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Abstract

This paper deals with the numerical approximation for the time fractional diffusion
problem with fractional dynamic boundary conditions. The well-posedness for the weak
solutions is studied. A direct discontinuous Galerkin approach is used in spatial direction
under the uniform meshes, together with a second-order Alikhanov scheme is utilized in
temporal direction on the graded mesh, and then the fully discrete scheme is constructed.
Furthermore, the stability and the error estimate for the full scheme are analyzed in detail.
Numerical experiments are also given to illustrate the effectiveness of the proposed method.
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1. Introduction

Classical partial differential equations (PDE) with the dynamic boundary conditions (DBC)
have been considered in [1,2] by some physicists to simulate the interaction among fluids with
the walls of domain. Recently, there are also some reports on their numerical solutions [3-5].
However, the research of efficient numerical methods for the time fractional partial differential
equations (TFPDE) with the fractional dynamic boundary conditions (FDBC) has not been
developed very much. To the best of our knowledge, the only work [6] on this topic presented
a Rothe’s approach for the source identification of the time fractional wave equations with
FDBC. In this paper, we will study the following time fractional diffusion equations with FDBC:

S Dz u(e,t) = Aul, ) + f(, 1), (.)€ Q% (0,T], (L1a)
u(z,0) = up(x), x €, (1.1b)
1§ Dfu(x, t) = —u(x, t) + cAgqu(x, t) — au(x, t) + foo(x,t), (x,t) € 9Q x (0,T], (1.1c)
where 0 < o < 1, & := (z,9) € Q with Q is a bounded domain in R2, Q) is the closure of 2, 9

is the boundary of 2, u, A, ¢ are non-negative constants, fo and fsq are given functions, and
§ D¢ denotes the left Caputo fractional derivative operator

Foput) = s [ =97 (uts) ) as.
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Here, A is the classical Laplace operator along with Agg is Laplace-Beltrami operator [7], Onu
represents the exterior normal derivative of u on 0f2.

Anomalous heat diffusion appears in many problems, and can be modeled by the fractional
diffusion equation (1.1a). Here, u is the temperature, Onu is used to represent the heat flux,
f and fsq represent the heat source in the domain and on the boundary respectively. It is
worth noting that the anomalous rate of change for the heat with the time should be taken
into account both in the region and on the boundary. The feature of anomalous diffusion is the
nonlinear growth of the mean squared displacement with time (x?(t)) ~ t*, which deviates from
the well-known property (x2(t)) ~ t of the Brownian motion [8]. Therefore, we use the time
fractional derivative operator in (1.1c). Because the Laplace-Beltrami operator contains the
tangential derivative, the heat flow along the boundary is allowed. The effect of the boundary
condition (1.1c¢) is to send a “heat wave” into the region and an infinitesimal layer near the
boundary. In fact, FDBC with the Caputo derivative is an extension of typical DBC. Especially,
when o = 1, (1.1) reduces to the parabolic problems with DBC in [5], whose derivation and
physical interpretation can be found in [9].

Fractional differential equations have recently drawn growing attention because the diverse
utilizations, such as dynamics in self-similar structures, engineering science, biological systems
and so on [10-12]. In particular, as a valuable tool to model complex systems for anomalous
diffusion transport, TFPDE with initial-boundary value conditions have been investigated by
many scholars [13,14]. Recently, the construction and analysis of discretization approach for
TFPDE has obtained a series of results in numerical methods, see [15-18].

Discontinuous Galerkin (DG) method has been widely applied for solving PDE numerically
owing to its flexibility and higher accuracy. However, DG method is still difficult for solving
diffusion equations, because it is not easy to define numerical fluxes about the diffusion terms.
Subsequently, [19] researched the local discontinuous Galerkin (LDG) method to deal with
this problem. The main idea of LDG method is to change the original equation into a first-
order system by introducing some auxiliary variables, which may result in high computational
expense. To avoid this drawback, the hybridizable discontinuous Galerkin (HDG) method and
the direct discontinuous Galerkin (DDG) method are proposed. So far as we know, [20] studied
the HDG method for the spatial discretization of time fractional diffusion equation. The DDG
method has also been applied in space approximation for TFPDE with the initial and boundary
conditions, including time fractional reaction-diffusion problem with periodic boundary [21],
time fractional reaction-diffusion problem with homogeneous Dirichlet conditions [22] and time
fractional diffusion problem with Robin boundary [23]. Tt is worth noting that, DDG method
can compel the weak form directly of PDE into the DG function space for the test functions
and the numerical solutions, see [24,25]. Since no new variables are introduced in the weak
formulation of the problem, the DDG method has a practical advantage over LDG method.
Thus, we will utilize the DDG method for the spatial discretization of (1.1) with FDBC.

Now we turn to consider the time discretization. L1 formula is a primary numerical formula
to approximate time fractional derivatives with accuracy 2 — o when the order of fractional
derivative is « (0 < « < 1) [26,27]. Actually, L1 formula is obtained by applying a piecewise
linear interpolation at every small interval for the integrand. This guides us to replace linear
interpolation with another higher-order interpolation to improve the accuracy. In the following
literatures, several numerical Caputo formulae with higher precision are given, for example, L.1-2
scheme [28] and L2-1,, formula [29] which used the piecewise quadratic polynomial interpolation.
The numerical solutions converge temporally with order 2 for subdiffusion equation (1.1a) with
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sufficiently smooth solutions. Here, we will design a second order Alikhanov type (L2-1,)
scheme for time fractional derivative of (1.1) under graded mesh, which is effective in resolving
the initial singularity of time fractional diffusion problems.

The structure is as follows. In Section 2, we obtain the well-posedness of weak solution. In
Section 3, we present DDG method for spatial discretization on uniform meshes and second order
L2-1, formula for time by using graded mesh. Moreover, we prove that the fully discrete scheme
is stable in Section 4 and convergent in Section 5. Finally, we provide numerical experiments
to validate the availability of our method.

2. Well-Posedness of Weak Problem

2.1. Preliminaries

Let L?(Q) be Lebesgue space with square integrable functions in 2. The inner product is
written by (-, -)q and the norm by || - ||q. For a real number s > 0, the Sobolev space is written
by H*(2), where the norm and seminorm are denoted by || - ||s,o and |- |s,q, see [30]. Hereafter,
the domain 2 can be removed from the notations if no confusion would arise, and we use A < B
to denote A < C'B, where C' is a positive real number independent of the spatial and temporal
mesh sizes.

We also introduce Laplace-Beltrami operator [7] on 9. Firstly, we define a projection
matrix J := I —n®n = (§;; —nn;) for i,j = 1,2, where I is the identity matrix, n is
the unit external normal vector, a ® b = (a;b;);; and d;; is Kroneker delta. Furthermore, for
w: 00 — R, we set the tangential gradient as Voqw := JVw. In addition, for E : 9Q — R2,
we define the tangential divergence as divoq(F) := tr((VE)J), and tr(-) is the trace operator.
Consequently, we now define the Laplace-Beltrami operator Agqw := divaa(Vaqu).

Introduce Sobolev surface space [7] as follows:

H*(9) := {w € H*(09) : Vaqw € [HS*l(aQ)]Q}, s>1
with H(0Q) = L?(092). Then, for u > 0, we introduce the following space:
H3(9,00) = {w € HY(Q) : oo € H(99)}

with the norm

2 2
oz 0,00 = /10l + £ 10113 oy

When s = 0, we write H}(Q,9Q) as L?,(€2,9Q), and the norm

2 2
lewll 0,00y = VIl + ],

and we will omit the subscript when p = 1.
Now, we introduce some useful results of fractional calculus.

Lemma 2.1 (see [31]). If w: [0,T] — Y has a derivative, where Y is a real Hilbert space,
then

(wt),§ Dy w(®)) = 56 DF ()]
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Lemma 2.2 (see [32]). Let c¢(t) > 0 be a nondecreasing function and locally integrable on
(0,T), and d(t) > 0 be a nondecreasing continuous function on (0,T). If w(t) > 0 and locally
integrable along with

w(t) < e(t) 4 d(t) /Ot(t —8)* tw(s)ds, 0<t<T.

Then
w(t) < c(t) By (d(t)T()t™), te][0,T),

k

where Eq is the Mittag-Leffler function, and Eqo(z) =Y 1 T

2.2. Existence and uniqueness

Introduce a few important spaces
Cs([0,T], H) :={w € L*>([0,T],H) : wis continuous weakly} ,
and
H :=L2(Q,00) = {w € L*(Q) : pw|oq € L*(090)},
Vi=H)(Q,00) = {we H(Q) : pwlaq € H'(09)} .
Similar to [5], by multiplying (1.1a) and (1.1c¢) by the test function v € V', using the Green’s

formula in the domain and on the boundary, adding the two equations, we can obtain the
variational form of (1.1): Find u € L2([0,T],V) N Cs([0,T], H) such that

(OCD?uaU)Q +u (thau,’U)BQ + a(uav) = (fvv)Q + (f@(lav)ag ; (2 1)
u(0) = wo, .

where
a(u,v) = (Vu, Vo)a + < (Vaqu, Vaqv) 5 + A1, v)aq.

Now, the existence and uniqueness of the weak solution for (1.1) can be acquired.
Theorem 2.1. Let f € L0 ([0, T, L*(R)), foa € L% ([0, 77, L*(99)) for any ag € (0,0a] and
ug € H. Then there is a unique function

u € LQ([OvT]a V) N CS([OvT]a H)v
which satisfies (2.1).

Proof. According to the fundamental approach of [33, Chapter III, Theorem 3.1], we divide
the proof in the following five steps.

Step 1. Construction of discrete solution For each m, let H,, C H be a finite dimensional
subspace generated by {Ci1,---,(m} and um(t) := um(-,t). There exists a unique sequence n;
to satisfy

U (t) = Z n; ()¢

and
((?Dtaum(t)v U)Q T (OCDtaum(t)? U) o0 + a(um(t)v U) = (f(t)v U)Q =+ (f@(l(t)a U)BQ; (2 2)
U (0) = U, .

where u,,o is an orthogonal projection from H of ug onto the space H,, formed by (1, -, (n.
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Step 2. Energy estimates Let v = u,,(t) in (2.2), using Lemma 2.1, we get
507 (lumOll5, + 1l (®50) +2 (IVun®llg + <l Voaun(®) 5 + Mun(®)5)
<Jum @l + allun @l + 17Ol + |f0®ll50: (23)

Applying Lemma 2.2, Holder’s inequality together with Young’s inequality, for all g € (0, ]
and [ = Cf:g‘g, we obtain

2 2
e ()]l + ]| wm ()| 5

< <||um<o>ué a5+ [ €= (17 + oo ) ds> Bo (D(@)t)
S @+ e @+ [ () + 0(o) )

([ e ([ vameolzieas)”

S [ ()l + s (0) 5, +

(feara)™

t . )
< @+l g+ (™ + o6 ) s+ [ ¢ =05

T a a T”l
S (O + ullum)3 + [ (IS + [ fonto) 55 ) ds + 157 (2.4)
0
This guarantees
{um} is bounded in L*°([0,T], H). (2.5)
Integrating (2.3) with order «, we have
t
2 [ =7 ([ + <l Pomn () g+ M) 3,) 0
< [[um (O, + el (0) |5,
t
[ = (N + il ) g+ 1N + om0 )as 20)
For s € (0,t), (2.5) gives
(g + wllwm ()50 S [1£6)lg + 1 Foals)l[sq: (2.7)
and by (2.4), we get
! a—1 2 2
L= (Il + lloato)5,) as
T 2/0([) 2/040 T Jrl
< [ (I + 1ol as + oy 28)

Thus, by using (2.6) to (2.8), we arrive at

t
/0 (8= )" (HVum HéﬁLMHanum(S)HZQ) ds
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S e O, + s )5+ [ €= 907 (L) + 1 o5 ) s

< 2 2 T 2/00 2/ a0 T
< o O+ llom @30+ [ (LN + oo 2) s+

Moreover, T 1 < (t — s)*~! for s € (0,t) yields
a—1 ! 2 2
7 [ (V0] + 1l Pomn ()]
t
< [=9m (I9uno)l + | Vontn(s)50) as

T
SHUm(0>||?z+uHUm(0>||ZQ+/O (PN + llfon()567) ds +

Hence,
{t,} is a bounded sequence in L?([0,T], V).

Step 3. Compactness. Write t,, : R = V as

) {gmu), te0.7]
, teR\[0,T).

Indeed, Caputo derivative of w,, can be written as

d
C ar l—«
Dy, (t) = ool —Um (T
—olt U () t <dtu ())

_ o (%um( )+ i (0)30 — um(T)(ST)

= thaum(t) + ool (um (0)80 — um (T)o7) ,

where _ I}~ is the left Riemann-Liouville integral and

I () = ﬁ/m(t §)~w(s)ds.

Consequently, from (2.2) and (2.12), we get

((()JDtaum(t)a <j)9 +u ((()JDtaum(t)a Cj)ag

= <Xm(t)v CJ> =+ (um(())a Cj)gz 70011:1_0(50 +u (Um(())a Cj)agz fooItl_a(SO

= (un(T), )~ ™07 = 1 (n(T), ) gy —oc It~

where dy and d7 are the Dirac distributions at 0 and 7', together with

o [ tep)
xom 0, te R\ [0,T].

Here

Xm(t) = f(t) + foa(t) — Gum(t)]|a — sGum(t)|aa — Mum (t)]og — Vi (t) - nloo

161

(2.10)

(2.11)

(2.12)
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_ —A in €,
G =
{Aag on Of).

and

Then, it is easy to obtain

T T
| en®lveat 5 [ A1y + Mon(®lly. + lun®ll ) at,
0 0

which is bounded by (2.11), and V"’ is the dual space of V. By Parseval inequality, we have

“+oo 5
/ 72272 [ ()2 dr

— 00

e 1—a 2 4 11—« 2
= [ el at = [ ort 0 a

oo

< <ﬁ) / (@ .

where 1, is Fourier transform of ,,. Thus, we can apply the compactness result in [33].

Step 4. Existence. The estimates (2.4) and (2.10) ensure the existence of u € L?([0,T], V)N
L>([0,T],H) and a sub-sequence u,s such that u,  — w in L?*([0,T],V) weakly, and in
L°°([0,T], H) weak-star, as m’ — oo, along with w,,, — u in L?([0,T], H) strongly.

Integrating (2.2), for tp € [0,T], we obtain

(e (£),0) g = (ume (EB), 0) g + p (U (£),0) g = 1 (U (E8), 0) gy

= /0 ’ [(tp — )7 = (t = 5)7] (@lum (5),v) = (f(3), v)q — {foa(s), v)aq) ds

¢
= [ (= ) @ (5), ) = (F(5) v~ (o) ) . (2.13)
tp
Since um — u weakly in L2([0,T],V), we suppose that um, (tg) — u(tg) in V for any tp €
[0,7]\ G and the measure of G is equal to 0. Hence, for tg ¢ G, lim, 00 Un/ (tp) = u(tp) in
H. So, (2.9) gives

t

lim (t—5) " ((Vum (s), Vo)a + 1t (Vogum (s), Vagv) 5 )ds

m’—oco

N /t (t = )7 ((Vu(s), Vo)g + 1 (Voau(s), Voav) g )ds,
and
lim ’ [(ts — s)Tire — (t — s)‘HO‘} (Ve (s), Vo) + i (Vaoum (s), Vaav) o )ds

m’—o0 [
tp
= / [(tB — )T (- s)_1+a} ((Vu(s), Vo) + 1 (Vaau(s), Vaav) s )ds.
0
Taking the limit of (2.13) for the sequence m’, for t > tp and ¢, tp ¢ G, we get

(u(t), v)q + 1 (u(t), v)oq = [(ultr), v)g + p (ults), v) 5]
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= [T = 7 = =7 (alul).0) = (7(5) v~ (om0 0

= [ =97 @), )~ () — (o). ) d. (2.14)

tp

When t — tg, we have

(u(t),v)g + p (u(t), v)sq = [(u(ts),v)q + 1 (utB) v)se] — 0.

From (2.14), it not difficult to obtain (2.1) for tp = 0. Here, we denote u(t) = u(-,t) and the
existence of the weak solution is proved.

Step 5. Uniqueness. Suppose that u; and uy are the solutions of (2.1). Take v = @ in (2.1),
where @ = u; — us. Thus, we get

(§ Da, @), + p (§ Dy, @), + a(d, @) =
Then, by using Lemma 2.1, we obtain
o (11~112 12 2 12 2
§ 07 (I[all5 + llals) +2 (IIValls + <l Voot |5, + Mall5,) <o.

which implies % = 0 for ¢ € [0, T]. O

3. Fully Discrete Method

3.1. Space discretization

Without loss of generality, we set Q := (a,b) X (¢,d). In fact, the assumption of the
rectangular spatial domain is not essential because the method can be designed for arbitrary
bounded domain [24]. Assume that Q is divided equally into M; x Ms nonoverlapping open
rectangular meshes @, M; € Ny, i = 1,2. 2), is the set of all Q and 2 = UQeghQ. We set the
mesh size h = diam(Q) for Q € 2;,. e denotes an interior edge, which is nonempty intersection
of the closure between the adjacent elements. In the meantime, a boundary edge egq is defined
by nonempty intersection of the closure for an element of 2;, and 9. In addition, & and é’ha”
are used to represent the set of interior edges and exterior edges respectively.

Introduce the broken Sobolev spaces (see [34])

H*(2y) = {w e L*(Q) : wlg € H*(Q),Q € 2n},
H (&%) == {w € L*(09) : Wley, € H(epa), o0 € 7%}, s>0

with H°(2),) = L*(2;,) and H°(&29) = L?(&£7?). Moreover, we define
HS (2, 677) = {w € H*(24) : pwlgon € HS(g,?Q)} .
Define the finite dimensional space

Vi={we L3(9) swlg € PP(Q),Q € 2}, p>1,
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where PP(Q) as the set of polynomials and the degrees are not more than p on Q. For each e,
the jumps and the averages of w € H*(2),) are

wt +w™
2

Now, we rewrite the variational formulation (2.1) as: for all @ € 2, and t € (0,77, find
u(-,t) € HY( 2y, 579) to satisfy

Judv  Ouodv
¢ DYy - vdad / —— 4+ —— | dad
/QO ¢ U vdrdy o+ 0 8z8z+8y8y vy

ou ou ) /
— —ong + —on, |ds = [ fodady,
/6Q (695 dy Y Q

[wle =nfwt +n w™, {w} =

,u/ thau -vdzdy = —)\/ uvds — ¢ VaauVaauds (3.1)
- Onuvds + / faoudzdy,
/ u(0)vdady = / upvdady,
Q Q

where v € H'(2),, £79).
From (3.1), DDG semi-discrete scheme is constructed as: for all Q € 25, and ¢ € (0,7, find
up(+,t) € Vy, to arrive at

Ouy, Ov Ouy, Ov
C Nna h h h h
D&y, - vpdad ZhZh L 2R dad
/QO vin ”hxy+/cg<ax or oy 6y) T

—/ %vhnm—i—%vhny ds:/ Sfupdzdy, (3.2)

/u(O)Uhdxdy:/uhovhdxdy.
Q Q

Here, vy, € Vi, uno € Vy, is the L2-projection of ug onto V,, and the numerical fluxes are defined
by

%\h -1 auh a2uh 0
—  =6hh v — 61h z  0Q € &,
9z log =00 [unlpg +{ o }BQ + 61 [8:02 LQD Q€ &y
%\h 1 {auh} [52uh] 0
- =60oh™ [u n, +<{ — +601h n,, 0Q €é&,,
ay 00 0 [ h]aQ Y ay 20 1 8y2 90 Y Q h

dun dun
/ ﬂvhnm + ﬂvhny ds = —/\/ upvpds — g/ VoounVaqupds
&9 ox 8y &P &0
— /L/ OCDto‘uhvhds +/ fourdxdy,
82 &2

where 0y and 6, are user-chosen positive constants. Summing (3.2) for each Q € 2}, and then
we can obtain

(§ Dy up, On) oy + 1 (thauh,Uh)aQ + an(un,vn) = (f,vn)a + (foa, vn)aq,

3.3
(uo,vn) = (uno,vn), 33
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where
ap (un,vn) = (Vun, Vop)a + < (Vaoun, Vaaun) go + Aun, vr)ag

+Z Vuh vp] -nds, 0Q € &.

This finishes the description of the DDG method.

Remark 3.1. An appropriate choice of (6y,61) is to ensure the stability of the method. Gen-
erally speaking, when 6; = 0, 6 needs to be large enough to stabilize the scheme. In our
calculations, we take 6y = 2, 6; = 7> and the specific explanation can be seen in [25].

3.2. Time discretization

In order to deal with the initial singularity of time fractional diffusion problems, we use
a graded mesh t; :=T(j/N)® for 0 < j < N, N € N; and w > 1. For such nonuniform time
levels, let At; =t; —tj_1 for 1 <j < N, and At = max;<j<ny At;. We define a fractional time
level ;. = pt;_1 4 (1 —9)t; for ¢ € (0,1). In what follows, we let ¢» = §. In addition, the
local step-size ratios are denote by

At;
Atjpq’

;= 1<j<N-1
with ¢ = IMaxXi<Gj<N-1 ¢j-
Then we introduce the following assumption to carry out the theoretical analyses later.

M. For w > 1, there is a constant C, > 0 which satisfies

At < C’WAtmin{l t;~ ”w} for 1<j<N

with At A
tj S thj*l and ' < C =1
tj -1

for 2<j5<N.

Obviously, the graded mesh satisfies M, and ¢ < 1. For any time sequence (w? )j»V:O, take the
backward difference dw’ = w’ —w’~! and the interpolated value w™ =% = pw" ! + (1 —¢)w".
Let II; jw be the linear interpolant of w for ¢;_; and ¢;, and Ily jw be the quadratic with ¢;_1,
t; and t;41. Then, similar to [29], Alikhanov type scheme to (§ Dfw) (t,—y) is as follows:

o = [ ) (M) (51 + Z / * i (s) () (5)ds

tn—1

=ciout + Z (ch 0w’ + 650000 — gl 007 ) (3.
where
(n) 1 min{tsta-v} ‘
Cn—j - A—tj - Hn(s)ds, 1 < j < n,
(n) 2 tj , q . :
In-—j Atj(Atj + Atjy1) /tjl(s J—g)ﬁn(s) S, <j<n

with £, () = wi—a(tn—y —t) and we(t) = t*71/T'(@).
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From (3.4), we get the compact form

(@ wn)"™" = 3" 2, 0u,
j=1

namely
n—1
(‘@awh)niw = Z(()n)w;ll - Z (Z'r(zn—)j—l o Zfln)]) w‘}]L o Z7(z7i)1w}0w
j=1
and the local truncation error denote by
177 = (§Dfwy) (tney) — (2%wn)"™ ¥, 1<n<N. (3.5)
Furthermore, Zfl )j are defined as follows. When n =1, Z(l) (1). When n > 2,
n)+¢n 1g(n); Jj=n,
n—j nfj J— 1gn j+1 gn,j, SJ=n )
'Ezn—l gfzn)la J=1

In addition, we introduce the following hypotheses:
(I) There is a constant 7z > 0 to yield

1

- ﬂzAt

tj
/ wWi—a(ty, —s)ds, 1<j<n<N.

tj71

(I1) 7™ are monotone, that is Z(") > Z(")1 >0for2<j<n<N.

n—j

Furthermore, define the global consistency error

n
np =Y E0 T, 1<j<n <N,

=1
where Egi) ; are chosen to satisfy
n
Sz =1, 1<j<n<N.

i=J

Thus, by (3.3), we obtain the fully-discrete numerical scheme: require that u, € Vj to
satisfy

((Qauh)n_w ,Uh) + ((Qauh)n_w ,vh) +an(u) Y, vp)
. o0 (3.6)
= (f ’”h) (fasz 2 Un )asz
forall v, € Vy and 1 <n < N.

Remark 3.2. In our simulation, [0, 7] is divided into [0,7] and [T, T] with N subintervals.
n [0,7], we apply the graded mesh t, = T(n/N)Z for n € [0, N]. Furthermore, we utilize
a umform mesh in [T, T] with step size At. Refer to [27], we take At = :N where T' = 2%

and N = [2w1fiv+w].
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4. Stability

To establish the stability for the full scheme (3.6), we first introduce some lemmas.

Lemma 4.1. For 1 <n < N, we have

« n— n— « n— 1 - ’ﬂ
(o ur ) (@) 2 5 32001 gmom )
(n) _ 7(n)
Proof. Define (1) := % and ™) = % for n > 2. Tt is easy to get (1) > 4.

Furthermore, [35, Lemma 3.1] gives that /(™) > 1 for n > 2 along with (IT) holds. Consequently,
by [36, Lemma 4.1], we arrive at

(e =) = 5320 ],

(@ wr=?) 2 532 200( w0 )

Thus for 1 <n < N, we get

(

9
®

/N

w)n—w ’wn_w)g tH ((@aw)n—w ’wn_w)an

1 n n n
252; 20( el ) + gg 0( [ 50
1 n
= 52 20( e[l + w150 )
1 n
=5 22001 iz000 )
The proof is complete. O

Lemma 4.2 (see [36]). Suppose that the conditions (I) and (II) hold, and v € [0,1). Let
co > 0 be a constant independent of
1
< .
Y22 — a)mzeo

If we find (€7)7, > 0 and (w’)L; >0 such that

Z Zr(i)jﬁ(wj)Q < co(w™ V)2 4w TVE", 1<n <N,
j=1

then

J
w" < 2E, (2max(1, ¢)mzcoty) (wo + max Ey)Z«EZ)

1<j<n 4
i=1

< 28, (2max(1,o)rzant) (o + w201 - @) o {156} ). 150 <N,
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and from ¢ < 1, it follows that

w" < 2E, (2nzcoty) (w +1rilja<xn . ng>

< 2E, (2mzcoty) w’ +77T(1 — «) max {to‘§ }> 1<n<N.

Theorem 4.1. Suppose that At < 1/3/11T(2 — «), and there is a constant r* € (0,1) to
satisfy 1 — C* (T > 0. Let uy be the solution of (3 6). Then the full scheme (3.6) is stable,
and we have for 1 <n<N

luhll 22 (2,00) (4.1)

11v/2 o1l e i
=T = ) e (£ (177 g + 15557 1) } )

< 2B, (118) (unoll 3 0.00) + —

where the constants C* and C,, only depend on u.
Proof. Taking v, = uz_w in (3.6), we arrive at
(@ w0 ™)+ (@)™ ™)t anu )
) (o)
(f Q t\Joa st o0’
and

an(up ™ ul ™) = (V) ™, V" )a + ¢ (Vagu’g“”,vmuz—w)m
+ )\(uz_w,uz_w)ag + z@: /aQ Vuz_w . [uz_w} - nds.
From Young’s inequality, there exists r* € (0,1) such that
%/@Q Vuzﬂ’b {uzﬂq nds
= Z /6Q (90h_1 [uz_w} [uz_w} + {Vuz_w} [uz_w} n) ds
n [ n—1
A O e e D I C
> 9oh—12/w Ed ds—r*%:/w (v i |[up ]| as
2902/ h1 [uzﬂprds—r*Zh% 2
Q

VY HaQ ho%
2 *)2 2
L, S|
{“h :|H6Q 200 D ||V 0Q

N, + th

Up,

{ n—

Il

Using the trace inequality, there is a constant C* > 0 to satisfy

2 2
QN YD B\
e
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which gives

HVUZ wH +Z/ Vu, w ﬂ nds
n— 90 — n— 2 (T*)2 n— 2
> S v+ 5w [, - S S r v,
Q Q 0 q

oQ
*(T*)Q n— 2 90 _ n— 2
> (- ) v - e a1,

Thus, ah(uz_w uy 1/J) > 0. Due to Lemma 4.1, we have the following inequality:

1< (n) 112 112
327 o (Jll, + ulill,)
n— n—1ll2
T+ |

A (%

Then, there is a constant C,, > 0 to get

2
n—a
Toa HaQ

uZ_wHaQ) ( ’fn wHQ

L e

L e

ool

")

n 2
PR
= L2(2,09)
2
<2([l4 Cu (= i) Q17 15
- <uh Lﬁ((z,652)+ Un Q+“ L (S I/ HQ+ foq 00
2
<2 PP (i P i N
= =% L2(2,09) Un £2(02,00) Hf HQ+ faa 20
By Lemma 4.2 (with 7z = 11/4), it is easy to get the desired result (4.1). O

5. Convergence

Similar to Lemma 2.2 in [22], we assume the solution u of (1.1) satisfies the following regular
conditions:

||u(:1:, t)||Hﬁ+1(Q76Q) <C, (5.1&)

| Df u(z, t)||HE+1((276Q) <C, (5.1b)
0" .

H ?(mat) S+, i=1,23 (5.1c)
ot L2(2,09)

with o € (0,1).
Before providing the error analysis, for a given piecewise smooth function ¢, we define
a projection A: HETH(Q,09) — V), as follows:

[ (- ayudsdy =0, vw e B2(Q)
Q
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170
AW d(Ag) 92(A)q) g 0
= = 0oh ™[4, 3 S b ik | — o o= Flogr PQEE
B(AWg) » A(AWg) 92(AW)q) dq
I S VA AW i S 72 I S 4 - 2 0

oy Ooh [ q] n, + { 3y + 61h a7 1, 00 = Byloo’ Q € &,

(Aq) |BQ - q‘aQa {AQ}|6Q = q|6Q’ aQ € gf(z)v (52>

where A is the tensor product of A*) and A®) and the superscripts indicate the application of
the one-dimensional operator A®) or A®) with respect to the corresponding variable z or y.

Lemma 5.1. Assume that ¢ € HYT(Q,0Q), then

2 2
249 = dllzz g.00) S 77 3 Lol 00> (5:3)
Q Q
Proof. By the definition of the tensor product, we see that
Ag = A(””)(A(y)q) - AW (A(I)q).
Using the triangular inequality, we get
144 = dll 12 @,00) < ][4 (4q) — A(I)qHLﬁ(Q,aQ) + [ 4% - qHLg(Q,aQ)'
According to [37, Corollary 7.2], we obtain
) ||A(Z)q*qHQLg<Q,aQ) < p2+1) Z/ o7+l dady,
Q Q '@
) min{p,2} . o
S D0 g0 S D w5 [ [ial” dedy,
Q i=0 Q7@
Thus, for any 0 < m < p — j, we arrive at
xr xr 2
%: HA( )(A(y)q) — Al )qHLg(Q,aQ)
min{p,2}
SIS / [2.(A%q — g)|"dady
=0 Q '@
min{p,2}
s Z h% Z[ ]/1@)6;’(1 - G;qfdydx
=0 Q 7@
min{p,2}
< Z 127 p2(m+1) Z[ |<9;n+1<9£q\2 dady.
=0 Q 7@
Let m = p — 7, we derive
5 min{p,2} . . )
Z A€ (4% q) — A(I)qHLi(Q,BQ) S P2 Z Z/@ 03057 q|” dady.
Q j=0

The proof is complete.
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Lemma 5.2 (see [35]). Assume that the condition M holds, and the function w € C3(0,T]
admits an initial singularity, |w"' ()] < 1+ 1773 for t € (0,T]. Here, 0 € (0,1) is a real
parameter. Then for 1 < n < N, the global consistency error can be bounded

- =(n) % 1 min{wo,2
> BT 1 0,.00) S o(1—a) Agmin{=e2},

i=1

Lemma 5.3. For any function w(t) € C*(0,T] andn =1,...,N — 1, we have

’w(tn—w) - (ww(tn—l) +1- ¢)w(tn))} < At tn}flgatxgtn w” (1)) .

Proof. Using Taylor’s theorem, for 11,12 € [t,—1,tn], we obtain

w(tn) = w(tn—w) + w/(tn—w)(wAtn) + MA@%’
and -
W(tn-1) = Wtn—p) + W (tnu) () — 1) Aty + WA@%.
Furthermore
‘w(tn—w) - (ww(tn—l) + (1 - w)w(tn )‘

_ |t 9= ) o

S AL max Jw'(1)].
The proof is complete. O

Theorem 5.1. Under the regular assumption (5.1) and the assumption M, if the conditions
of Theorem 4.1 hold, then the solution u) of (3.6) is convergent and for 1 <n < N, we have

1

[u(tn) = upll L2 ,00) S o(1—a)

Atmin{wa,Q} +hp+1,
where u(ty,) = u(-, t,).

Proof. Let

WY =Y = (AT =) = (AT ) = e e
Then, we can obtain the following expression directly from (3.3):
(@m0 o) +u (20" on), +an(ulta-s),on)
= ((tams)oon)g = (T wn) = n (T 7%00n) (5.4)
Subtracting (3.6) from (5.4) respectively, we get

(@@ =)™ wn) (2 =)™ on) o (ultnmg) =™ o)

- () o () o9

o0
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Furthermore, we derive
o \n—Y o \n—Y
((@ £) ,vh)Q + ((@ £) ,vh) o
+ ap (u (tn,w) — unid}, 'Uh) + ay, (Enid}, vh)
_ a \n—1p o \n—Y )
(22" o) +u (20" )
n—1 o n—1 _ n—1y
+ap(e" ¥, vp) (Tt ,vh)ﬂ w (Tt ,vh) . (5.6)

Let v, = "% in (5.6), we obtain
o \n—¢ nfw) ( a_\n—vy nfw)
((@ e)"" " e g TH (2%)"7 e oo
+ ay, (u (tn—y) —u"7, s"_w) + ay, (s"‘w, sn_w)
= ((2%)" 7, nfw) ( )Y n*ﬂ’)
(oo .e=?) +n((@ogm* v
T ay, (en—w, En—w) _ (Ttn—w’gn—w)ﬂ —u (T;n—w, ‘r_‘_n—w)aQ ) (5.7)

and

o0
+ A (6"_1/’,5"_1/’)6Q - Z/ V/é:l’ . [En_w] -nds
Q 99

n— n— n— de ¥
:7(6 w,AE w)Q+<e v, n

ay, (e”_ ,En_w) = (Ve"_w,VE"_w)Q +< (vme"—w,vms"—w)

> +g (Vagen_w, Vagz&?n_w)ag
o0
+ A (e, eV )oa Z Ve" Jen—v . [gn= ¥] - nds.

According to the definitions of projection operators (5.2), we arrive at aj (e" =%, e"~%) = 0.
Thus, (5.7) can be simplified to

((@%)n—w ’Eniw)n T ((@%)n_w ’Eniw)aﬂ
+ay (u (tn—y) —u"", 5"_1/’) +ay (5”_1/’, 5"_1/’)
- ((‘@ae)mp vfn_w)ﬂ +p ((-@“6)”*1” ,s"‘w)m + (TZ”w, s”—w)g + 1 (TM, s”‘w)m
= ((‘@ae)niw o+ n (2°¢)" " o0 — Ttniw|9 - “nn7w|aﬂ’ Eniw) : (5-8)

Let
n— « n— w a \n— n— n—
RV = (%) |0+ (2" |y = 1] — 1Y e

So, (3.5), (5.1b) and (5.3) give that
HR’H”H <@g " + (@™ ool + I + 107y

= H (Die) (tn—y |Q Tn w‘g"'“ (Dy'e) (tn—y ‘89 nYy 1/)|6(z||"’||Tn w‘(z"’”Tn w‘asz
< (D¢ AU*U)) n—0)|g + 1 (DF (Au =) (bamy) | o | + 20777 + 1277 50l
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= (A (D§w) = Dw) (tn—y)llq + 1 (A (D) = D) (tny)llpg + 2077 | + 1777 |0l
< Pt I1DF ultn—y)l gz 0,00) + HTtn_w’Q + '“Ttn_w’mzH
SE T g + 17 log:

In addition
Jan (u(tamy) ==, n0)]|
= H (V (u(tn-y) —u"), V") +¢ (Voo (u(tn—y) —u"""), Vaoae" "),

FA((0ltres) =) g =5 [ 9 (i) ) e

R R R e et

on

=< (A (uftn—y) —u"™") ’Eniw)aﬂ + A ((u(tn-p) —u""?) ’Eniw)asz
— %/GQV (U(Tn,\w) fu/”*\?”) . [snfﬂ -nds

Then, by using Lemma 5.3, we have

Hah (“(tn—w) —u"Y, En_w) H < Aty ., max H“”(t)HLg(Q,an) ||En_w||Lﬁ(Q,BQ) :

Consequently, from Lemma 4.1 and (5.8), we obtain

n

1

112 _ _ — —
2 ZZT(z’i)jaHE]HLﬁ(Q,aQ) SR e wHLﬁ(Q,am +[lan (ulta—y) —u" ™", "7V |
=1

< (HRn_wH + AL tnifflgétn H“”(t)HLg((z,a(z)) HEn_wHLi(Q,aQ) :

Proceeding as the proof of Theorem 4.1, we get the desired result, where Lemmas 5.2 and 5.3
together with (5.1a) and (5.1c) are used. O

Remark 5.1. For the proof of Theorem 5.1, we use upy = Aug. In fact, we can also choose
the L2-projection of ug and still maintain the same accuracy in space. In addition, the present
method can reach the optimal convergence order O(At?) in time when @ > max{1,2/c}.

Remark 5.2. In the derivation of error equation (5.5), we utilize f"~% and f5g ¥ instead of
f(tn—yp) and foq(tn—y), which leads to additional error terms f(t,—y) — f*~% and foo(tn—yp) —
fggw actually. However, this will not affect the convergence results only if f and fsq satisfies
the regularity properties in Lemma 5.3.

6. Numerical Experiments

To testify the results in Theorem 5.1, we choose the computational domain Q = (0,1)x (0, 1).
We obtain the L?-norm errors, together with spatial convergence order on uniform M x M
(M € N ) rectangular meshes and temporal convergence order on graded mesh at T'= 0.5.
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Example 6.1. Consider time fractional diffusion problem
SDcu(x,t) = Au(x,t) + f(x,t), (x,t)€Qx(0,T]
with initial condition
up = (x —0.5)%(z* + 1) (y — 0.5)* (> +1), z€Q
and boundary condition
S Du(x,t) = —2u(x, t) + Apou(x, t) — Onu(xm,t) + faq(x,t), (x,t) € N x (0,T).

The functions f and faq are selected to make the exact solution u = (1+t7)(x —0.5)?(2? +
1)(y — 0.5)*(y* + 1). In Tables 6.1 and 6.2, the time step size At is small enough to guarantee

Table 6.1: The L?-norm errors and convergence orders in spatial direction when p = 1 for Example 6.1.

a | M | |u(tn) —upllg | order | ||u(tn) —upllyq | order
8 9.0620e—02 9.7308e—02
16 2.4188e—02 1.91 2.6599e—02 1.87
0.2 | 32 6.2705e—03 1.95 6.9620e—03 1.93
64 1.6211e—03 1.95 1.7596e—03 1.98
128 4.1324e—04 1.97 4.4973e—04 1.97
8 9.4933e—02 9.2671e—02
16 2.6167e—02 1.86 2.5040e—02 1.89
0.5 | 32 6.9305e—03 1.92 6.4376e—03 1.96
64 1.7690e—03 1.97 1.5942e—03 2.01
128 4.4209e—04 2.00 4.0319e—04 1.98
8 9.2209e—02 8.9514e—02
16 2.5108e—02 1.88 2.3980e—02 1.90
0.8 | 32 6.5942e—03 1.93 6.2358e—03 1.94
64 1.6885e—03 1.97 1.5800e—03 1.98
128 4.3514e—04 1.96 4.0399e—04 1.97

Table 6.2: The L?-norm errors and convergence orders in spatial direction when p = 2 for Example 6.1.

a | M | |lu(tn) —upllg | order | ||u(tn) —upllyo | order
8 5.9201e—03 6.0337e—03
16 7.8732e—04 291 7.8692e—04 2.94
0.2 | 32 9.9740e—05 2.98 1.0109e—04 2.96
64 1.2793e—05 2.96 1.2946e—05 2.97
128 1.6374e—06 2.97 1.6248e—06 2.99
8 5.7728e—03 5.2115e—03
16 7.5054e—04 2.94 6.9732e—04 2.90
0.5 | 32 9.6710e—05 2.96 9.0112e—05 2.95
64 1.2432e—05 2.96 1.1427e—05 2.98
128 1.5794e—06 2.98 1.4450e—06 2.98
8 6.6530e—03 6.1702e—03
16 9.0692e—04 2.88 8.1981e—04 2.91
0.8 | 32 1.1726e—04 2.95 1.0458e—04 2.97
64 1.4618e—05 3.00 1.3205e—05 2.99
128 1.8490e—06 2.98 1.6773e—06 2.98
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Table 6.3: The L?-norm errors and convergence orders in temporal direction when o = 0.4, 0 = 0.8 for

Example 6.1.
w N | lu(tn) —up|lg | order | ||u(tn) —upll5q | order
32 2.8027e—02 3.6682e—02
64 7.4332e—03 1.91 9.9487e—03 1.88
2 128 2.0369e—03 1.87 2.6895e—03 1.89
256 6.0016e—04 1.76 7.8371e—04 1.78
min{wac, 2} 1.60 1.60
32 4.1608e—02 3.8211e—02
64 9.7181e—03 2.10 9.3710e—03 2.03
5/2 (wopt) | 128 2.3863e—03 2.03 2.3572e—03 1.99
256 5.8285e—04 2.03 5.9863e—04 1.98
min{wo, 2} 2.00 2.00
32 3.3905e—02 2.9972e—02
64 8.0124e—03 2.08 7.2189e—03 2.05
3 128 1.9186e—03 2.06 1.7968e—03 2.01
256 4.7629e—04 2.01 4.4057e—04 2.03
min{wac, 2} 2.00 2.00

the spatial error is dominant. For a = 0.2, 0.5 and 0.8, we report the computational errors and
convergence orders for p = 1 and p = 2 in space respectively, which imply the spatial convergence
order is O(hP*1). In Table 6.3, it is noticed that the convergence order is O(A™*{=72}) in
time, and the optimal second-order accuracy is gained if @ > wqpt. Here, wept is the optimal
mesh parameter, and sufficiently refined spatial meshes are used. The numerical results are
compatible with the conclusion of Theorem 5.1.
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