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Abstract

In [20], a semi-implicit spectral deferred correction (SDC) method was proposed, which

is efficient for highly nonlinear partial differential equations (PDEs). The semi-implicit

SDC method in [20] is based on first-order time integration methods, which are corrected

iteratively, with the order of accuracy increased by one for each additional iteration. In

this paper, we will develop a class of semi-implicit SDC methods, which are based on

second-order time integration methods and the order of accuracy are increased by two for

each additional iteration. For spatial discretization, we employ the local discontinuous

Galerkin (LDG) method to arrive at fully-discrete schemes, which are high-order accurate

in both space and time. Numerical experiments are presented to demonstrate the accuracy,

efficiency and robustness of the proposed semi-implicit SDC methods for solving complex

nonlinear PDEs.
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1. Introduction

Following the method-of-lines approach, the application of the local discontinuous Galerkin

(LDG) method for spatial discretization of PDE will generate a system of ODEs. In some cases,

the right hand side can be written as the sum of two terms, a stiff one (FS) and a non-stiff one

(FN ) {
ut = FS(t, u(t)) + FN (t, u(t)), t ∈ [0, T ],

u(0) = u0.
(1.1)

An efficient time discretization technique to solve the above ODEs is semi-implicit methods

[10, 26], which treating the non-stiff terms explicitly and the stiff terms implicitly.

However, not all ODEs containing stiff and non-stiff components appear in partitioned form

(1.1), and therefore the use of standard semi-implicit schemes is not straightforward. Boscarino

et al. [2] developed a new semi-implicit Runge-Kutta method to solve a large class of PDEs
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and obtained high-order accuracy. However, the Runge-Kutta method has some limitations, for

example, it is much more difficult to construct for higher order accuracy. Motivated by these,

we developed a semi-implicit SDC method [20] to solve ODEs without easily separating of stiff

and non-stiff components.

Dutt, Greengard and Rokhlin first developed a variation on the classical defect or deferred

correction methods [1,21], called the SDC method [11]. It is based on first-order time integration

methods, which are corrected iteratively, with the order of accuracy increased by one for each

additional iteration. Then, a semi-implicit SDC method was introduced by Minion [29] to solve

equations containing both stiff and non-stiff components. Recently, the semi-implicit SDC

method was generalized for solving a series of nonlinear problems [14, 19, 28, 34, 35], which all

have easily separating of stiff and non-stiff components. In the semi-implicit SDC scheme, one

treats the stiff components implicitly and the non-stiff components explicitly. Various numerical

simulations demonstrate that the semi-implicit SDC method is effective and robust.

The original SDC methods are based on first-order time integration methods, which are

corrected iteratively, with the order of accuracy increased by one for each additional iteration. In

[3,4,7–9], a variant of SDC, integral deferred correction (IDC), constructed using uniform nodes

and high-order Runge-Kutta integrators in both the prediction and corrections was introduced.

Using a Runge-Kutta method of order r in the correction results in r more degrees of accuracy

with each successive correction. It was demonstrated that the IDC methods are more efficient

than SDC methods based on first-order time integration methods. Motivated by the idea,

we will develop a class of semi-implicit SDC methods, which are based on second-order time

integration methods and the order of accuracy are increased by two for each additional iteration.

In addition, the SDC methods are efficient for a large class of PDEs, including those without

easily separating stiff and non-stiff components.

To use the SDC methods, the main difficulty is to construct an efficient basic second-

order scheme that is unconditionally stable. One idea is based on the second-order Crank-

Nicolson/Adams-Bashforth (CN/AB) method, the other one is based on the second-order in-

variant energy quadratization (IEQ) approach which will result in high-order linear schemes.

Many application problems, such as the convection diffusion equation, the surface diffusion of

graphs, the nonlinear Schrödinger equation and the gradient flow models, can be solved by

using the proposed SDC scheme coupled with high-order LDG methods.

The rest of this paper is organized as follows. In Section 2, we develop two SDC schemes,

which are based on the second-order CN/AB method, and the IEQ approach respectively. In

Section 3, we present some applications of the proposed SDC methods, including the convection

diffusion equation, the surface diffusion of graphs, the nonlinear Schrödinger equation, the

Allen-Cahn equation, the Cahn-Hilliard equation and the Cahn-Hilliard phase field model of

the binary fluid-surfactant system. Numerical examples are also given to validate the proposed

SDC methods. Finally, we give the concluding remarks in Section 4. In Appendix A, we

give the analysis of the accuracy for the SDC method. In Appendix B, we take the nonlinear

Schrödinger equation as an example to illustrate the LDG method and to prove the energy

stability in the fully-discrete level.

2. SDC Schemes Based on Second-Order Time Integration Methods

In this section, we will develop a class of SDC methods, which are based on second-order

time integration methods and the order of accuracy are increased by two for each additional

iteration.
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2.1. The SDC method based on the second-order CN/AB method

For highly nonlinear PDEs, the stiff and non-stiff components cannot be well separated.

After the LDG spatial discretization for these PDEs, we can get an ODEs of the form

{
ut = F (t, u(t), u(t)), t ∈ [0, T ],

u(0) = u0,
(2.1)

where u0, u(t) ∈ Cl, l ∈ N and F : R × Cl × Cl → Cl. Requiring that F ∈ C1(R × Cl × Cl)

is sufficient smooth to guarantee local existence and uniqueness of the solution to (2.1). The

dependence on the second argument of F is non-stiff, while the dependence on the last argument

of F is stiff. Then, we briefly describe the SDC method to solve (2.1) in the following.

Integrating (2.1) from a to t, we obtain the corresponding Picard integral equation

u(t) = ua +

∫ t

a

F (τ, u(τ), u(τ))dτ. (2.2)

Given an initial approximation solution u1(t) to (2.1), we denote the error function by δ(t) =

u(t)− u1(t). Another measure for the quality of the approximation is defined as

ǫ(t, u1) = ua +

∫ t

a

F (τ, u1(τ), u1(τ))dτ − u1(t). (2.3)

Substituting u(t) = u1(t) + δ(t) into (2.2), we obtain

δ(t) = ua +

∫ t

a

F (τ, u1(τ) + δ(τ), u1(τ) + δ(τ))dτ − u1(t). (2.4)

Combining (2.3) with (2.4), we achieve

δ(t) =

∫ t

a

F (τ, u1(τ) + δ(τ), u1(τ) + δ(τ)) − F (τ, u1(τ), u1(τ))dτ + ǫ(t, u1), (2.5)

which is referred to as the correction equation.

Suppose now the time interval [0, T ] is divided into M non-overlapping intervals by the

partition 0 = t0 < t1 < · · · < tn < · · · < tM = T . Let ∆tn = tn+1 − tn and un denotes the

numerical approximation of u(tn). We do the SDC procedure in every interval [tn, tn+1]. Divide

the time interval [tn, tn+1] into P subintervals by choosing the points tn,m for m = 0, . . . , P

such that tn = tn,0 < tn,1 < · · · < tn,m < · · · < tn,P = tn+1. Let ∆tn,m = tn,m+1 − tn,m. The

points {tn,m}Pm=0 can be chosen to be the Gauss-Lobatto nodes on [tn, tn+1]. To simplify the

presentation, we take un,m
1 to represent the initial approximation at tn,m and un,m

k to represent

the k-th corrected approximation at tn,m.

The initial approximate solution un,m
1 can be obtained by using the second-order CN/AB

method, which is given by

un,m+1
1 = un,m

1 +∆tn,mF

(
3

2
tn,m −

1

2
tn,m−1,

3

2
un,m
1 −

1

2
un,m−1
1 ,

1

2
(un,m+1

1 + un,m
1 )

)
. (2.6)

Then we compute the corrections δn,mk to increase the accuracy for un,m
1 by un,m

k+1 = un,m
k +δn,mk .
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By using the second-order CN/AB scheme to the correction Eq. (2.5), we obtain

δn,m+1
k = δn,mk +∆tn,mF

(
3

2
tn,m −

1

2
tn,m−1,

3

2
(un,m

k + δn,mk )−
1

2
(un,m−1

k + δn,m−1
k ),

1

2
(un,m+1

k + δn,m+1
k + un,m

k + δn,mk )

)

−∆tn,mF

(
3

2
tn,m −

1

2
tn,m−1,

3

2
un,m
k −

1

2
un,m−1
k ,

1

2
(un,m+1

k + un,m
k )

)

+ ǫn,m+1(uk)− ǫn,m(uk). (2.7)

Denote

Im+1
m (uk) =

∫ tn,m+1

tn,m

F (t, uk(t), uk(t))dt. (2.8)

Then by (2.3), we can derive

Im+1
m (uk) = ǫn,m+1(uk)− ǫn,m(uk) + un,m+1

k − un,m
k . (2.9)

Note un,m+1
k + δn,m+1

k = un,m+1
k+1 , substituting (2.9) into (2.7) gives

un,m+1
k+1 = un,m

k+1 +∆tn,mF

(
3

2
tn,m −

1

2
tn,m−1,

3

2
un,m
k+1 −

1

2
un,m−1
k+1 ,

1

2
(un,m+1

k+1 + un,m
k+1)

)

−∆tn,mF

(
3

2
tn,m −

1

2
tn,m−1,

3

2
un,m
k −

1

2
un,m−1
k ,

1

2
(un,m+1

k + un,m
k )

)

+ Im+1
m (uk). (2.10)

The integral in Eq. (2.10) is computed as follows. Approximating F (t, uk, uk) by its La-

grange interpolation polynomials

Fp(t, uk(t), uk(t)) =

P∑

j=0

F (tn,j , un,j
k , un,j

k )Lp
j (t), (2.11)

and approximating Im+1
m (uk) by

Im+1
m (uk) ≈

∫ tn,m+1

tn,m

Fp(t, uk(t), uk(t)) =

P∑

j=0

F (tn,j , un,j
k , un,j

k )cmj
p , (2.12)

where

cmj
p =

∫ tn,m+1

tn,m

Lp
j (t)dt.

The details related to the SDC scheme implementation are summarized in the following

algorithm:

• Step 1. For m = 0, . . . , P − 1, compute un,m+1
1 from (2.6).

• Step 2. For k = 1, . . . ,K, m = 0, . . . , P − 1, compute un,m+1
k+1 by (2.10).

• Step 3. Update un+1 by un+1 = un,P
K+1, then goto the next step.

Proposition 2.1 (Local truncation error). The local truncation error obtained with the

above SDC scheme is O(hmin[2K+2,2P ]), where h = maxn,m ∆tn,m.
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Proof. We provide the proof in Appendix A. �

Remark 2.1. In the SDC scheme, we use the Gauss-Lobatto quadrature nodes on [tn, tn+1]. It

is different from the IDC methods, where uniform quadrature nodes are necessary. Numerical

experiments are then presented to show the high-order accuracy of our proposed SDC scheme.

Remark 2.2. The SDC scheme proposed above is based on a second-order CN/AB method.

It is easy to verify the region of absolute stability for the second-order method contains the

left-half plan and the second-order method is A-stable scheme [23]. While for the SDC method,

the successive corrections are necessary to increase the accuracy, which will alter the the region

of absolute stability. We take the fourth-order SDC scheme (K = 1, P = 2) as an example

to study the region of absolute stability and present it in Fig. 2.1. It is observed that the

fourth-order SDC scheme is not A-stable, but the region of absolute stability is still large.
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Fig. 2.1. The region of absolute stability for the SDC scheme with K = 1 and P = 2.

2.2. The SDC scheme based on the second-order IEQ approach

In this subsection, we will develop another SDC scheme, which is based on second-order

linear time integration methods constructed by the IEQ approach. The IEQ approach was

proposed by Yang et al. [15, 16, 22] to deal with general gradient flow models, obtaining linear

energy stable schemes. Here, we take the gradient flow models as an example and present the

details of the SDC scheme based on the IEQ approach. In addition, the SDC scheme can be

applied to solve other PDEs beyond the gradient flow models, which can be found in Section 3.

We first briefly describe the IEQ approach for gradient flow models. Consider a free energy

on a bounded domain Ω with dimension d ≤ 3

E(φ) =

∫

Ω

(
1

2
φLφ+N(φ)

)
dx, (2.13)

where L is a linear self-adjoint operator, N(φ) is a nonlinear free energy and x ∈ R
d. A general

gradient flow is given by

φt = Gµ, µ :=
δE

δφ
= Lφ+N ′(φ), (2.14)
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where G is a negative semi-definite operator. G = −I is the L2 gradient flow, e.g., the Allen-

Cahn equation; G = ∆ is the H−1 gradient flow, e.g., the Cahn-Hilliard equation.

Introduce auxiliary variable q =
√
N(φ) + C, where C is a positive constant to ensure

N(φ) + C > 0. Then the original gradient flow (2.14) can be rewritten as





φt = G

(
Lφ+

q√
N(φ) + C

N ′(φ)

)
,

qt =
N ′(φ)

2
√
N(φ) + C

φt,

(2.15)

the reformulated free energy is given by

Ẽ =

∫

Ω

(
1

2
φLφ+ q2

)
dx. (2.16)

A second-order linear scheme for the system (2.15) is





φn+1 − φn

∆t
= G


Lφn+ 1

2 +
qn+

1
2

√
N(φ̃n+ 1

2 ) + C
N ′(φ̃n+ 1

2 )


 ,

qn+1 − qn

∆t
=

N ′(φ̃n+ 1
2 )

2

√
N(φ̃n+ 1

2 ) + C

φn+1 − φn

∆t
,

(2.17)

where

φn+ 1
2 =

1

2
(φn+1 + φn), φ̃n+ 1

2 =
3

2
φn −

1

2
φn−1.

Based on the second-order scheme (2.17), we can achieve the corresponding SDC method.

Here, we omit the details of the derivation and only present the SDC algorithm. To simplify

the presentation, we introduce the following notations:

(̃·)n,m+ 1
2 =

3

2
(·)n,m −

1

2
(·)n,m−1, (·)n,m+ 1

2 =
1

2
((·)n,m+1 + (·)n,m)

in the SDC algorithm.

Compute the initial approximation: φn,0
1 = φn, qn,01 = qn.

Use the second-order linear scheme (2.17) to compute approximate solution φ1, q1 at the nodes

{tn,m}Pm=1, i.e.

For m = 0, . . . , P − 1,

φn,m+1
1 = φn,m

1 +∆tn,mG


Lφ

n,m+ 1
2

1 +
q
n,m+ 1

2

1√
N(φ̃

n,m+ 1
2

1 ) + C

N ′(φ̃
n,m+ 1

2

1 )


 , (2.18)

qn,m+1
1 = qn,m1 +

N ′(φ̃
n,m+ 1

2

1 )

2

√
N(φ̃

n,m+ 1
2

1 ) + C

(φn,m+1
1 − φn,m

1 ). (2.19)



Semi-Implicit Spectral Deferred Correction Methods 117

Compute successive corrections: For k = 1, . . . ,K,

φn,0
k+1 = φn, qn,0k+1 = qn.

For m = 0, . . . , P − 1,

φn,m+1
k+1 = φn,m

k+1 +∆tn,mG


Lφ

n,m+ 1
2

k+1 +
q̃
n,m+ 1

2

k+1√
N(φ̃

n,m+ 1
2

k+1 ) + C

N ′(φ̃
n,m+ 1

2

k+1 )


 (2.20)

−∆tn,mG


Lφ

n,m+ 1
2

k +
q̃
n,m+ 1

2

k√
N(φ̃

n,m+ 1
2

k ) + C

N ′(φ̃
n,m+ 1

2

k )


 + Im+1

m (F (t, φk, qk)),

qn,m+1
k+1 =

√
N(φn,m+1

k+1 ) + C, (2.21)

where

F (t, φk, qk) = G

(
Lφk +

qk√
N(φk) + C

N ′(φk)

)
,

and Im+1
m (F (t, φk, qk)) is the integral of the P -th degree interpolating polynomial on the P +1

points (tn,m, F (tn,m, φn,m
k , qn,mk ))Pm=0 over the subinterval [tn,m, tn,m+1].

Finally we have φn+1 = φn,P
K+1 and qn+1 = qn,PK+1.

Remark 2.3. Motivated by the idea in [11], the SDC methods proposed above can be extended

using high-order time integration schemes in the initial approximation and successive correction.

However, it is not easy to construct higher order stable time integration schemes as the building

block. Thus, in this paper, we only present SDC methods based on second-order schemes.

3. Applications and Numerical Validation

In this section, we apply the proposed SDC schemes to several PDEs, including the convec-

tion diffusion equation, the surface diffusion of graphs, the nonlinear Schrödinger equation and

the phase field models, to demonstrate the efficiency and accuracy of the SDC methods. In all

examples, we assume periodic boundary conditions and employ the LDG method with piece-

wise Pk polynomial basis for spatial discretization. To show that the SDC method is high-order

accurate, we choose K = 1 and P = 2 in the SDC method, which has fourth-order of accuracy.

At each time step, we solve the linear algebraic equations by multigrid solver [18, 33].

3.1. The convection diffusion equations

We consider the convection diffusion equation in 1D

ut = uxx − ux, x ∈ [0, 6π]. (3.1)

A second-order CN/AB scheme to solve the equation is

un+1 − un

∆t
=

1

2
(un+1

xx + un
xx)−

(
3

2
un
x −

1

2
un−1
x

)
. (3.2)

Example 3.1. In this example, we test the accuracy of the proposed SDC method (2.6) and

(2.10), and the performance of various SDC methods and IDC methods. The exact solution of

Eq. (3.1) is given by

u(x, t) = e−t sin(x− t).
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The L2 errors and the numerical orders of accuracy are presented in Table 3.1, which shows

the expected accuracy of min(2K + 2, 2P ).

In Table 3.2, SDC-CN/AB denotes the SDC method (2.6) and (2.10) constructed using three

Gauss-Lobatto nodes and the second-order CN/AB scheme (3.2) for the initial and correction

steps. SDC-IMEX denotes the SDC method constructed using three Gauss-Lobatto nodes and

the first order IMEX scheme (un+1 = un +∆t(un+1
xx − un

x)) for the initial and correction steps.

IDC-ARK2 (IDC-IMEX) denote the IDC method constructed using four uniformly distributed

nodes and the ARK2 [9] (IMEX) integrators for the prediction and correction loops. Fourth-

order of accuracy is observed for all cases as expected.

For the sake of comparison of efficiency, we present the CPU time of various SDC and

IDC methods in Table 3.3. We notice that the SDC-CN/AB method takes least CPU time,

because it is based on second-order schemes, and the order of accuracy increased by two for

each additional iteration.

Table 3.1: Accuracy test for the one-dimensional convection diffusion equation at time T = 1. ∆t =

0.05∆x and ∆x = 6π/N .

- K = 0, P = 2 K = 1, P = 2 K = 2, P = 4

N L2 error order L2 error order L2 error order

8 3.65E-01 – 8.58E-03 – 9.63E-05 –

16 8.37E-02 2.12 5.93E-04 3.85 1.40E-06 6.10

32 2.16E-02 1.95 3.88E-05 3.93 2.08E-08 6.06

64 5.64E-03 1.94 2.48E-06 3.97 3.17E-010 6.04

Table 3.2: Accuracy test of various SDC methods and IDC methods for the one-dimensional convection

diffusion equation at time T = 0.5. ∆t = 0.05∆x and ∆x = 6π/N .

- SDC-CN/AB SDC-IMEX IDC-ARK2 IDC-IMEX

N L2 error order L2 error order L2 error order L2 error order

8 1.41E-02 – 1.41E-02 – 1.41E-02 – 4.10E-06 3.97

16 9.77E-04 3.85 9.77E-04 3.85 9.77E-04 3.85 9.77E-04 3.85

32 6.41E-05 3.93 6.41E-05 3.93 6.41E-05 3.93 6.41E-05 3.93

64 4.10E-06 3.97 4.10E-06 3.97 3.99E-06 4.01 4.10E-06 3.97

Table 3.3: Total CPU time using various SDC methods and IDC methods for the one-dimensional

convection diffusion equation at time T = 0.5, N = 64.

- SDC-CN/AB SDC-IMEX IDC-ARK2 IDC-IMEX

CPU time 18.89 32.69 28.25 39.68

3.2. The surface diffusion of graphs

We consider the surface diffusion of graphs

ut +∇ ·

(
Q

(
I −

∇u⊗∇u

Q2

)
∇

(
∇ ·

(
∇u

Q

)))
= 0, (3.3)
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where Q is the area element Q =
√
1 + |∇u|2, which is a highly nonlinear PDE, and the stiff

and non-stiff components cannot be separated. Thus, it is difficult to construct high-order

semi-implicit schemes.

Treating the nonlinear part explicitly and the linear part implicitly and a second-order

scheme to solve Eq. (3.3) is

un+1 − un

∆t
= −∇ ·

(
Q̃n+ 1

2

(
I −

∇ũn+ 1
2 ⊗∇ũn+ 1

2

(Q̃n+ 1
2 )2

)
∇

(
∇ ·

(
∇un+ 1

2

Q̃n+ 1
2

)))
, (3.4)

where

Q̃n+ 1
2 =

√
1 + |∇ũn+ 1

2 |2.

Based on the second-order scheme (3.4), we can employ the SDC scheme (2.6) and (2.10) for

the surface diffusion of graphs.

Example 3.2. In this example, we consider the accuracy test for surface diffusion of graphs

(3.3). We test our method taking the exact solution

u(x, y, t) = 0.05e−2t sin(x+ y)

for Eq. (3.3) with a source term.

The L2 and L∞ errors and the numerical orders of accuracy at time T = 0.5 are obtained

in Table 3.4, which shows up to fourth-order accuracy in both time and space.

Table 3.4: Accuracy test for the surface diffusion of graphs when using P
k approximation on a uniform

mesh with N cells at time T = 0.5. ∆t = 0.1∆x and ∆x = 2π/N .

N L2 error order L∞ error order

8 5.84E-03 – 5.16E-03 –

16 1.49E-03 1.97 1.33E-03 1.95

P
1 32 3.76E-04 1.99 3.37E-04 1.98

64 9.42E-05 2.00 8.47E-05 2.00

8 8.43E-04 – 9.57E-04 –

16 1.06E-04 2.98 1.21E-04 2.98

P
2 32 1.34E-05 2.99 1.52E-05 2.99

64 1.67E-06 3.00 1.91E-06 3.00

8 8.49E-05 – 1.08E-04 –

16 5.41E-06 3.97 7.03E-06 3.95

P
3 32 3.42E-07 3.98 4.49E-07 3.97

64 2.25E-08 3.92 3.17E-08 3.83

3.3. The Schrödinger equations

In this subsection, we present an application of the SDC scheme proposed in Subsection 2.2

to solve the nonlinear Schrödinger equation

iut +∆u + (v(x) + β|u|2)u = 0, (3.5)
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where u(x, t) is a complex function, v(x) ia an arbitrary real function, β > 0 is a real constant.

The Schrödinger equation preserve the following energy conservation law:

d

dt
E = 0, (3.6)

where

E =

∫

Ω

(
−
1

2
|∇u|2 +

1

2
v(x)|u|2 +

β

4
|u|4
)
dx. (3.7)

To develop a second-order linear scheme for Eq. (3.5), we introduce an auxiliary function

W =

√
1

2
v(x)|u|2 +

β

4
|u|4 + C.

Then the Schrödinger equation (3.5) can be rewritten as




iut +∆u+HW = 0,

Wt =
1

2
Hut,

(3.8)

where

H =
(v(x) + β|u|2)u√

1
2v(x)|u|

2 + β
4 |u|

4 + C
.

In reformulated Eq. (3.8), the reformulated free energy is given by

Ẽ =

∫

Ω

(
−
1

2
|∇u|2 + |W |2

)
dx. (3.9)

Scheme for the Schrödinger equation: A second-order linear scheme to solve the Schrö-

dinger equation (3.8) is





i
un+1 − un

∆t
+∆un+ 1

2 + H̃n+ 1
2Wn+ 1

2 = 0, (3.10)

Wn+1 −Wn

∆t
=

1

2
H̃n+ 1

2
un+1 − un

∆t
, (3.11)

where

H̃n+ 1
2 =

(v(x) + β|ũn+ 1
2 |2)ũn+ 1

2

√
1
2v(x)|ũ

n+ 1
2 |2 + β

4 |ũ
n+ 1

2 |4 + C
.

Proposition 3.1. For the Schrödinger equation (3.8), the second-order linear scheme (3.10),

(3.11) is unconditionally energy stable, i.e.

Ẽ(un+1,Wn+1) = Ẽ(un,Wn), (3.12)

where Ẽ is defined by (3.9).

Remark 3.3. To make the order of accuracy in space compatible with high-order accuracy

in time, we employ the local discontinuous Galerkin (LDG) method [17, 36, 37] for spatial

discretization. In Appendix B, we take the Schrödinger equation as an example to illustrate

the LDG method and the energy stability in the fully-discrete level.
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Based on the second-order scheme (3.10)-(3.11), we can employ the SDC scheme (2.18)-

(2.21) proposed in subsection 2.2 for the Schrödinger equation.

Example 3.4. Here, we consider the Schrödinger equation (3.5) in the domain [0, 2π]2. The

parameters are chosen as v(x) = 0, β = 1, C = 0.1. The exact solution is

u(x, y, t) = ei(x+y−t). (3.13)

We test the convergence rate of the proposed SDC scheme at the final time T = 0.5. The

L2 and L∞ errors of the real part and the imaginary part are summarized in Table 3.5, which

all shows up to fourth-order accuracy in both time and space.

The energy evolution using the second order linear scheme (3.10)-(3.11) is presented in

Fig. 3.1. We can see the energy is conservative, which is consistent with the theoretical result

presented in Proposition B.1.

Table 3.5: Accuracy test for the Schrödinger equation when using P
k approximation on a uniform

mesh with N cells at time T = 0.5. ∆t = 0.1∆x and ∆x = 2π/N .

Real part Imaginary part

N L2 error order L∞ error order L2 error order L∞ error order

8 4.22E-01 – 3.20E-01 – 4.22E-01 – 3.20E-01 –

P
1 16 1.35E-01 1.65 8.13E-02 1.98 1.35E-01 1.65 8.13E-02 1.98

32 3.85E-02 1.81 2.68E-02 1.60 3.85E-02 1.81 2.68E-02 1.60

64 8.79E-03 2.13 6.98E-03 1.94 8.79E-03 2.13 6.98E-03 1.94

8 3.75E-02 – 3.95E-02 – 3.75E-02 – 3.95E-02 –

P
2 16 1.10E-02 1.77 1.08E-02 1.86 1.10E-02 1.77 1.08E-02 1.86

32 1.31E-03 3.06 1.45E-03 2.90 1.31E-03 3.06 1.45E-03 2.90

64 1.21E-04 3.44 1.10E-04 3.71 1.21E-04 3.44 1.10E-04 3.71

8 7.08E-03 – 9.27E-03 – 7.08E-03 – 9.27E-03 –

P
3 16 5.84E-04 3.60 5.60E-04 4.04 5.84E-04 3.60 5.60E-04 4.04

32 3.73E-05 3.97 3.90E-05 3.84 3.73E-05 3.97 3.90E-05 3.84

64 2.84E-06 3.72 2.41E-06 4.01 2.84E-06 3.72 2.41E-06 4.01

Time

E
ne

rg
y

5 10 15 20
-30

-29.8
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Fig. 3.1. Energy evolution using the second order scheme (3.10)-(3.11) for the Schrödinger equation.
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3.4. The phase field models

For gradient flows, numerous efficient and energy stable numerical schemes have been de-

veloped recently, including the convex splitting method [6, 12], the stabilized semi-implicit

method [5, 13, 24], the exponential time differencing (ETD) method [25, 27], the IEQ ap-

proach [38–40] and the scalar auxiliary variable (SAV) approach [30, 31]. For a detailed de-

scription about efficient numerical methods for phase field models, we refer readers to the

review paper [32].

In this subsection, we will consider three typical phase field models as application examples

of SDC scheme based on IEQ approach, including the Allen-Cahn equation, the Cahn-Hilliard

equation and the highly nonlinear coupled Cahn-Hilliard phase field model of the binary fluid-

surfactant system.

3.4.1. The Allen-Cahn equation

The Allen-Cahn equation

φt = b(φ)(ε2∆φ− F ′(φ)), (3.14)

can be viewed as the gradient flow of the energy function

EAC =

∫

Ω

(
ε2

2
|∇φ|2 + F (φ)

)
dx, F (φ) =

1

4
(φ2 − 1)2. (3.15)

Introduce auxiliary variable U = φ2−1, then the Allen-Cahn equation (3.14) can be rewrit-

ten as {
φt = b(φ)(ε2∆φ− φU),

Ut = 2φφt.
(3.16)

In reformulated Eq. (3.16), the reformulated free energy are given by

ẼAC =

∫

Ω

(
ε2

2
|∇φ|2 +

1

4
U2

)
dx, (3.17)

which is equal to the original free energy EAC in the continuous level.

Scheme for the Allen-Cahn equation: A second-order linear scheme to solve the Allen-

Cahn equation (3.16) is





φn+1 − φn

∆t
= b(φ̃n+ 1

2 )(ε2∆φn+ 1
2 − φ̃n+ 1

2Un+ 1
2 ), (3.18)

Un+1 − Un

∆t
= 2φ̃n+ 1

2
φn+1 − φn

∆t
. (3.19)

Proposition 3.2. For the Allen-Cahn equation (3.16), the second-order linear scheme (3.18)–

(3.19) is unconditionally energy stable, i.e.

ẼAC(φ
n+1, Un+1) ≤ ẼAC(φ

n, Un), (3.20)

where ẼAC is defined by (3.17).

Based on the energy stable second-order scheme, we can employ the SDC method (2.18)-

(2.21) to solve the Allen-Cahn equation.
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Example 3.5. We test the proposed numerical schemes for solving the Allen-Cahn equation

(3.14). To verify the convergence rate, we choose the suitable forcing function so that the exact

solution is given by

φ(x, y, t) = e−2t sin(x) sin(y).

The computational domain is set as Ω = [0, 2π]2. The parameters are set as b(φ) = 1− φ2 and

ε = 1.

The L2 and L∞ errors and the numerical orders of accuracy at T = 0.5 are summarized in

Table 3.6, which shows the expected accuracy.

Table 3.6: Accuracy test for the Allen-Cahn equation when using P
k approximation on a uniform mesh

with N cells at time T = 0.5. ∆t = 0.1∆x and ∆x = 2π/N .

N L2 error order L∞ error order

8 8.45E-02 – 5.80E-02 –

16 2.12E-02 1.99 1.52E-02 1.93

P
1 32 5.33E-03 2.00 3.86E-03 1.98

64 1.33E-03 2.00 9.71E-04 1.99

8 1.09E-02 – 1.01E-02 –

16 1.35E-03 3.01 1.25E-03 3.02

P
2 32 1.69E-04 3.00 1.54E-04 3.01

64 2.11E-05 3.00 1.92E-05 3.01

8 1.07E-03 – 1.27E-03 –

16 6.73E-05 4.00 8.71E-05 3.87

P
3 32 4.21E-06 4.00 5.57E-06 3.96

64 2.63E-07 4.00 3.50E-07 3.99

3.4.2. The Cahn-Hilliard equation

The Cahn-Hilliard equation

φt = ∇ · (b(φ)∇(−ε2∆φ+ F ′(φ))) (3.21)

can be viewed as the gradient flow of the energy function

ECH =

∫

Ω

(
ε2

2
|∇φ|2 + F (φ)

)
dx, F (φ) =

1

4
(φ2 − 1)2. (3.22)

To develop the IEQ scheme, we introduce the auxiliary variable U = φ2 − 1, then the Cahn-

Hilliard equation (3.21) can be rewritten as
{
φt = ∇ · (b(φ)∇(−ε2∆φ+ φU)),

Ut = 2φφt.
(3.23)

Scheme for the Cahn-Hilliard equation: A second-order linear scheme to solve the Cahn-

Hilliard equation (3.23) is




φn+1 − φn

∆t
= ∇ · (b(φ̃n+ 1

2 )∇(−ε2∆φn+ 1
2 + φ̃n+ 1

2Un+ 1
2 )), (3.24)

Un+1 − Un

∆t
= 2φ̃n+ 1

2
φn+1 − φn

∆t
. (3.25)
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Proposition 3.3. For the Cahn-Hilliard equation (3.23), the second-order linear scheme (3.24)-

(3.25) is unconditionally energy stable, i.e.

ẼCH(φn+1, Un+1) ≤ ẼCH(φn, Un), (3.26)

where ẼCH is defined by

ẼCH =

∫

Ω

(
ε2

2
|∇φ|2 +

1

4
U2

)
dx. (3.27)

Based on the energy stable second-order scheme, we then employ the SDC method (2.18)-(2.21)

to solve the Cahn-Hilliard equation.

Example 3.6. We consider the Cahn-Hilliard equation (3.21) with b(φ) = 1 − φ2 and ε = 1.

The initial condition is

φ0(x, y) = sin(x) sin(y), 0 ≤ x, y ≤ 2π.

We first test the accuracy, and the L2 and L∞ errors and the numerical orders of accuracy at

T = 0.5 are presented in Table 3.7.

Table 3.7: Accuracy test for the Cahn-Hilliard equation when using P
k approximation on a uniform

mesh with N cells at time T = 0.5. ∆t = 0.1∆x and ∆x = 2π/N .

N L2 error order L∞ error order

8 8.42E-02 – 5.77E-02 –

16 2.12E-02 1.99 1.51E-02 1.93

P
1 32 5.33E-03 2.00 3.85E-03 1.98

64 1.33E-03 2.00 9.66E-04 1.99

8 1.19E-02 – 9.97E-03 –

16 1.40E-03 3.09 1.24E-03 3.00

P
2 32 1.71E-04 3.03 1.54E-04 3.01

64 2.12E-05 3.00 1.92E-05 3.00

8 1.12E-03 – 1.44E-03 –

16 7.10E-05 3.98 1.12E-04 3.68

P
3 32 4.32E-06 4.03 7.35E-06 3.94

64 2.92E-07 3.89 4.74E-07 3.95

Next, we compare the second-order scheme (3.24)-(3.25) and the fourth-order SDC scheme

for solving the Cahn-Hilliard equation. The parameters are b(φ) = 1 and ε = 0.1. We use the

following initial condition:

φ0(x, y) = rand(x, y),

where rand(x, y) is a random number satisfying −1 ≤ rand(x, y) ≤ 1.

The energy evolution using different temporal discretization methods are presented in

Fig. 3.2. We take the numerical solution using the second-order scheme (3.24)-(3.25) with

∆t = 10−6 as the reference solution. We observe that for the second-order scheme, it is coinci-

dent with the reference energy evolution with time step ∆t = 10−4. For the fourth-order SDC

scheme, it is coincident with the reference energy evolution with time step ∆t = 10−2, which is

102 of the one with the second-order scheme.
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Fig. 3.2. Energy evolution using the second-order scheme (3.24)-(3.25) and the fourth-order SDC

scheme with various time steps for the Cahn-Hilliard equation.

Thus, we use the fourth-order SDC scheme to show the long time simulation of spinodal

decomposition. The parameters are b(φ) = 0.01 and ε = 0.1. We use the following initial

condition:

φ0(x, y) = 0.1 + 0.01rand(x, y).

The computational parameters are ∆x = 2π/N with N = 64 and the piecewise P2 approxima-

tion; the time step ∆t = 0.1∆x. Fig. 3.3 presents the numerical results at different times, we

can see the fourth-order SDC methods can capture the coarsening dynamics accurately with

a larger time step of ∆t = 0.1∆x.

3.4.3. The binary fluid-surfactant system

We consider in this subsection the Cahn-Hilliard phase field model of the binary fluid-surfactant

system [41]




φt = Mφ∆µφ, (3.28)

µφ = −∆φ+ α∆2φ+
1

ǫ2
φ(φ2 − 1) + 2θ∇ · (ρ∇φ), (3.29)

ρt = Mρ∆µρ, (3.30)

µρ = −β∆ρ+
1

η2
ρ(ρ− ρs)

(
ρ−

ρs
2

)
− θ|∇φ|2, (3.31)

where α, β, ǫ, η, ρs, θ are all positive parameters. The system (3.28)-(3.31) preserves the follow-

ing PDE energy law:
d

dt
E(φ, ρ) ≤ 0, (3.32)

where the free energy is given as

E(φ, ρ) =

∫

Ω

(
1

2
|∇φ|2 +

α

2
(∆φ)2 +

1

4ǫ2
(φ2 − 1)2

+
β

2
|∇ρ|2 +

1

4η2
ρ2(ρ− ρs)

2 − θρ|∇φ|2
)
dx. (3.33)
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Yang [41] developed a second-order linear scheme by introducing two auxiliary functions

U = φ2 − 1, V = ρ(ρ− ρs),

and rewriting the binary fluid-surfactant system as





φt = Mφ∆µφ, (3.34)

µφ = −∆φ+ α∆2φ+
1

ǫ2
HU + 2θ∇ · (ρ∇φ), (3.35)

ρt = Mρ∆µρ, (3.36)

µρ = −β∆ρ+
1

η2
GV − θ|∇φ|2, (3.37)

Ut = 2Hφt, (3.38)

Vt = 2Gρt, (3.39)

where H(φ) = φ, G(ρ) = ρ−
ρs
2
.

(a) t = 20 (b) t = 50

(c) t = 100 (d) t = 400

Fig. 3.3. Numerical results of the Cahn-Hilliard equation using the fourth-order SDC scheme with time

step ∆t = 0.1∆x.
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Scheme for the binary fluid-surfactant system: A second-order, linear and decoupled

scheme to solve the binary fluid-surfactant system (3.34)-(3.39) is given as follows:

Step 1. Update ρn+1 and V n+1 as follows:




ρn+1 − ρn

∆t
= Mρ∆

(
−β∆ρn+

1
2 +

1

η2
G(ρ̃n+

1
2 )V n+ 1

2 − θ|∇φ̃n+ 1
2 |2
)
, (3.40)

V n+1 − V n

∆t
= 2G(ρ̃n+

1
2 )

ρn+1 − ρn

∆t
. (3.41)

Step 2. Update φn+1 and Un+1 as follows:




φn+1 − φn

∆t
= Mφ∆

(
−∆φn+ 1

2 + α∆2φn+ 1
2 +

1

ǫ2
H(φ̃n+ 1

2 )Un+ 1
2

+2θ∇ · (ρn+
1
2∇φn+ 1

2 )
)
, (3.42)

Un+1 − Un

∆t
= 2H(φ̃n+ 1

2 )
φn+1 − φn

∆t
. (3.43)

Based on the above second-order scheme, we then employ the SDC scheme to obtain high order

temporal accuracy.

Example 3.7. In this example, we consider the Cahn-Hilliard phase field model of the binary

fluid-surfactant system (3.28)-(3.31). For the accuracy test, we choose a suitable source term

such that the exact solution is taken as{
u(x, y, t) = 0.5 + 0.1e−2t sin(x+ y),

ρ(x, y, t) = 0.3 + 0.1e−2t sin(x + y).
(3.44)

The parameters are set below

Mρ = 2.5e− 3, α = 0.01, ǫ = 0.05, θ = 0.03,

Mφ = 2.5e− 3, β = 1, η = 0.08, ρs = 1.

The L2 and L∞ errors and the numerical orders of accuracy using the fourth-order SDC

scheme at T = 0.2 are presented in Table 3.8. The error is expected to be at the order of

min{O(∆t4),O(∆xk+1)} for Pk approximation.

Table 3.8: Accuracy test for the Cahn-Hilliard phase field model of the binary fluid-surfactant system

when using P
k approximation on a uniform mesh with N cells at time T = 0.2. ∆t = 0.1∆x and

∆x = 2π/N .

φ ρ

N L2 error order L∞ error order L2 error order L∞ error order

8 1.83E-02 – 1.59E-02 – 1.77E-02 – 1.37E-02 –
P

1 16 5.39E-03 1.77 4.84E-03 1.72 5.52E-03 1.68 4.92E-03 1.48
32 1.37E-03 1.97 1.23E-03 1.97 1.37E-03 2.00 1.23E-03 2.00
64 3.43E-04 2.00 3.08E-04 2.00 3.43E-04 2.00 3.08E-04 2.00

8 3.26E-03 – 3.47E-03 – 2.44E-03 – 2.46E-03 –
P

2 16 4.18E-04 2.96 5.11E-04 2.76 3.97E-04 2.62 4.44E-04 2.47
32 4.90E-05 3.09 5.62E-05 3.18 4.90E-05 3.02 5.58E-05 2.99
64 6.13E-06 3.00 7.01E-06 3.00 6.14E-06 3.00 6.99E-06 3.00

8 4.69E-04 – 4.57E-04 – 2.52E-04 – 3.12E-04 –
P

3 16 2.71E-05 4.10 4.00E-05 3.51 2.03E-05 3.62 2.84E-05 3.46
32 1.25E-06 4.44 1.77E-06 4.49 1.24E-06 4.03 1.63E-06 4.11
64 8.13E-08 3.94 1.19E-07 3.89 7.75E-08 4.00 1.00E-07 4.01
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Next, we use the fourth-order SDC scheme to show the long time simulation of spinodal

decomposition. We use the following initial condition:

φ0(x, y) = 0.2 + 0.001rand(x, y),

ρ0(x, y) = 0.2 + 0.001rand(x, y).

The computational parameters are ∆x = 2π/N with N = 64 and the piecewise P2 approxi-

mation; the time step ∆t = 0.1∆x. Fig. 3.4 presents the numerical results at different times,

which shows the spinodal decomposition phenomenon.

(a) t = 0.5 (b) t = 1

(c) t = 2 (d) t = 10

(e) t = 50 (f) t = 100

Fig. 3.4. Numerical results of the Cahn-Hilliard phase field model of the binary fluid-surfactant system

using the fourth-order SDC scheme with time step ∆t = 0.1∆x.
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4. Concluding Remarks

In this paper, we proposed a class of semi-implicit SDC methods, which were based on

second-order time integration methods, and the order of accuracy were increased by two for

each additional iteration. We adopted the SDC methods to solve the convection diffusion

equation, the surface diffusion of graphs, the nonlinear Schrödinger equation and the phase

field models. Numerical experiments showed the efficiency, robustness and accuracy of the

proposed SDC methods. We claim that the methods can be used to solve a large class of PDEs

beyond those addressed in this paper.

Appendix A Proof of Proposition 2.1

Proof. Assume un,0
k = u(tn), k = 1, . . . ,K + 1. Taking the difference of

u(tn,m+1) = u(tn,m) +

∫ tn,m+1

tn,m

F (τ, u(τ), u(τ))dτ (A.1)

and (2.10), we have

u(tn,m+1)− un,m+1
k+1

= u(tn,m)− un,m
k+1 −∆tn,m

(
F
(
t̃n,m+ 1

2 , ũ
n,m+ 1

2

k+1 , u
n,m+ 1

2

k+1

)
− F

(
t̃n,m+ 1

2 , ũ
n,m+ 1

2

k , u
n,m+ 1

2

k

))

+

∫ tn,m+1

tn,m

F (τ, u(τ), u(τ))dτ − Im+1
m (uk). (A.2)

By induction on both m and k, we assume, when k ≤ P ,

u(tn,l)− un,l
k = O(h2k+2), ∀l in level k, (A.3)

u(tn,l)− un,l
k+1 = O(h2k+4), for l ≤ m in level k + 1. (A.4)

Then we have

u(tn,m)− un,m
k+1 = O(h2k+4),

F
(
t̃n,m+ 1

2 , ũ
n,m+ 1

2

k+1 , u
n,m+ 1

2

k+1

)
− F

(
t̃n,m+ 1

2 , ũ
n,m+ 1

2

k , u
n,m+ 1

2

k

)

= F
(
t̃n,m+ 1

2 , ũ
n,m+ 1

2

k+1 , u
n,m+ 1

2

k+1

)
− F

(
t̃n,m+ 1

2 , ũ
n,m+ 1

2

k , u
n,m+ 1

2

k+1

)

+ F
(
t̃n,m+ 1

2 , ũ
n,m+ 1

2

k , u
n,m+ 1

2

k+1

)
− F

(
t̃n,m+ 1

2 , ũ
n,m+ 1

2

k , u
n,m+ 1

2

k

)

= F ′

2

(
t̃n,m+ 1

2 , ξ1, u
n,m+ 1

2

k+1

)(
ũ
n,m+ 1

2

k+1 − ũ
n,m+ 1

2

k

)

+ F ′

3

(
t̃n,m+ 1

2 , ũ
n,m+ 1

2

k , ξ2
)(
u
n,m+ 1

2

k+1 − u
n,m+ 1

2

k

)

= F ′

2

(
t̃n,m+ 1

2 , ξ1, u
n,m+ 1

2

k+1

)
O(h2k+2)

+ F ′

3

(
t̃n,m+ 1

2 , ũ
n,m+ 1

2

k , ξ2
)(1

2
(un,m+1

k+1 − u(tn,m+1)) +O(h2k+2)

)
,

∫ tn,m+1

tn,m

F (τ, u(τ), u(τ))dτ − Im+1
m (uk)

=

∫ tn,m+1

tn,m

F (τ, u(τ), u(τ))dτ − Im+1
m (u) + Im+1

m (u)− Im+1
m (uk)

= O(h2P+1) +O(h2k+3).
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Based on all the analysis above, we have

u(tn,m+1)− un,m+1
k+1 = O

(
hmin[2k+3,2P+1]

)
. (A.5)

This completes the proof. �

Appendix B LDG Method and Energy Stability for the Schrödinger

Equation

In order to describe the LDG method, we first briefly introduce the following notations. Let

Th = {K} be a shape-regular subdivision of Ω. Eh denotes the union of the boundary faces

of elements K ∈ Th, and E0 = Eh \ ∂Ω. The discontinuous Galerkin finite element spaces are

denoted by

cVh =
{
v ∈ L2(Ω) : v|K ∈ Pk(K), ∀K ∈ Th

}
,

cW h =
{
w ∈ (L2(Ω))d : w|K ∈ (Pk(K))d, ∀K ∈ Th

}
,

where Pk(K) is the space of complex polynomials of degree at most k onK. Note that functions

in cVh and cW h are allowed to have discontinuities across element interfaces.

In order to develop the LDG scheme to solve the linear scheme (3.10)-(3.11), we rewrite it

into a system of the first order equations

i
un+1 − un

∆t
= −∇ · qn+ 1

2 − H̃n+ 1
2Wn+ 1

2 ,

qn+1 = ∇un+1,

Wn+1 −Wn

∆t
=

1

2
H̃n+ 1

2
un+1 − un

∆t
.

Then the fully-discrete LDG scheme becomes the following: Find un+1,Wn+1 ∈ cVh and qn+1 ∈

cW h such that for all test functions ϕ, ξ ∈ cVh and η ∈ cW h, we have

i

∫

K

un+1 − un

∆t
ϕdK =

∫

K

qn+ 1
2 · ∇ϕdK −

∫

∂K

q̂
n+ 1

2 · νϕds−

∫

K

H̃n+ 1
2Wn+ 1

2ϕdK, (B.1a)

∫

K

qn+1 · ηdK = −

∫

K

un+1∇ · ηdK +

∫

∂K

ûn+1η · νds, (B.1b)

∫

K

Wn+1 −Wn

∆t
ξdK =

1

2

∫

K

H̃n+ 1
2
un+1 − un

∆t
ξdK. (B.1c)

Here q̂
n+1 and ûn+1 are the numerical fluxes. To complete the definition of the LDG method,

we need to define these numerical fluxes.

Let e be an interior face shared by the “left” and “right” elements KL and KR, and νL, νR

are the normal vectors on e pointing exterior to KL and KR, respectively. We aim to uniquely

define “left” and “right” for each face according to any fixed rule. For example, we choose ν0 as

a constant vector and νL · ν0 6= 0. The left element KL to the face e requires that νL · ν0 < 0,

and the right one KR requires νL · ν0 > 0. If u is a function on KL and KR, but possibly

discontinuous across e, let uL denote (u|KL
)|e and uR denote (u|KR

)|e, the left and right trace,

respectively. Here we use the simple alternating numerical fluxes

q̂
n+1 = qn+1

L , ûn+1 = un+1
R . (B.2)
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Next, we will prove the energy stability for fully-discrete LDG scheme (B.1) with the alter-

nating numerical fluxes (B.2) and the periodic boundary condition.

Proposition B.1. The solution to the LDG scheme (B.1) with numerical fluxes (B.2) and the

periodic boundary condition satisfies the energy stability

Ẽ(qn+1,Wn+1) = Ẽ(qn,Wn), (B.3)

where

Ẽ(q,W ) =

∫

Ω

(
−
1

2
|q|2 + |W |2

)
dx.

Proof. Let Du denote un+1 − un. For Eq. (B.1a), choosing the test function ϕ = Du∗, we

have

i

∆t

∫

K

|Du|2dK =

∫

K

qn+ 1
2 · ∇(Du∗)dK −

∫

∂K

q̂
n+ 1

2 · ν(Du∗)ds

−

∫

K

H̃n+ 1
2Wn+ 1

2 (Du∗)dK. (B.4)

Taking the conjugate of (B.1a) and choosing the test function ϕ = Du, we get

−i

∆t

∫

K

|Du|2dK =

∫

K

qn+ 1
2
,∗ · ∇(Du)dK −

∫

∂K

q̂
n+ 1

2
,∗ · ν(Du)ds

−

∫

K

H̃n+ 1
2
,∗Wn+ 1

2
,∗(Du)dK. (B.5)

For Eq. (B.1b), taking the difference between two time levels and choosing test function η =

−qn+ 1
2
,∗ give

−
1

2

∫

K

(|qn+1|2 − |qn|2)dK =

∫

K

(Du)∇ · qn+ 1
2
,∗dK −

∫

∂K

(Dû)qn+ 1
2
,∗ · νds. (B.6)

Taking the conjugate of (B.1b) and the difference between two time levels, choosing η = −qn+ 1
2

give

−
1

2

∫

K

(|qn+1|2 − |qn|2)dK =

∫

K

(Du∗)∇ · qn+ 1
2 dK −

∫

∂K

(Dû∗)qn+ 1
2 · νds. (B.7)

In Eq. (B.1c), we choose the test function ξ = 2Wn+ 1
2
,∗ to obtain

∫

K

(|Wn+1|2 − |Wn|2)dK =

∫

K

H̃n+ 1
2 (Du)Wn+ 1

2
,∗dK, (B.8)

and also take the conjugate of (B.1c), choose the test function ξ = 2Wn+ 1
2 , one can obtain

∫

K

(|Wn+1|2 − |Wn|2)dK =

∫

K

H̃n+ 1
2
,∗(Du∗)Wn+ 1

2 dK. (B.9)

Let (B.4)+(B.5)+(B.6)+(B.7)+(B.8)+(B.9), and with the help of the alternating numerical

fluxes (B.2) on interior faces and the periodic boundary condition on boundary faces, we obtain

−
1

2

∫

Ω

(|qn+1|2 − |qn|2)dx+

∫

K

(|Wn+1|2 − |Wn|2)dx = 0, (B.10)

which implies the energy stability (B.3). �
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