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Abstract

In this paper, we extend the work of Brenner and Sung [Math. Comp. 59, 321–338

(1992)] and present a regularity estimate for the elastic equations in concave domains.

Based on the regularity estimate we prove that the constants in the error estimates of the

nonconforming Crouzeix-Raviart element approximations for the elastic equations/eigen-

value problem are independent of Lamé constant, which means the nonconforming Crouzeix-

Raviart element approximations are locking-free. We also establish two kinds of two-grid

discretization schemes for the elastic eigenvalue problem, and analyze that when the mesh

sizes of coarse grid and fine grid satisfy some relationship, the resulting solutions can

achieve the optimal accuracy. Numerical examples are provided to show the efficiency of

two-grid schemes for the elastic eigenvalue problem.

Mathematics subject classification: 65N25, 65N30.

Key words: Elastic eigenvalue problem, Nonconforming Crouzeix-Raviart element, Two-
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1. Introduction

Due to the wide application background, the approximate computation for elastic equa-

tions/eigenvalue problems has attracted the attention of academic circles, for instance, [5, 10,

11, 21, 24, 29, 30, 32, 33, 36, 37, 39–41, 45–47, 54], etc. It is known that for numerical solutions

of the equations of linear isotropic planar elasticity, standard conforming finite elements suf-

fer a deterioration in performance as the Lamé constant λ → ∞, that is locking phenomenon

(see [4,5]). To overcome the locking phenomenon, several numerical approaches have been devel-

oped. For example, the p-version method [44], the PEERS method [1], the mixed method [43],

the Galerkin least squares method [23], the nonconforming triangular elements [11, 21] and

quadrilateral elements [32, 37, 47, 54], and so on.
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For the computation of eigenvalue problems in elasticity, there have been quite a few stud-

ies. For instance, [40] adopts a preconditioning technique associated with dimensional reduc-

tion algorithm for the thin elastic structures. [39] presents a method for three-dimensional

linear elasticity or shell problems to derive computable estimates of the approximation error

in eigenvalues. [45] develops an a posteriori error estimator for linearized elasticity eigenvalue

problems. [29] analyzes the finite element approximation of the spectral problem for the linear

elasticity equation with mixed boundary conditions in a curved concave domain. [36] conducts

an analysis for the eigenvalue problem of linear elasticity by means of a mixed variational for-

mulation. [41] presents a theory for the approximation of eigenvalue problems in mixed form

by nonconforming methods and apply it to the classical Hellinger-Reissner mixed formulation

for a linear elastic structure, etc. Recently, [33] uses the immersed finite element method based

on Crouzeix-Raviart (C-R) P1-nonconforming element to approximate eigenvalue problems for

elasticity equations with interfaces. [24] explores a shifted-inverse adaptive multigrid method

for the elastic eigenvalue problem.

In the above literatures, [10, 11, 21, 33] study the nonconforming C-R element method for

the elastic equations/eigenvalue problems in convex domains, and as far as we know, there is no

report on the nonconforming C-R approximation for the elastic eigenvalue problems in concave

domain. In this paper, we extend the work in [10, 11] and present a regularity estimate for

the elastic equations in concave domain (see (2.8)). Since in the standard error analysis for

the consistency term, it is required that the “minimum” regularity u ∈ H1+s(Ω) for s ≥ 1/2

which is not necessarily satisfied in concave domain, [28, 35] adopt a new method to conduct

the error estimate for the C-R element approximation. To be more specific, they made use of

the conforming interpolation of the nonconforming C-R element approximation. However, at

present we cannot use their method to warrant the error estimates are locking-free for the elastic

eigenvalue problem. So, we adopt the argument in [6, 13] to prove a trace inequality in which

the constant is analyzed elaborately (see Lemma 3.3) with the condition slightly different from

that in the existing literatures and then derive the estimates of consistency term. Based on

the regularity estimate we prove that the constants in the error estimates of the nonconforming

C-R element approximations for the elastic equations/eigenvalue problem are independent of

the Lamé constant, which means the C-R element approximations are locking-free.

Since introduced by Xu and Zhou [49,50], due to the good performance in reducing compu-

tational costs and improving accuracy, the two-grid discretization method has been developed

and successfully applied to other problems, for instance, Poisson equation/integral equation

eigenvalue problems [51, 52], semilinear eigenvalue problem [16], Stokes equations [12, 34, 38],

Schrödinger equation [15, 25], quantum eigenvalue problem [20], Steklov eigenvalue problem

[7, 48] and so on. In this paper, we establish two kinds of two-grid discretization schemes of

nonconforming C-R element. We prove that the constants in error estimates are independent of

the Lamé constants, i.e., the two-grid discretization schemes of nonconforming C-R element are

also locking-free, and when the mesh sizes of coarse grid and fine grid satisfy some relationship,

the resulting solutions can achieve the optimal accuracy. We present some numerical examples

to show the two-grid discretization schemes are efficient for solving elastic eigenvalue problem.

The rest of the paper is organized as follows. Some preliminaries are given in Section 2. The

nonconforming C-R element approximation for the elastic eigenvalue problem is established in

Section 3. Two-grid discretization schemes and the corresponding error analysis are presented

in Section 4. Finally, numerical experiments are shown in Section 5.

We refer to [3, 8, 10, 17] as regards the basic theory of finite element methods in this paper.
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Throughout this paper, we use the letter C, with or without subscripts, to denote a generic

positive constant independent of the Lamé constants µ, λ and the mesh size h, which may take

different values in different contexts.

2. Preliminaries

Let x = (x, y)T ∈ R
2,Ω ⊂ R

2 be a bounded Lipschitz polygon but not necessarily con-

vex. The standard notation W s,p(Ω) is used to denote Sobolev spaces, and Hs(Ω) and their

associated norms ‖ · ‖s,Ω and seminorms | · |s,Ω are used in the case of p = 2. Denote

H1
0 (Ω) = {v ∈ H1(Ω) : v|∂Ω = 0} where v|∂Ω = 0 is in the sense of trace. The space H−s(Ω),

the dual of Hs(Ω), will also be used. In this paper, the bold letter is used for vector-valued

functions and their associated spaces, and the following conventions are adopted for the Sobolev

norms and seminorms: for any v = (v1(x), v2(x))
T ∈ Hs(Ω),

‖v‖Hs(Ω) := (‖v1‖2s,Ω + ‖v2‖2s,Ω)
1
2 ,

|v|Hs(Ω) := (|v1|2s,Ω + |v2|2s,Ω)
1
2 .

Bold letter with an undertilde is used for matrix-valued functions and spaces. For matrix-valued

function A = (aij)1≤i,j≤2,

‖A‖H
∼

s(Ω) :=




2∑

i,j=1

‖aij‖2s,Ω




1
2

.

The elastic eigenvalue problem is to find ω ∈ R and u 6= 0 such that

{
−∇ · σ(u) = ωρu in Ω,

u = 0 on ∂Ω.
(2.1)

Here u(x) = (u1(x), u2(x))
T is the displacement vector, ρ(x) is the mass density, and σ(u) is

the stress tensor given by the generalized Hooke law

σ(u) = 2µε(u) + λtr(ε(u))I,

where I ∈ R
2×2 is the identity matrix, and the positive constants µ, λ denote the Lamé param-

eters satisfying (µ, λ) ∈ [µ0, µ1] × (0,+∞) where 0 < µ0 < µ1 < ∞. The strain tensor ε(u) is

defined as

ε(u) =
1

2

(
∇u+ (∇u)T

)
,

where ∇u is the displacement gradient tensor

∇u =

[
∂xu1 ∂yu1

∂xu2 ∂yu2

]
.

The weak form for (2.1) is stated as to find (ω,u) ∈ R×H1
0(Ω), ‖u‖H1(Ω) = 1, such that

a(u,v) = ωb(u,v), ∀v ∈ H1
0(Ω), (2.2)
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where

a(u,v) =

∫

Ω

σ(u) : ∇vdx

=

∫

Ω

(
µ∇u : ∇v + (µ+ λ)(div u)(div v)

)
dx (2.3)

=

∫

Ω

(2µε(u) : ε(v) + λdivu div v)dx,

b(u,v) =

∫

Ω

ρu · vdx =

∫

Ω

ρ

2∑

i=1

uividx.

Here A : B = tr(ABT ) is the Frobenius inner product of matrices A and B. It can be verified

that the above bilinear form a(·, ·) and the linear form b(·, ·) are continuous over the space

H1
0(Ω) and L2(Ω), respectively, and from Korn’s inequality it can be proved that a(·, ·) is H1

0-

elliptic. Thus, a(·, ·) and ‖ · ‖a =
√
a(·, ·) can be used as an inner product and norm on H1

0(Ω).

Without loss of generality, we assume that ρ ≡ 1 in the rest of the paper.

The source problem associated with (2.2) is: Find w ∈ H1
0(Ω) such that

a(w,v) = b(f ,v), ∀v ∈ H1
0(Ω). (2.4)

In [10, 11] Brenner et al. study and prove the following the a priori estimates for (2.4) when Ω

is convex:

‖w‖H2(Ω) + λ‖divw‖1,Ω ≤ CΩ‖f‖L2(Ω). (2.5)

Next, using the argument in [11] we shall discuss the a priori estimates for (2.4) when Ω is

concave. In this case, it needs more delicate analysis since the solution of (2.4) is not smooth

enough.

Lemma 2.1. For any given w ∈ H1+t(Ω) ∩H1
0(Ω) (0 ≤ t ≤ 1), there exists w∗ ∈ H1+t(Ω) ∩

H1
0(Ω) such that

divw∗ = divw, (2.6)

‖w∗‖H1+t(Ω) ≤ C‖divw‖t,Ω. (2.7)

Proof. Since w ∈ H1+t(Ω) ∩H1
0(Ω), divw ∈ Ht(Ω) and

∫
Ω divwdx = 0, by Theorem 3.1

in [2] we know that there exists w∗ ∈ H1+t(Ω) ∩H1
0(Ω) such that (2.6) and (2.7) hold. �

Theorem 2.1. For f ∈ L2(Ω), (2.4) has a unique solution w ∈ H1+s(Ω) and w ∈ W2,p(Ω) (p =

2/(2− s)), and there exists a positive constant CΩ such that

‖w‖H1+s(Ω) + λ‖divw‖s,Ω ≤ CΩ‖f‖L2(Ω), (2.8)

where s < 1/2 and s can be close to 1/2 arbitrarily, and CΩ is the a priori constant dependent

on Ω but independent of µ, λ and f .

Proof. Since a(·, ·) is H1
0-elliptic and b(·, ·) is continuous, from the Lax-Milgram theorem we

know that (2.4) admits a unique solution w ∈ H1
0(Ω).

From [26, Theorem 4.2.5] and [22] we know that there exist numbers Ci,z such that

w = w0 +

N∑

i=1

∑

z

Ci,zr
z
i φi,z(ϑi), (2.9)
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where w0 ∈ H2(Ω), N is the number of corners of Ω, ri is the distance from any point to the

i-th corner of Ω, z ∈ (0, 1) is a real solution of

sin2(zϑi) = z2 sin2 ϑi

and min{z} > 1/2, and φi,z(ϑi) is a vector field depending on z, λ, µ and sine and cosine function

of interior angle ϑi at the i-th corner (the expression of φi,z(ϑi) we refer to (4.2.14) in [26]).

From (2.9) we can see that the singularity of w depends on rzi , thus we know that w ∈
H1+t(Ω) for all t ∈ (1/2,min{z}), and w ∈ W2,p(Ω) with p = 2/(2− t).

Next, we shall prove (2.8). Let v = w in (2.4), from (2.3) we have

2µ

∫

Ω

ε(w) : ε(w)dx ≤ ‖f‖L2(Ω)‖w‖L2(Ω). (2.10)

By using First Korn inequality (cf. Corollary 11.2.25 in [10]) and (2.10) we deduce

‖w‖2H1(Ω) ≤ CΩ‖ε(w)‖2L
∼

2(Ω) ≤ CΩ‖f‖L2(Ω)‖w‖L2(Ω) ≤ CΩ‖f‖L2(Ω)‖w‖H1(Ω),

i.e.,

‖w‖H1(Ω) ≤ CΩ‖f‖L2(Ω). (2.11)

From Lemma 2.1 we know that there exists w∗ ∈ H1
0(Ω) such that

divw∗ = divw, (2.12)

‖w∗‖H1(Ω) ≤ CΩ‖divw‖0,Ω. (2.13)

Taking v = w∗ in (2.4) and using (2.12) we deduce

λ

∫

Ω

|divw|2dx ≤ ‖f‖L2(Ω)‖w∗‖L2(Ω) + 2µ‖ε(w)‖L
∼

2(Ω)‖ε(w∗)‖L
∼

2(Ω),

which together with (2.11) and (2.13) yields

λ‖divw‖0,Ω ≤ CΩ‖f‖L2(Ω). (2.14)

From (2.11) and (2.14) we obtain

‖w‖H1(Ω) + λ‖divw‖0,Ω ≤ CΩ‖f‖L2(Ω).

By Lemma 2.1, there exists Φ ∈ H1+t(Ω) ∩H1
0(Ω) such that

div Φ = divw,

‖Φ‖H1+t(Ω) ≤ CΩ‖divw‖t,Ω. (2.15)

From (2.11) and (2.15) we get

‖Φ‖H1+t(Ω) ≤ CΩ(|divw|t,Ω + ‖f‖L2(Ω)). (2.16)

The equation corresponding to (2.4) states as

−µ∆w− (µ+ λ)∇(divw) = f . (2.17)
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Define

w′ = w − Φ, g = −
(
µ+ λ

µ

)
divw, (2.18)

then (w′, g) satisfies the following Stokes equation:

−∆w′ +∇g = F, divw′ = 0, (2.19)

where F = 1
µ f +∆Φ and ∆Φ ∈ H−1+t(Ω) ⊂ H−1+s(Ω).

By Theorem 7 in [42] and the closed graph theorem (see also page 847 in [22]) we have

(w′, g) ∈ H1+s(Ω)×Hs(Ω) with the estimate

‖w′‖H1+s(Ω) + ‖g‖s,Ω ≤ C‖ 1
µ
f +∆Φ‖H−1+s(Ω), (2.20)

where s < 1/2 and s can be close to 1/2 arbitrarily, thus we get w = w′ +Φ ∈ H1+s(Ω).

Substituting (2.18) into (2.20) and applying (2.16) yield

‖w‖H1+s(Ω) +
µ+ λ

µ
|divw|s,Ω ≤ CΩ(‖f‖L2(Ω) + |divw|s,Ω). (2.21)

Let λ0 = 2CΩµ1 where CΩ is the constant in (2.21). For λ > λ0, we obtain from (2.21) that

‖w‖H1+s(Ω) +
λ

2µ1
|divw|s,Ω ≤ CΩ‖f‖L2(Ω), (2.22)

which implies (2.8) for λ > λ0. When λ ≤ λ0, the conclusion follows directly from the standard

elliptic regularity estimate for the problem. �

In the proof of Theorem 2.1, in (2.19) we use the result that the right-hand side of Stokes

equation F = 1
µ f + ∆Φ ∈ H−1+s(Ω) (s < 1/2) to get w′ ∈ H1+s(Ω), then we derive (2.8).

But in fact, F = 1
µ f +∆Φ ∈ H−1+t(Ω) (t > 1/2). In addition, from §6.2 in [26] we know that

when the right-hand side F ∈ L2(Ω), the generalized solution of Stokes equation w′ ∈ H1+t(Ω)

and g ∈ Ht(Ω) (t > 1/2). Thus, by interpolation of Sobolev space (see for instance [10]), when

F = 1
µ f +∆Φ ∈ H−1+t(Ω) (t > 1/2), we have w′ ∈ H−1+t′(Ω) (t′ > 1/2). Therefore, we think

the following regularity assumption is reasonable:

R(Ω). For any f ∈ L2(Ω), there exists w ∈ H1+s(Ω) ∩W2,p(Ω) ∩H1
0(Ω) satisfying

a(w,v) = b(f ,v), ∀v ∈ H1
0(Ω),

and

‖w‖H1+s(Ω) + λ‖divw‖s,Ω ≤ CΩ‖f‖L2(Ω),

for some 1/2− ε < s ≤ 1 where ε > 0 is an arbitrarily small constant and p = 2/(2− s).

3. The Nonconforming C-R Element Approximation

Assume that πh = {κ} is a regular triangulation of Ω with mesh-size function h(x) whose

value is the diameter hκ of the element κ containing x, hκ/ρκ ≤ ν with ρκ the supremum of

diameter of circle contained in κ (see (17.1) in [17]), and h = maxx∈Ω h(x) is the mesh diameter

of πh. Let Eh denote the set of all edges of elements κ ∈ πh. We split this set as Eh = E i
h ∪ Eb

h
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with E i
h and Eb

h being the sets of inner and boundary edges, respectively. Let Sh
0 (Ω) be the C-R

element space defined on πh

Sh
0 (Ω) =

{
v ∈ L2(Ω) : v |κ∈ P1(κ), ∀κ ∈ πh,

∫

ℓ

[[v]]ds = 0 ∀ℓ ∈ E i
h,

∫

ℓ

vds = 0, ∀ℓ ∈ Eb
h

}
,

where [[·]] is the jump across an edge ℓ ∈ Eh defined as follows.

If ℓ ∈ E i
h is shared by two elements κ1 and κ2 in πh, and vi = v|κi

(i = 1, 2), then [[v]] =

(v1 − v2)|ℓ; If ℓ ∈ Eb
h, then [[v]] = v|ℓ.

Denote Sh
0 (Ω) = Sh

0 (Ω)× Sh
0 (Ω), and define

H(h) = Sh
0 (Ω) +H1

0(Ω) =
{
wh +w : wh ∈ Sh

0 (Ω),w ∈ H1
0(Ω)

}
.

Denote

ah(u,v) = µ

∫

Ω

∇hu : ∇hvdx + (µ+ λ)

∫

Ω

(div hu)(div hv)dx, ∀u,v ∈ H(h), (3.1)

where (∇hv)|κ = ∇(v|κ) and (div hv)|κ = div (v|κ) for any v ∈ H(h). It is easy to know that

ah(·, ·) is continuous and positive definite in H(h).

Define the nonconforming energy norm ‖ · ‖h on H(h) by

‖v‖h =
√
ah(v,v),

and denote

|v|1,h =

√∑

κ∈πh

|v|2
H1(κ).

From the Poincaré-Friedrichs inequality (cf. [9]) we know that | · |1,h is also a norm on H(h),

and a simple calculation shows that

|v|21,h =
∑

κ∈πh

|v|2H1(κ) =
∑

κ∈πh

∫

κ

∇v : ∇vdx ≤ C‖v‖2h.

Define the C-R element interpolation operator Ih : H1
0(Ω) → Sh

0 (Ω) by

∫

ℓ

Ihvds =

∫

ℓ

vds, ∀ ℓ ∈ Eh.

The C-R nonconforming finite element discretization of (2.2) is as follows: Find (ωh,uh) ∈
R× Sh

0 (Ω) with ‖uh‖h = 1 such that

ah(uh,vh) = ωhb(uh,vh), ∀vh ∈ Sh
0 (Ω). (3.2)

The source problem associated with (3.2) states as: Find wh ∈ Sh
0 (Ω) such that

ah(wh,v) = b(f ,v), ∀v ∈ Sh
0 (Ω). (3.3)

The well-posedness of (3.3) has also been discussed in [10].

Let w be the solution of (2.4). Define the consistency term: For any v ∈ H(h),

Dh(w,v) = ah(w,v) − b(f ,v). (3.4)

To estimate the consistency term, we need the following trace inequalities.
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Lemma 3.1. For any κ ∈ πh and w ∈ H1+s(κ), the following trace inequalities hold:

‖w‖0,∂κ ≤ C
(
h
− 1

2
κ ‖w‖0,κ + h

1
2
κ |w|1,κ

)
,

‖∇w‖0,∂κ ≤ C
(
h
− 3

2
κ ‖w‖0,κ + h

− 1
2

κ |w|1,κ + h
s− 1

2
κ |w|1+s,κ

)
,

1

2
≤ s ≤ 1.

Proof. The conclusion is followed by using the trace theorem on the reference element and

the scaling argument. �

Lemma 3.2. Let ℓ ⊂ ∂κ be an edge of element κ. For any g ∈ H
1
2−r(ℓ), there exists a lifting

vg of g such that vg ∈ H1−r(κ), 0 < r < 1/2, vg|ℓ = g, vg|∂κ\ℓ = 0 and

|vg|1−r,κ + hr−1
κ ‖vg‖0,κ ≤ Ch−δ

κ ‖g‖ 1
2−r,∂κ,

where C depends on the constant ν in regular triangulation but is independent of λ, and δ =

1/2− r.

Proof. Let κ̂ denote the reference element, introduce the affine mappings x̂ → Fκ(x̂) =

Bκx̂+ bκ which maps the reference element κ̂ on κ and x̂ → Bℓx̂+ bℓ which maps the reference

edge ℓ̂ on an edge ℓ of κ. Then, from [18] we have

|detBκ| ≤ Ch2
κ, ‖Bκ‖ ≤ Chκ, |detBκ|−1 ≤ Cρ−2

κ , ‖B−1
κ ‖ ≤ Cρ−1

κ , |detBℓ| ≤ Chκ,

where ‖ · ‖ stands for the Euclidean norm of matrix.

From Theorem 1.5.2.3 in [27] we know that any ĝ ∈ H
1
2−r(ℓ̂) can be extended to be a function

belonging to H
1
2−s(∂κ̂) through the trivial extension by zero to all of ∂κ̂. Thanks to the inverse

trace theorem (see page 387 in [31], or page 1767 in [13]) we know that there exists a lifting v̂g
of ĝ such that v̂g ∈ H1−r(κ̂), v̂g|∂κ̂ = ĝ and

‖v̂g‖1−r,κ̂ ≤ C‖ĝ‖ 1
2−r,∂κ̂ = C‖ĝ‖ 1

2−r,ℓ̂. (3.5)

From the relationships between the seminorms on affine equivalent elements in Sobolev space

(see, e.g., [17, 18]) we deduce that

hr−1
κ ‖vg‖0,κ ≤ Chr−1

κ |detBκ|
1
2 ‖v̂g‖0,κ̂ ≤ Chr−1

κ hκ‖v̂g‖0,κ̂ = Chr
κ‖v̂g‖0,κ̂, (3.6)

|vg|1−r,κ ≤ ‖B−1
κ ‖1−r|detBκ|

1
2 |v̂g|1−r,κ̂ ≤ (

1

ρκ
)1−rhκ|v̂g|1−r,κ̂, (3.7)

‖ĝ‖0,ℓ̂ ≤ C|detBℓ|−
1
2 ‖g‖0,ℓ ≤ Cρ

− 1
2

κ |g|0,ℓ, (3.8)

|ĝ| 1
2−r,ℓ̂ ≤ C‖Bℓ‖

1
2−r|detBℓ|−

1
2 |g| 1

2−r,ℓ ≤ Ch
1
2−r

ℓ ρ
− 1

2
κ |g| 1

2−r,ℓ. (3.9)

Since hκ/ρκ ≤ ν, we have ρκ ≥ hκ/ν. Thus, from (3.6), (3.7) and (3.5) we deduce

hr−1
κ ‖vg‖0,κ + |vg|1−r,κ

≤ C(hr
κ‖v̂g‖0,κ̂ +

(
ν

hκ

)1−r

hκ|v̂g|1−r,κ̂

≤ Cmax
{
1, ν1−r

}
hr
κ‖v̂g‖1−r,κ̂ ≤ Cν1−rhr

κ‖ĝ‖ 1
2−r,ℓ̂,

and from (3.8) and (3.9) we derive

‖ĝ‖0,ℓ̂ + |ĝ| 1
2−r,ℓ̂ ≤ Cρ

− 1
2

κ |g|0,ℓ + Ch
1
2−r

ℓ ρ
− 1

2
κ |g| 1

2−r,ℓ ≤ Cν
1
2 max{h−r

κ , h
− 1

2
κ }‖g‖ 1

2−r,ℓ.

Combining the above two estimates, we get the desired result. �
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Lemma 3.3. Let w be the solution of (2.4), and w ∈ H1+r(Ω) ∩ W2,p(Ω) (0 < r < 1/2,

p = 2/(2− r)), then

‖µ∇wγ + (λ+ µ)divwγ‖
H

r− 1
2 (ℓ)

≤ Ch−δ
κ (h1−r

ℓ ‖f‖L2(κ) + µ‖∇w‖H
∼

r(κ) + (λ+ µ)‖divw‖r,κ), ∀κ ∈ πh, ℓ ⊂ ∂κ, (3.10)

where γ is the unit out normal to ∂κ, C depends on the constant ν in regular triangulation but

is independent of λ and δ = 1/2− r.

Proof. We use the proof method of Corollary 3.3 on page 1384 in [6] or Lemma 2.1 in [13]

to prove (3.10).

First, we shall prove that the following Green’s formula
∫

∂κ

(∇wγ) · vds =

∫

κ

∆w · vdx+

∫

κ

∇w : ∇vdx, ∀κ ∈ πh (3.11)

holds for all v ∈ H1−r(κ) with 0 < r < 1/2.

Let H−r(κ) be the dual of Hr
0(κ) which is the closure of C∞

0 (κ) in Hr(κ) norm. Since

Hr(κ) is the same space as Hr
0(κ) for r ∈ (0, 1/2) (see, e.g., Theorem 1.4.2.4 in [27]) and

∇v is in H−r(κ), the term
∫
κ ∇w : ∇vdx in (3.11) then can be viewed as a duality pair

between Hr(κ) and H−r(κ). By the Sobolev imbedding theorem we get H1−r(κ) →֒ L
2
r (κ)

continuously, thus the term
∫
κ
∆w ·vdx in (3.11) can be viewed as a duality pair between Lp(κ)

and L
2
r (κ). Since w ∈ W2,p(Ω) (1 < p < 2) is the solution of (2.4), there is τ > 0 such that

w ∈ W2,p+τ (Ω). By the trace theorem, there is τ1 > 0 which can be arbitrarily close to 0 such

thatH1−r(κ) →֒ L
1
r
−τ1(∂κ) continuously, and there is τ2 > 0 such that∇wγ|∂κ ∈ L

1
1−r

+τ2(∂κ),

thus (∇wγ) · v|∂κ ∈ L1(∂κ). To sum up, all terms in (3.11) make sense.

Then, the validity of (3.11) follows from the standard density argument (C∞(κ) is dense in

H1−r(κ) ) and the fact that (3.11) holds for C∞(κ) function v.

Using the same argument as above, we can deduce that for all v ∈ H1−r(κ) with 0 < r < 1/2
∫

∂κ

divwγ · vds =

∫

κ

∇(divw) · vdx +

∫

κ

(divw)(div v)dx. (3.12)

By the trace theorem, v|∂κ is in H
1
2−r(∂κ). Since, for each edge ℓ ⊂ ∂κ, the trivial extension

of functions in H
1
2−r(ℓ) by zero to all of ∂κ belongs to H

1
2−r(∂κ) (see, e.g., Theorem 1.5.2.3

in [27]), this interpretation enables us to define the duality pair on each edge ℓ of ∂κ

µ

∫

ℓ

(∇wγ) · vds + (λ+ µ)

∫

ℓ

divwγ · vds :=< µ∇wγ + (λ+ µ)divwγ,v >ℓ,

where (µ∇wγ + (λ+ µ)divwγ)|ℓ ∈ Hr− 1
2 (ℓ) and v|ℓ ∈ H

1
2−r(ℓ).

For any g ∈ H
1
2−r(ℓ), from Lemma 3.2 we know that there exists a lifting vg of g such that

vg ∈ H1−r(κ), vg|ℓ = g, vg|∂κ\ℓ = 0, and

‖∇vg‖H
∼

−r(κ) + hr−1
κ ‖vg‖L2(κ) ≤ Ch−δ

κ ‖g‖
H

1
2
−r(ℓ)

,

where C depends on the constant ν in regular triangulation but is independent of λ.

From Green’s formula (3.11) and (3.12) and the definition of the dual norm we deduce
∫

ℓ

µ(∇wγ) · g + (λ+ µ)divwγ · gds =
∫

∂κ

µ(∇wγ) · vg + (λ + µ)divwγ · vgds
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= µ

(∫

κ

∆w · vgdx+

∫

κ

∇w : ∇vgdx

)
+ (λ + µ)

(∫

κ

∇(divw) · vgdx+

∫

κ

(divw)(div vg)dx

)

=

∫

κ

f · vgdx+ µ

∫

κ

∇w : ∇vgdx+ (λ+ µ)

∫

κ

(divw)(div vg)dx

≤ C

(
‖f‖L2(κ)‖vg‖L2(κ) + µ‖∇w‖H

∼

r(κ)‖∇vg‖H
∼

−r(κ) + (λ+ µ)‖divw‖r,κ‖div vg‖−r,κ

)

≤ Ch−δ
κ

(
h1−r
ℓ ‖f‖L2(κ) + µ‖∇w‖H

∼

r(κ) + (λ+ µ)‖divw‖r,κ
)
‖g‖

H
1
2
−r(ℓ)

, (3.13)

by the definition of the dual norm we have

‖µ∇wγ + (λ + µ)divwγ‖
H

r− 1
2 (ℓ)

= sup
g∈H

1
2
−r(ℓ)

|
∫
ℓ
µ(∇wγ) · g+ (λ+ µ)divwγ · gds|

‖g‖
H

1
2
−r(ℓ)

.

Combining the above two relationships we obtain (3.10). �

Based on the standard argument (see, e.g., [10]), the following consistency error estimate

can be proved.

Theorem 3.1. Let w ∈ H1+s(Ω) be the solution of (2.4) and suppose that R(Ω) holds, then

|Dh(w,v)| ≤ Chs‖f‖L2(Ω)‖v‖h, ∀v ∈ H(h). (3.14)

Proof. Using integration by parts, we get
∫

Ω

∇w : ∇hvdx +

∫

Ω

△w · vdx =
∑

ℓ∈Eh

∫

ℓ

∂w

∂γ
· [[v]]ds, (3.15)

∫

Ω

(divw)(div hv)dx +

∫

Ω

∇(divw) · vdx =
∑

ℓ∈Eh

∫

ℓ

divwγ · [[v]]ds. (3.16)

Combining (2.17), (3.1), (3.15) and (3.16), we deduce
∣∣∣∣ah(w,v) −

∫

Ω

f · vdx
∣∣∣∣ =

∣∣∣∣ah(w,v) −
∫

Ω

(
− µ∆w − (µ+ λ)∇divw

)
· vdx

∣∣∣∣

= µ
∑

ℓ∈Eh

∫

ℓ

∂w

∂γ
· [[v]]ds + (µ+ λ)

∑

ℓ∈Eh

∫

ℓ

divwγ · [[v]]ds. (3.17)

For ℓ ∈ Eh, κ ∈ πh, define

Pℓf =
1

|ℓ|

∫

ℓ

fds, Pκf =
1

|κ|

∫

κ

fdx.

Suppose that κ1, κ2 ∈ πh such that κ1 ∩ κ2 = ℓ. Since [[v]] is a linear function vanishing at the

midpoint of ℓ, we have
∣∣∣∣
∫

ℓ

∂w

∂γ
· [[v]]ds

∣∣∣∣ =
∣∣∣∣
∫

ℓ

(
∂w

∂γ
− Pℓ

(
∂w

∂γ

))
· [[v]]ds

∣∣∣∣

=

∣∣∣∣
∫

ℓ

(
∂w

∂γ
− Pℓ

(
∂w

∂γ

))
·
(
[[v]]− Pℓ[[v]]

)
ds

∣∣∣∣ (3.18a)

=

∣∣∣∣
∫

ℓ

∂w

∂γ
·
(
[[v]]− Pℓ[[v]]

)
ds

∣∣∣∣ , (3.18b)
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∣∣∣∣
∫

ℓ

divwγ · [[v]]ds
∣∣∣∣ =

∣∣∣∣
∫

ℓ

(divwγ − Pℓ

(
divwγ)

)
· [[v]]ds

∣∣∣∣

=

∣∣∣∣
∫

ℓ

(divwγ − Pℓ(divwγ) ·
(
[[v]]− Pℓ[[v]]

)
ds

∣∣∣∣ (3.19a)

=

∣∣∣∣
∫

ℓ

divwγ ·
(
[[v]] − Pℓ[[v]]

)
ds

∣∣∣∣ . (3.19b)

Then, when s ∈ [1/2, 1], using (3.18a) and Schwarz inequality we deduce

∣∣∣∣
∫

ℓ

∂w

∂γ
· [[v]]ds

∣∣∣∣ ≤
∑

i=1,2

‖∇wγ − Pℓ(∇wγ)‖L2(ℓ)‖v|κi
− Pℓ(v|κi

)‖L2(ℓ)

≤
∑

i=1,2

‖∇(w − Ihw)γ‖L2(ℓ)‖v|κi
− Pκi

(v|κi
)‖L2(ℓ), (3.20)

and by Lemma 3.1 and the standard error estimates for L2-projection we get

‖∇(w− Ihw)γ‖L2(ℓ) ≤ Chs− 1
2 ||w||H1+s(κi),

‖v|κi
− Pκi

(v|κi
)‖L2(ℓ) ≤ Ch

1
2 ||v||H1(κi).

Substituting the above two estimates into (3.20), we obtain

∣∣∣∣
∫

ℓ

∂w

∂γ
· [[v]]ds

∣∣∣∣ ≤ C
∑

i=1,2

hs‖w‖H1+s(κi)‖v‖H1(κi). (3.21)

Using the same argument as above, we can derive that for s ∈ [1/2, 1],

∣∣∣∣
∫

ℓ

divwγ · [[v]]ds
∣∣∣∣ ≤ C

∑

i=1,2

hs|divw|s,κi
‖∇hv‖L

∼

2(κi). (3.22)

Combining (3.17), (3.21), (3.22) and (2.8), we deduce

∣∣∣∣ah(w,v) −
∫

Ω

f · vdx
∣∣∣∣ ≤ Chs‖∇hv‖L

∼

2(Ω){µ|w|H1+s(Ω) + (µ+ λ)|divw|s,Ω}

≤ Chs‖f‖L2(Ω)‖v‖h, ∀v ∈ H(h).

Then (3.14) is valid for s ∈ [1/2, 1].

When s < 1/2, from R(Ω) we also have w ∈ H1+r(Ω) by taking r = s+ 0.5−s
2 . Thus, from

(3.18b), (3.19b) and Lemma 3.3 we deduce that

∣∣∣∣
∫

ℓ

(
µ
∂w

∂γ
+ (µ+ λ)divwγ

)
· [[v]]ds

∣∣∣∣ =
∣∣∣∣
∫

ℓ

(
µ
∂w

∂γ
+ (µ+ λ)divwγ

)
·
(
[[v]] − Pℓ[[v]]

)
ds

∣∣∣∣
≤ Ch−δ

κ

(
h1−r
ℓ ‖f‖L2(κ) + µ‖w‖H1+r(κ) + (µ+ λ)‖divw‖r,κ

) ∥∥[[v]]− Pℓ[[v]]
∥∥
H

1
2
−r(ℓ)

. (3.23)

By using inverse estimate, Lemma 3.1 and the error estimate of L2-projection, we derive

∥∥[[v]]− Pℓ[[v]]
∥∥
H

1
2
−r(ℓ)

≤ Ch
r− 1

2

ℓ

∥∥[[v]]− Pℓ[[v]]
∥∥
L2(ℓ)

≤ C
∑

i=1,2

hr
κi
|v|H1(κi).
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Substituting the above estimate into (3.23), we obtain
∣∣∣∣
∫

ℓ

(
µ
∂w

∂γ
+ (µ+ λ)divwγ

)
· [[v]]ds

∣∣∣∣

≤ C
∑

i=1,2

h−δ
κi

(h1−r
ℓ ‖f‖L2(κ) + µ‖w‖H1+r(κ) + (µ+ λ)‖divw‖r,κ)hr

κi
|v|H1(κi),

and substituting the above inequality into (3.17) we get
∣∣∣∣ah(w,v) −

∫

Ω

f · vdx
∣∣∣∣

≤ Chr−δ‖∇hv‖L
∼

2(Ω)

{
h1−r‖f‖L2(Ω) + µ‖w‖H1+r(Ω) + (µ+ λ)|divw|r,Ω

}

≤ Ch−δhr‖f‖L2(Ω)‖v‖h, ∀v ∈ H(h).

Noting that −δ+ r = −1/2+ r + r = s, we get the desired result. The proof is completed. �

Now we can state the error estimates of C-R element approximation for (2.2).

Theorem 3.2. Under the conditions of Theorem 3.1, it is valid that

‖w−wh‖h ≤ Chs‖f‖L2(Ω), (3.24)

‖w−wh‖L2(Ω) ≤ Ch2s‖f‖L2(Ω). (3.25)

Proof. Combining (2.7) and (2.8) we deduce

‖w∗‖H1+s(Ω) ≤
C

1 + λ
‖f‖L2(Ω). (3.26)

Referring to (5.8) in [19] we have for any v ∈ H1+s(Ω)

(div hIhv)|κ =
1

|κ|

∫

κ

div vdx, ∀ κ ∈ πh, (3.27)

and

‖v − Ihv‖L2(Ω) + h‖∇h(v − Ihv)‖L
∼

2(Ω) ≤ Ch1+s|v|H1+s(Ω). (3.28)

From (2.6) and (3.27) we get

div hIhw
∗ =

1

|κ|

∫

κ

divw∗dx =
1

|κ|

∫

κ

divwdx = div hIhw. (3.29)

By (2.6), (3.29), (3.28) and (3.26), we deduce

inf
v∈Sh

0 (Ω)
(‖w − v‖h) ≤ ‖w− Ihw‖h

=

(
µ‖∇h(w − Ihw)‖2L

∼

2(Ω) + (µ+ λ)‖div h(w
∗ − Ihw

∗)‖20,Ω
) 1

2

≤ Chs‖f‖L2(Ω). (3.30)

From the Strang Lemma or (3.15) in [11] we have

‖w−wh‖h ≤ inf
v∈Sh

0 (Ω)
‖w − v‖h + sup

v∈Sh
0 (Ω)\{0}

|Dh(w,v)|
‖v‖h

. (3.31)

Substituting (3.30) and (3.14) into (3.31) we get (3.24).
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By Nitsche’s technique, we have

‖w −wh‖L2(Ω) ≤ ‖w−wh‖h sup
g∈L2(Ω)\{0}

{
1

‖g‖L2(Ω)
‖Ψ−Ψh‖h

}

+ sup
g∈L2(Ω)\{0}

{
1

‖g‖L2(Ω)
(Dh(w,Ψ −Ψh) +Dh(Ψ,w−wh)

}
, (3.32)

where for any g ∈ L2(Ω), Ψ ∈ H1
0(Ω) is the solution of

a(v,Ψ) = b(v,g), ∀v ∈ H1
0(Ω), (3.33)

and Ψh ∈ Sh
0 (Ω) is the C-R element solution of (3.33).

Using the same argument as (3.14) and (3.24) we get

‖Ψ−Ψh‖h ≤ Chs‖g‖L2(Ω), (3.34)

Dh(Ψ,w−wh) ≤ Chs‖g‖L2(Ω)‖w −wh‖h. (3.35)

Substituting (3.34), (3.35), (3.14) and (3.24) into (3.32) we get (3.25). �

Since (2.4) and (3.3) are well-posed (see [10]), we can define two linear bounded operators

T : L2(Ω) → H1
0(Ω) →֒ L2(Ω) satisfying

a(Tf ,v) = b(f ,v), ∀v ∈ H1
0(Ω), (3.36)

and Th : L2(Ω) → Sh
0 (Ω) such that

a(Thf ,v) = b(f ,v), ∀v ∈ Sh
0 (Ω). (3.37)

Because of the compact inclusion H1
0(Ω) →֒ L2(Ω), we know that T is compact. It is easy to

know that (2.2) and (3.2) has the following equivalent operator form:

u = ωTu, uh = ωhThuh.

Thus,

Tu =
1

ω
u, Thuh =

1

ωh
uh.

Denote ̟ = 1/ω,̟h = 1/ωh. ̟ and ̟h are called the eigenvalues of T and Th, respectively.

From (3.25) we have

‖T−Th‖L2(Ω)→L2(Ω) = sup
f∈L2(Ω)\{0}

‖Tf −Thf‖L2(Ω)

‖f‖L2(Ω)
≤ Ch2s → 0, h → 0.

Suppose that {ωl} and {ωl,h}, arranged from small to large and each repeated as many times as

its multiplicity, are enumerations of the eigenvalues of (2.2) and (3.2) respectively, and ω = ωj is

the j-th eigenvalue with the algebraic multiplicity q, ω = ωj = ωj+1 = · · · = ωj+q−1. Since Th

converges to T, q eigenvalues ωj,h, ωj+1,h, · · · , ωj+q−1,h of (3.2) will converge to ω. Let M(ω)

be the space spanned by all eigenfunctions corresponding to the eigenvalue ω, and Mh(ω)

be the space spanned by all eigenfunctions of (3.2) corresponding to the eigenvalues ωl,h(l =

j, j+1, · · · , j+q−1). Let M̂(ω) = {v ∈ M(ω) : ‖v‖h = 1}, M̂h(ω) = {v ∈ Mh(ω) : ‖v‖h = 1}.
We also write M(ω) = M(̟), Mh(ω) = Mh(̟), M̂(ω) = M̂(̟), and M̂h(ω) = M̂h(̟).
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From Lemma 2.4 in [52] we have the following results.

Theorem 3.3. Suppose that R(Ω) holds. Let ω and ωh be the j-th eigenvalue of (2.2) and

(3.2), respectively, then ωh → ω as h → 0 and

|ω − ωh| ≤ C‖(T−Th)|M(ω)‖L2(Ω). (3.38)

For any eigenfunction uh corresponding to ωh, satisfying ‖uh‖h = 1, there exists eigenfunction

u ∈ M(ω) such that

‖uh − u‖h ≤ ω‖Tu−Thu‖h + C‖(T−Th)|M(ω)‖L2(Ω), (3.39)

‖uh − u‖L2(Ω) ≤ C‖(T−Th)|M(ω)‖L2(Ω). (3.40)

For any u ∈ M̂(ω), there exists uh ∈ Mh(ω) such that

‖u− uh‖h ≤ C
(
‖(T−Th)|M(ω)‖h + ‖(T−Th)|M(ω)‖L2(Ω)

)
. (3.41)

Theorem 3.2 can also be expressed as

‖Tf −Thf‖h ≤ Chs‖f‖L2(Ω),

‖Tf −Thf‖L2(Ω) ≤ Ch2s‖f‖L2(Ω),

thus we have

‖(T−Th)|M(ω)‖h ≤ Chs, ‖(T−Th)|M(ω)‖L2(Ω) ≤ Ch2s. (3.42)

4. Two-grid Discretizations for the Elastic Eigenvalue Problem

In this section, we will establish two-grid discretization schemes for the elastic eigenvalue

problem.

Let πH(Ω) be a regular triangulation of size H ∈ (0, 1) and πh(Ω) (h ≪ H) be a fine grid

refined from πH(Ω).

Scheme 4.1. Two-grid discretization based on inverse iteration:

Step 1. Solve (3.2) on a coarse grid πH(Ω): Find ωH ∈ R, uH ∈ SH
0 (Ω) such that

‖uH‖H = 1 and

aH(uH ,v) = ωHb(uH ,v), ∀v ∈ SH
0 (Ω).

Step 2. Solve a linear boundary value problem on a fine grid πh(Ω): Find uh ∈ Sh
0 (Ω) such

that

ah(u
h,v) = ωHb(uH ,v), ∀v ∈ Sh

0 (Ω).

Step 3. Compute the Rayleigh quotient

ωh =
ah(u

h,uh)

b(uh,uh)
.

Scheme 4.2. Two-grid discretization based on the shifted-inverse iteration:

Step 1. Solve (3.2) on a coarse grid πH(Ω): Find ωH ∈ R, uH ∈ SH
0 (Ω) such that

‖uH‖H = 1 and

aH(uH ,v) = ωHb(uH ,v), ∀v ∈ SH
0 (Ω).
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Step 2. Solve a linear boundary value problem on a fine grid πh(Ω): Find u′ ∈ Sh
0 (Ω) such

that

ah(u
′,v)− ωHb(u′,v) = b(uH ,v), ∀v ∈ Sh

0 (Ω),

and set uh = u′/‖u′‖h.

Step 3. Compute the Rayleigh quotient

ωh =
ah(u

h,uh)

b(uh,uh)
.

Lemma 4.1. Let (ω,u) be an eigenpair of (2.2), then, for any v ∈ H(h) with ‖v‖L2(Ω) 6= 0,

the generalized Rayleigh quotient satisfies

ah(v,v)

‖v‖2
L2(Ω)

− ω =
ah(u− v,u− v)

‖v‖2
L2(Ω)

− ω
‖u− v‖2

L2(Ω)

‖v‖2
L2(Ω)

+ 2
Dh(u,v)

‖v‖2
L2(Ω)

.

Proof. For any v ∈ H(h), from (2.2), (3.36) and (3.4) we have

Dh(u,v) = ah(u,v)− b(ωu,v),

thus,

ah(u− v,u− v)− ωb(u− v,u − v)

= ah(u,u) + ah(v,v) − 2ah(u,v) − ω(b(u,u) + b(v,v) − 2b(u,v))

= ωb(u,u) + ah(v,v) − 2Dh(u,v)− ωb(u,u)− ωb(v,v)

= ah(v,v) − ωb(v,v) − 2Dh(u,v),

and dividing ‖v‖2
L2(Ω) in both sides of the above we obtain the desired conclusion. �

Theorem 4.1. Suppose that R(Ω) holds. Assume that (ωh,uh) is an approximate eigenpair

obtained by Scheme 4.1. Then there exists an eigenfunction u ∈ M(ω) such that

‖uh − u‖h ≤ C(H2s + hs), (4.1)

|ωh − ω| ≤ C(H4s + h2s). (4.2)

Proof. Let u ∈ M(ω) such that uH − u and ωH − ω satisfy Theorem 3.3. Since u = ωTu,

and from the definition of Th and Step 2 in Scheme 4.1 we get uh = ωHThuH , then, from

Theorem 3.3, noting (3.42), we deduce

‖uh − u‖h = ‖ωHThuH − ωTu‖h
= ‖ωH(ThuH −Thu) + ωH(Thu−Tu) + (ωH − ω)Tu‖h
≤ |ωH | · ‖Th(uH − u)‖h + |ωH | · ‖Thu−Tu‖h + |ωH − ω| · ‖Tu‖h
≤ C (‖Th(uH − u)−T(uH − u)‖h + ‖T(uH − u)‖h) + Chs + CH2s

≤ C
(
hs‖uH − u‖L2(Ω) + ‖uH − u

)
‖L2(Ω)) + Chs + CH2s

≤ C(H2s + hs),

namely, (4.1) is valid.
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Because u ∈ H1
0(Ω) and uh ∈ Sh

0 (Ω) are piecewise H1-functions, using the Poincaré-

Friedrichs inequality (cf. (1.5) in [9]) we have

‖uh − u‖L2(Ω) ≤ C|uh − u|1,h ≤ C‖uh − u‖h, (4.3)

thus, combing with (4.1) we get

‖uh − u‖L2(Ω) ≤ C‖uh − u‖h ≤ C(H2s + hs). (4.4)

Since Dh(u,u) = 0, from Theorem 3.1 and (4.1) we have

|Dh(u,u
h)| = |Dh(u,u

h − u)|
≤ Chs‖u‖L2(Ω)‖uh − u‖h
≤ Chs(H2s + hs)‖u‖L2(Ω)

≤ C(h2s + hsH2s). (4.5)

From Lemma 4.1 we have

ωh − ω =
ah(u

h,uh)

b(uh,uh)
− ω

=
ah(u− uh,u− uh)

‖uh‖2
L2(Ω)

− ω
‖u− uh‖2

L2(Ω)

‖uh‖2
L2(Ω)

+ 2
Dh(u,u

h)

‖uh‖2
L2(Ω)

=
‖u− uh‖2h
‖uh‖2

L2(Ω)

− ω
‖u− uh‖2

L2(Ω)

‖uh‖2
L2(Ω)

+ 2
Dh(u,u

h)

‖uh‖2
L2(Ω)

. (4.6)

Substituting (4.1), (4.4) and (4.5) into (4.6) we get (4.2). The proof is complete. �

Let (ωj ,uj) and (ωj,h,uj,h) be the j-th eigenpair of (2.2) and (3.2), respectively. Denote

dist(u, S) = inf
v∈S

‖u− v‖h.
The following lemma is an analog to Theorem 3.2 in [52] and Lemma 4.1 in [53], and can

be proved similarly.

Lemma 4.2. Let (̟0,u0) be an approximation for (̟j ,uj) where ̟0 is not an eigenvalue of

Th and u0 ∈ Sh
0 (Ω) with ‖u0‖h = 1. Suppose that

(C1) dist
(
u0,Mh(̟j)

)
≤ 1

2
;

(C2) |̟0 −̟j | ≤
̺

4
, |̟k,h −̟k| ≤

̺

4
for k = j − 1, j, · · · , j + q (k 6= 0);

(C3) u′ ∈ Sh
0 (Ω),u

h ∈ Sh
0 (Ω) satisfy

(̟0 −Th)u
′ = u0, uh =

u′

‖u′‖h
.

Then

dist
(
uh, M̂h(̟j)

)
≤ 4

̺
max

j≤k≤j+q−1
|̟0 −̟k,h|dist

(
u0,Mh(̟j)

)
, (4.7)

where ̺ = min̟k 6=̟j
|̟k −̟j | is the separation constant of the eigenvalue ̟j.
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Theorem 4.2. Suppose that R(Ω) holds. Assume that (ωh,uh) is an approximate eigenpair

obtained by Scheme 4.2. Then there exists an eigenfunction u ∈ M(ω) such that

‖uh − uj‖h ≤ C(H4s + hs), (4.8)

|ωh − ωj| ≤ C(H8s + h2s). (4.9)

Proof. We use Lemma 4.2 to complete the proof. Select

̟0 =
1

ωH
and u0 =

ωHThuH

‖ωHThuH‖h
.

From Theorem 3.3 we know that there exists ũ ∈ M(ωj) making uH − ũ satisfy (3.39) and

(3.40).

From (3.37), Schwarz inequality, and (3.40) we deduce

ah
(
Th(uH − ũ),Th(uH − ũ)

)

= b
(
uH − ũ,Th(uH − ũ)

)

≤ ‖uH − ũ‖L2(Ω)‖Th(uH − ũ)‖L2(Ω)

≤ C‖(T−TH)|M(ωj)‖2L2(Ω),

thus,

‖Th(uH − ũ)‖h ≤ C‖(T−TH)|M(ωj)‖L2(Ω),

then, combining with (3.38) and ‖Thũ−Tũ‖h ≤ C‖(Th −T)|M(ωj)‖h, we derive

‖ωHThuH − ũ‖h = ‖ωHThuH − ωjTũ‖h
= ‖ωH(ThuH −Thũ) + ωH(Thũ−Tũ) + (ωH − ωj)Tũ‖h
≤ C(‖(T−TH)|M(ωj)‖L2(Ω) + ‖(T−Th)|M(ωj)‖h).

It is easy to prove that in any normed space, it is valid for any nonzero Φ,Ψ that
∥∥∥∥

Φ

‖Φ‖ − Ψ

‖Ψ‖

∥∥∥∥ ≤ 2
‖Φ−Ψ‖
‖Φ‖ ,

∥∥∥∥
Φ

‖Φ‖ − Ψ

‖Ψ‖

∥∥∥∥ ≤ 2
‖Φ−Ψ‖
‖Ψ‖ .

Hence,
∥∥∥∥u0 −

ũ

‖ũ‖h

∥∥∥∥
h

=

∥∥∥∥
ωHThuH

‖ωHThuH‖h
− ũ

‖ũ‖h

∥∥∥∥
h

≤ C‖ωHThuH − ũ‖h
≤ C

(
‖(T−TH)|M(ωj)‖L2(Ω) + ‖(T−Th)|M(ωj)‖h

)
. (4.10)

For ũ/‖ũ‖h ∈ M̂(ωj), from (3.41) we know there exists uh ∈ Mh(ωj) such that
∥∥∥∥

ũ

‖ũ‖h
− uh

∥∥∥∥
h

≤ C
(
‖(T−Th)|M(ωj)‖h + ‖(T−Th)|M(ωj)‖L2(Ω)

)
. (4.11)

From the triangle inequality, (4.10) and (4.11), we have

dist(u0,Mh(ωj)) ≤ ‖u0 − uh‖h ≤ ‖u0 −
ũ

‖ũ‖h
‖h + ‖uh − ũ

‖ũ‖h
‖h

≤ C
(
‖(T−TH)|M(ωj)‖L2(Ω) + ‖(T−Th)|M(ωj)‖h

)
, (4.12)

then condition (C1) in Lemma 4.2 holds when H and h are small enough.
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From (3.38) we know that condition (C2) in Lemma 4.2 holds.

From Step 2 in Scheme 4.2, we know that uh satisfies
(

1

ωH
−Th

)
u′ = u0, uh =

u′

‖u′‖h
,

that is, condition (C3) in Lemma 4.2 holds.

Let the eigenfunctions {ul,h}j+q−1
l=j be a normalized orthonormal basis of Mh(ωj) in the

sense of norm ‖ ·‖h, then by Theorem 3.3 we know that there exist {u0
l }

j+q−1
l=j ⊂ M(ωj) making

(3.39) hold. Let

u∗ =

j+q−1∑

l=j

ah(u
h,ul,h)ul,h,

then, by (4.7) and (4.12) we deduce

‖uh − u∗‖h = dist
(
uh,Mh(ωj)

)
≤ dist

(
uh, M̂h(ωj)

)
(4.13)

≤ C max
j≤k≤j+q−1

|̟0 −̟k,h|
(
‖(T−TH)|M(ωj)‖2L2(Ω) + ‖(T−Th)|M(ωj)‖h

)
.

From (3.38) we get

|̟0 −̟k,h| =
∣∣∣∣
ωk,h − ωj + ωj − ωH

ωHωk,h

∣∣∣∣ ≤ C‖(T−TH)|M(ωj)‖L2(Ω),

which together with (4.13) yields

‖uh − u∗‖h
≤ C

(
‖(T−TH)|M(ωj)‖2L2(Ω) + ‖(T−TH)|M(ωj)‖L2(Ω)‖(T−Th)|M(ωj)‖h

)
. (4.14)

Let

u =

j+q−1∑

l=j

ah(u
h,ul,h)u

0
l ,

then, from (3.39) we get

‖u∗ − u‖h =

∥∥∥∥∥∥

j+q−1∑

l=j

ah
(
uh,ul,h

) (
ul,h − u0

l

)
∥∥∥∥∥∥
h

≤ C
(
‖(T−Th)|M(ωj)‖h + ‖(T−Th)|M(ωj)‖L2(Ω)

)
. (4.15)

From the triangle inequality, (4.14), (4.15) and (3.42) we obtain (4.8). Similar to the proof of

(4.2), from (4.8), (4.3) and Lemma 4.1 we get (4.9). �

5. Numerical Experiments

In this section, we will report some numerical experiments to verify our theoretical analysis

and the efficiency of two-grid schemes. We use MATLAB 2012a to compute on a DELL insp-

iron5480 PC with 8G memory. Our program is implemented using the package iFEM [14]. The

symbol “− ” in our tables means that the calculation cannot proceed since the computer runs

out of memory.
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Example 5.1. Consider the elastic eigenvalue problem (2.2) in the unit square ΩS = [0, 1] ×
[0, 1] and the L-shaped domain ΩL = [0, 1] × [0, 1] \ [1/2, 1]× [1/2, 1] with the density ρ ≡ 1.

We compute the first numerical eigenvalue of (2.2) in ΩS and ΩL by the nonconforming C-R

element on uniformly refined meshes, and the results are denoted by ωS
h and ωL

h , respectively.

The numerical results are listed in Tables 5.1-5.2. Since the exact eigenvalues are unknown, we

use the following formula

ratio(ωh) ≈ lg

∣∣∣∣
ωh − ωh/2

ωh/2 − ωh/4

∣∣∣∣ / lg 2

to compute the approximate convergence order.

From Tables 5.1-5.2 we can see that the numerical eigenvalues are convergent at different

values of λ, and the convergence order of the first eigenvalue ωh is approximately equal to

2.00, i.e., 2s ≈ 2.00 or s ≈ 1.00 in the square. Unfortunately, because of the computer memory

limitation we cannot continue to compute to make the convergence order stable in the L-shaped

domain. According to the current results, the convergence order is approximately equal to 1.20,

i.e., 2s ≈ 1.20 or s ≈ 0.60.

Table 5.1: The first numerical eigenvalue in ΩS and ΩL by direct computation with µ = λ = 1.

h ωS

h ratio(ωS

h ) ωL

h ratio(ωL

h )
√

2/16 36.968038 1.9334 53.318789 1.3219
√

2/32 37.188573 1.9666 53.940006 1.2829
√

2/64 37.246310 1.9833 54.188497 1.2410
√

2/128 37.261082 1.9908 54.291332 1.2225
√

2/256 37.264818 54.334839
√

2/512 37.265758 54.353484

Table 5.2: The first numerical eigenvalue in ΩS and ΩL by direct computation with µ = 1, λ = 50.

h ωS

h ratio(ωS

h ) ωL

h ratio(ωL

h )
√

2/16 51.823020 1.9472 118.462292 1.3352
√

2/32 52.164464 1.9845 123.764088 1.2887
√

2/64 52.253005 1.9958 125.865404 1.2300
√

2/128 52.275380 1.9995 126.725522 1.1814
√

2/256 52.280990 127.092195
√

2/512 52.282393 127.253875

Example 5.2. Consider the elastic eigenvalue problem (2.2) in the L-shaped domain ΩL =

[0, 1]× [0, 1]\ [1/2, 1]× [1/2, 1] with density ρ ≡ 1. We compute the first approximate eigenvalue

of this problem by Schemes 4.1 and 4.2, and denote the numerical eigenvalues obtained by

Schemes 4.1 and 4.2 by ωh
(1) and ωh

(2), respectively. The numerical results are listed in Tables 5.3-

5.4. For comparison, we also solve this problem on fine grid directly by using Matlab command

eigs(A,M, 1,′ sm′), and the results are denoted by ωh.

The results in Tables 5.3-5.4 show that we can use less time by two-grid discretization

schemes to get the same accurate approximations as those obtained by direct computation.



1060 H. BI, X.Q. ZHANG AND Y.D. YANG

Table 5.3: The first numerical eigenvalue in the L-shaped domain obtained by Schemes 4.1 and 4.2

with µ = λ = 1.

H h ωh

(1) times(s) ωh

(2) times(s) ωh times(s)
√

2/8
√

2/64 54.375337 0.31 54.189403 0.18 54.188497 0.38
√

2/16
√

2/256 54.355380 3.04 54.334860 3.48 54.334839 9.03
√

2/32
√

2/512 54.357151 14.01 54.353485 18.02 54.353484 43.73
√

2/32
√

2/1024 54.364492 67.43 54.361530 106.46 – –

time(s): the CPU time(s) from the program starting to the current calculating result appearing.

Table 5.4: The first numerical eigenvalue in the L-shaped domain with µ = 1, λ = 50.

H h ωh

(1) times(s) ωh

(2) times(s) ωh times(s)
√

2/8
√

2/64 127.306606 0.25 125.953352 0.17 125.865404 0.39
√

2/16
√

2/256 127.299866 3.10 127.095813 3.43 127.092195 9.04
√

2/32
√

2/512 127.295589 13.73 127.254021 17.85 127.253875 43.70
√

2/32
√

2/1024 127.366437 66.25 127.327009 111.55 – –

Remark 5.1. In Tables 5.3–5.4, for the sake of list, we make the diameters of coarse grid and

fine grid satisfying H = O(
√
h). For Scheme 4.2 we can choose H = O( 4

√
h) according to

Theorem 4.2. In the case of µ = 1, λ = 1, when we select H =
√
2/8, h =

√
2/1024, it takes

119.78s to get the calculating result ωh(2)

= 54.362491.

To observe the influence of the Lamé parameter λ, we also depict the error curves of approx-

imations for the first eigenvalue of (2.2). Since the exact eigenvalue is not known, we plot the

“error” |ωh−ωh/2|, |ωh
(1)−ω

h/2
(1) | and |ωh

(2)−ω
h/2
(2) | where h =

√
2/256 by taking λ = 1, 103, 105, 108

while µ is fixed at 1. From Fig. 5.1 we can see that in the L-shaped domain, the “error” curves

become stable as λ increases, which indicates that the nonconforming C-R element method and

the two-grid schemes of C-R element are locking-free. In the unit square, the error curves of

two-grid schemes keep stable while that of direct computation jumps at λ = 108, which leaves

us a question. Frustratingly, we cannot do more sophisticated calculations at present.
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Fig. 5.1. Error curves in the unit square (left) and the error curves in the L-shaped domain (right).
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