 when m = 4,5

Table 1: Numerical results for the PhC with square lattice.

m 2 4 7
average time (s) 5.97 6.08 6.11
initial gap 0 0 0
optimized gap 0.1956 0.2218 0.4029
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(a) (b)

Figure 11: The band structure (a) and the crystal structure (b) for optimizing the seventh band gap.

Figure 12: The relationship between the photonic band gap and the iterative step of hexagonal lattice.

and 7. The final optimized band structures of photonic crystal are shown in Fig. 9(a),
Fig. 10(a) and Fig. 11(a), respectively. Compared with the initial gap, it is obvious that the
optimized gaps have been significantly improved. Fig. 9(b), Fig. 10(b) and Fig. 11(b) show
the corresponding optimized structures of photonic crystal, which provide references for
the fabrication of PhCs. Also, the dark color denotes the high dielectric constant and
the light color indicates the low dielectric constant. The optimized band gaps are also
exhibited in isolated high-ε structures, just like in the previous summary. Fig. 12 shows
the relationship between the photonic band gap and the iterative step. From this figure,
it is clear that our proposed algorithm is convergent.

Table 2 summarizes the average time for each iteration, the initial m-th gap, and opti-
mized gap to solve the LP problem when optimizing the m-th gap. The optimized gaps
of hexagonal lattice are less than the gaps of square lattice because the degree of freedom
of hexagonal lattice finite element discretization is greater. Due to the limited computer
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Table 2: Numerical results for the PhC with hexagonal lattice.

m 4 5 7
average time (s) 5.21 5.35 5.77
initial gap 0 0 0
optimized gap 0.1918 0.2335 0.3137

memory, we can only reduce the subdivision accuracy which affects the optimized gaps.
In order to ensure the accuracy of the simulations, we discuss possible ways to reduce the
computation cost, while optimizing the structures of photonic crystals. On the one hand,
there is a potentially large saving when using mesh adaptivity and incorporating a non-
uniform grid for the representation of the dielectric function, as well as the eigenvalue
calculation [24]. On the other hand, parallel algorithms provide a possibility to solve this
problem.

6 Conclusions

In this paper, we propose a convex algorithm to solve the non-convex PDE constrained
optimization problems, which is used to design the maximizing the PBGs structure as
an application. For our discretize-then-optimize approach, a FEM is first used to dis-
cretize the PDE constrained optimization problem. A subspace method is used to reduce
the scale of the discrete problem, which can improve the computational efficiency. The
discrete optimization problem can be transformed into a simpler convex LP by introduc-
ing several artificial variables and approximating the semidefinite cones by judiciously
chosen linear bases, thereby further reducing the difficulty of solving the model. We the-
oretically prove that the LP relaxation problem can approximate the linear SDP problem.
And the numerical results also show the effectiveness of this algorithm in maximizing
the PBGs of GaAs-based PhC. Furthermore, our algorithm provides a technical route for
solving the PDE constrained fractional optimization problems with a generalized eigen-
value constraint and can be easily extended to efficiently solve the PBGs optimization
problem of three-dimensional PhCs combined with the three-dimensional finite element
techniques.
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