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Abstract

This paper considers a corrupted compressed sensing problem and is devoted to recover

signals that are approximately sparse in some general dictionary but corrupted by a com-

bination of interference having a sparse representation in a second general dictionary and

measurement noise. We provide new restricted isometry property (RIP) analysis to achieve

stable recovery of sparsely corrupted signals through Justice Pursuit De-Noising (JPDN)

with an additional parameter. Our main tool is to adapt a crucial sparse decomposition

technique to the analysis of the Justice Pursuit method. The proposed RIP condition

improves the existing representative results. Numerical simulations are provided to verify

the reliability of the JPDN model.

Mathematics subject classification: 65F22, 68W25, 90C25.

Key words: Justice Pursuit De-Noising, Restricted isometry property, Corrupted com-
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1. Introduction

The theory of compressed sensing (CS) has been a very active research field in recent years

and has attracted much attention in signal processing, electrical engineering and statistics. CS

is concerned with recovering high-dimensional sparse signals from a small number of linear

measurements. Specifically, sparse recovery from fewer noiseless observations y = Ax in stan-

dard CS is in general an ill-posed problem and can be solved by some optimization algorithms.

A well-known effective algorithm is Basis Pursuit (BP)

min ‖x̂‖1 s.t. y = Ax̂, (1.1)

where A ∈ R
m×n is a sensing matrix with m ≪ n, y ∈ R

m is the measurement vector. In

the case of bounded measurement noise, one observes y = Ax + e, where e ∈ R
m denotes

a bounded noise vector with ‖e‖2 6 ε. A widely used approach is the following Basis Pursuit

De-Noising (BPDN) method [9]:

min ‖x̂‖1 s.t. ‖y −Ax̂‖2 6 ε. (1.2)

A central goal of CS is to recover the unknown sparse or nearly sparse signal x ∈ R
n exactly

or stably from the constrained method (1.1) or (1.2) based on A and y. Here, a vector x ∈ R
n
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is called s-sparse if the number of nonzero elements in x is at most s and a vector v ∈ R
n is

said nearly s-sparse if the error of its best s-term approximation decays quickly in s [16]. Many

recovery guarantees about the methods (1.1) and (1.2) have been well developed and readers

can refer to [5, 8–12,17, 34, 35, 42].

Different from classical CS, corrupted compressed sensing can deal with unbounded noises

that appear in many settings, such as impulse noise, narrowband interference, malfunctioning

hardware and transmission errors in the case where signals was sent over a noisy channel. In

these cases, the measurement error may be sparse or approximately sparse with unbounded

value. Its mathematical model can be represented as

y = Ax+ f + e = [A I]

[

x

f

]

+ e, (1.3)

where the sparse corruption vector f ∈ R
m may have extremely large elements and I ∈ R

m×m

denotes the identity matrix. Several papers [7, 22, 26, 27, 30, 36, 38] considered the following

constraint problem for the model (1.3):

min
x̂∈Rn, f̂∈Rm

‖x̂‖1 + λ‖f̂‖1 s.t. ‖y − (Ax̂+ f̂)‖2 6 ε, (1.4)

where λ > 0 is a balance parameter. For the model (1.3), Lin et al. [27] proposed new algorithms

for reconstructing signals that are nearly sparse in terms of a tight frame in the presence of

bounded noise combined with sparse noise, and presented corresponding recovery guarantees.

Li et al. [24] established sufficient conditions based on the restricted isometry property, which

guarantee stable signal recovery from extended Dantzig selector and extended Lasso models.

Foygel and Mackey in [15] used a convex programming method to recover x and f with or

without prior information and provided new bounds for the Gaussian complexity of sparse

signals, leading to a sharper recovery guarantee. Adcock et al. in [1] showed that the signal x

and its corruption f can be recovered stably if the matrix A satisfies the generalized RIP of

order (2s1, 2s2) with

δ2s1, 2s2 <
1

√

1 +
(

1
2
√
2
+
√
η
)2

, η =
s1 + λ2s2

min{s1, λ2s2}
,

(s1 and s2 are the sparsity of x and f , respectively) and the generalized RIP will be defined

below (see Definition 2.2).

Note that the measurement corruption may be sparse in some bases. Mathematically, we

have

y = Ax+Bf = Φ

[

x

f

]

, (1.5)

where A ∈ R
m×n, B ∈ R

m×l, Φ = [A B], x ∈ R
n is a sparse unknown signal, f ∈ R

l is a sparse

corruption. For instance, when the measurements are corrupted by 60Hz hum, the corruption

noise is sparse in the discrete Fourier basis. To reconstruct x (and f) from the model (1.5),

a popular Justice Pursuit (JP) method has been introduced by Laska et al. [23]

min
x̂∈Rn, f̂∈Rl

‖x̂‖1 + ‖f̂‖1 s.t. y = Ax̂+Bf̂ . (1.6)
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Laska et al. [23] demonstrated that the algorithm JP (1.6) can achieve exact recovery from

measurements corrupted with sparse noise. The references [21, 31–33] considered deterministic

and coherence-based results for the model (1.5). Studer and Baraniuk in [32] obtained effective

recovery and separation of signals through the optimization method (1.6) based on the support

of x and f and the coherent parameters of matrices A and B.

Besides, in the presence of additive white Gaussian noise or quantization error, namely,

y = Ax+Bf + e, (1.7)

Laska et al. [23] also investigated Justice Pursuit De-Noising (JPDN) method as follows:

min
x̂∈Rn, f̂∈Rl

‖x̂‖1 + ‖f̂‖1 s.t. ‖y − (Ax̂+Bf̂ )‖2 6 ε. (1.8)

When the corruption is sparse on certain sparsifying domain, Zhang et al. [41] proved the

uniform recovery guarantee of the problem (1.7) for two classes of structured sensing matrices.

In this paper, we study the minimization program JPDN with a parameter λ

min
x̂∈Rn, f̂∈Rl

‖x̂‖1 + λ‖f̂‖1 s.t. ‖y − (Ax̂+Bf̂)‖2 6 ε, (1.9)

where the parameter λ > 0 trades off ‖x̂‖1 and ‖f̂‖1. The advantage of using extra λ in

(1.9) will be discussed in the main theorem and numerical simulations. The optimization

problem (1.9) is suitable for many problems such as saturated or clipped signals [2, 3, 22],

corrupted signals [26, 31, 37] and sparsity-based super-resolution [13, 29]. Separation of signals

into two distinct components also fits into our framework. Signal separation problems arise

in applications such as the separation of texture from cartoon parts in images [4, 14] and

the separation of neuronal calcium transients from smooth signals caused by astrocytes in

calcium imaging [20]. When A = B, Lin et al. [28] showed that the distinct subcomponents,

which are (approximately) sparse in morphologically different (redundant) dictionaries, can be

reconstructed by solving the split-analysis algorithm, provided that the dictionaries satisfy a

mutual coherence (between the different dictionaries) condition and the measurement matrix

satisfies a restricted isometry property adapted to a composed dictionary. And Li et al. [25]

proposed an iterative hard thresholding algorithm adapted to dictionaries. Then they showed

that under the usual assumptions that the measurement system satisfies a restricted isometry

property (adapted to a composed dictionary) condition and the dictionaries satisfy a mutual

coherence condition, the algorithm can approximately reconstruct the distinct subcomponents

after a fixed number of iterations.

The main aim of this paper is to establish new RIP analysis for the optimization problem

(1.9). In particular, we provide recovery guarantees based on a key tool established indepen-

dently in [6, 40]. In classical CS, the technique that signals can be decomposed as a convex

combination of sparse signals is a key tool to get recovery guarantees. Especially, Cai and

Zhang [6] used this technical tool to establish sharp sufficient RIP conditions for signal recov-

ery via l1-minimization. Zhang and Li [43] provided optimal RIP bounds which can guarantee

sparse signal recovery via lp-minimization for p ∈ (0, 1]. Now, we extend this tool to the prob-

lem of corrupted CS. Furthermore, we show that the proposed recovery condition in this paper

is weaker than that in [26] and also weaker than that in [1] within a certain range of λ.

The rest of the paper is arranged as follows. In Section 2, we introduce the RIP and its

generalization and recall some supporting lemmas needed in this paper. We state the main

theorem and provide its proof in Section 3. In Section 4, we illustrate the performance of the

proposed method by numerical simulations. Conclusions are given in Section 5.
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2. Preliminaries

In order to properly state our results, we review the RIP definitions and several key lemmas

needed throughout this paper.

2.1. Notations

We use the following notations. Boldface lowercase and uppercase letters stand for vectors

and matrices, respectively. For any vector v ∈ R
n, we denote vmax(s) as the vector v with all

but the largest s entries in absolute value set to zero. And v−max(s) = v − vmax(s).

2.2. Definitions and supporting lemmas

First, we review the restrict isometry property (RIP) introduced by Candés and Tao in [9].

Definition 2.1. For a matrix A ∈ R
m×n and an integer 1 6 s 6 n, A is said to satisfy the

RIP of order s if there exists a constant δs such that

(1 − δs)‖v‖22 6 ‖Av‖22 6 (1 + δs)‖v‖22 (2.1)

holds for all s-sparse signals v ∈ R
n. The smallest constant δs is called the restricted isometry

constant (RIC) of order s for A.

The generalized RIP was introduced by Li in [26], which plays an important role in corrupted

compressed sensing.

Definition 2.2. For a matrix Φ ∈ R
m×(n+l) and integers 1 6 s1 6 n, 1 6 s2 6 l, define the

(s1, s2)-order RIP constant δs1, s2 as the smallest number δ such that

(1− δ)

∥

∥

∥

∥

[

x

f

]∥

∥

∥

∥

2

2

6

∥

∥

∥

∥

Φ

[

x

f

]∥

∥

∥

∥

2

2

6 (1 + δ)

∥

∥

∥

∥

[

x

f

] ∥

∥

∥

∥

2

2

(2.2)

holds for all x ∈ R
n with |supp(x)| 6 s1 and all f ∈ R

l with |supp(f)| 6 s2.

Remark 2.1. For a matrix Φ = [A B] ∈ R
m×(n+l), where A ∈ R

m×n and B ∈ R
m×l, if Φ

satisfies (s1 + s2)-order RIP, then it also satisfies (s1, s2)-order RIP by the Definitions 2.1 and

2.2 and we can get δs1, s2 6 δs1+s2 .

It is clear from [23] that if matrix A ∈ R
m×n have elements Aij drawn according to

N (0, 1/m), B is an m × l matrix with orthonomal columns and the number of measurements

satisfy

m > K1(s1 + s2) log

(

n+ l

s1 + s2

)

,

then [A B] satisfies the RIP of order (s1, s2) with high probability.

As in the compressed sensing, the importance of weakening the RIP or modified RIP con-

ditions is that we could use fewer observations to ensure the signal recovery. For the corrupted

sensing, this can be seen from the following results.
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Theorem 2.1 ([1, 26]). Suppose y = Ax+f +e with ‖e‖2 6 ε. Let 0 < δ, ε < 1, 1 6 s1 6 n,

1 6 s2 6 m and suppose that

m & δ−2(s1 · log(2n/s1) + log(2ε−1)), (2.3)

m & δ−2 · s2 · log(δ−1). (2.4)

Let A ∈ R
m×n be a matrix whose entries are independent Gaussian random variables with mean

zero and variance 1. Then with probability at least 1− ε, the matrix 1√
m
A has the RIP for the

sparse corruptions problem of order (s1, s2) with constant δs1,s2 6 δ.

Theorem 2.1 implies that we can reduce the required number of measurements m by weak-

ening the modified RIP condition.

Zhang et al. [41] also presented a bound on the required number of measurements m such

that the corresponding matrix Φ has the (s1, s2)-RIP constant satisfying δs1,s2 6 δ for any

δ ∈ (0, 1).

Theorem 2.2 ([41]). Suppose y = Ax + f + e with Φ = [A I] ∈ R
m×(n+m), A = UDB̃

(B̃ ∈ R
ñ×n, ñ > n, represents a column-wise orthonormal matrix, i.e. B̃T B̃ = I) and µ(U) ∼

1/
√
m. If, for δ ∈ (0, 1),

m > c3δ
−2s1ñµ

2(B̃) log2 s1 log
2 ñ,

m > c4δ
−2s2 log

2 s2 log
2 ñ,

where c3 and c4 are some absolute constants, then with probability at least 1− ñ− log2 s1 log ñ, the

(s1, s2)-RIP constant of Φ satisfies δs1,s2 6 δ.

The following lemma states the cone constrained inequality (see [8, 26]).

Lemma 2.1. For any x, x̂ ∈ R
n, f , f̂ ∈ R

l, z = x̂ − x, h = f̂ − f , if ‖x̂‖1 + λ‖f̂‖1 6
‖x‖1 + λ‖f‖1, then for any positive integers s1 6 n, s2 6 l,

‖z−max(s1)‖1 + λ‖h−max(s2)‖1
6‖zmax(s1)‖1 + 2‖x−max(s1)‖1 + λ(‖hmax(s2)‖1 + 2‖f−max(s2)‖1)

=

∥

∥

∥

∥

[

zmax(s1)

λhmax(s2)

]
∥

∥

∥

∥

1

+ 2

∥

∥

∥

∥

[

x−max(s1)

λf−max(s2)

]
∥

∥

∥

∥

1

.

One inspiration of this paper comes from the sparse representation of a polytope firstly

established in [6,40]. We review the sparse representation of a polytope as in [6], which enables

non-sparse vectors to be represented by sparse vectors, and then the RIP condition can be

applied to non-sparse vectors.

Lemma 2.2. For a positive number α and a positive integer s, define the polytope T (α, s) ⊂ R
p

by

T (α, s) = {v ∈ R
p : ‖v‖∞ 6 α, ‖v‖1 6 sα}.

For any v ∈ R
p, define the set of sparse vectors U(α, s,v) ⊂ R

p by

U(α, s,v) = {u ∈ R
p : supp(u) ⊆ supp(v), ‖u‖0 6 s, ‖u‖1 = ‖v‖1, ‖u‖∞ 6 α}.

Then v ∈ T (α, s) if and only if v is in the convex hull of U(α, s,v). In particular, any v ∈
T (α, s) can be expressed as

v =

N
∑

i=1

λiui and 0 6 λi 6 1,

N
∑

i=1

λi = 1 and ui ∈ U(α, s,v).
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The following lemma will play an important role in the proof of the main result.

Lemma 2.3 ([5]). Suppose m > r, a1 > a2 > · · · > am > 0,
∑r

i=1 ai >
∑m

i=r+1 ai, then for

all α > 1,

m
∑

j=r+1

aαj 6
r
∑

i=1

aαi .

More generally, suppose a1 > a2 > · · · > am > 0, λ > 0 and
∑r

i=1 ai+λ >
∑m

i=r+1 ai, then for

all α > 1,

m
∑

j=r+1

aαj 6 r

(

α

√

∑r

i=1 a
α
i

r
+

λ

r

)α

.

3. Main Results

In this section, we first state two existing representative results for corrupted compressed

sensing and then we will present new RIP bound to achieve the stable recovery of sparsely

corrupted signals via the minimization program (1.9).

3.1. Two representative results for corrupted CS

Theorem 3.1 ([26]). Suppose that y = Ax + f + e and Φ = [A I] ∈ R
m×(n+m). If Φ has

the (2s1, 2s2)-RIP constants satisfying

δ2s1,2s2 <
1

18
(3.1)

and

λ ∈
[

1

2

√

s1
s2

, 2

√

s1
s2

]

, (3.2)

then for any x ∈ R
n with |supp(x)| 6 s1, any f ∈ R

m with |supp(f)| 6 s2, and e ∈ R
m with

‖e‖2 6 ε, the solution (x̂, f̂) to the penalized optimization problem (1.4) satisfies

‖x̂− x‖2 + ‖f̂ − f‖2 6
4
√

13 + 13δ2s1,2s2
1− 9δ2s1,2s2

ε.

Theorem 3.2 ([1]). Suppose y = Ax+ f + e and Φ = [A I] ∈ R
m×(n+m) has the (2s1, 2s2)-

RIP constant δ2s1, 2s2 satisfying

δ2s1, 2s2 <
1

√

1 +
(

1/(2
√
2) +

√
η
)2

(3.3)

with η = s1+λ2s2
min{s1,λ2s2} . Then for x ∈ R

n, f ∈ R
m, and e ∈ R

m with ‖e‖2 6 ε, the solution

(x̂, f̂) to the penalized optimization problem (1.4) satisfies

‖x̂− x‖2 + ‖f̂ − f‖2 6 c1

(

1 + η
1
4

)

(

‖x−max(s1)‖1√
s1

+
‖f−max(s2)‖1√

s2

)

+ c2

(

1 + η
1
4

)

ε.
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3.2. New RIP bound for corrupted CS

Theorem 3.3. Consider y = Ax+Bf + e with ‖e‖2 6 ε. If the sensing matrix Φ = [A B]

has the (t1s1, t2s2)-RIP constant δt1s1, t2s2 satisfying

δt1s1, t2s2 <
1√

1 + 2c1
(3.4)

with t1 > 1, t2 > 1, c1 = max {s1, λ2s2}
min{s1(t1−1), λ2s2(t2−1)} , then the solution (x̂, f̂) of (1.9) satisfies

‖x̂− x‖2 + ‖f̂ − f‖2 6 C1ε+ C2

(

‖x−max(s1)‖1√
s1

+
‖f−max(s2)‖1√

s2

)

,

where

C1 =

(

√
2 + max

{

λ

√

s2
s1

,
1

λ

√

s1
s2

}

)

2
√
1 + δ

1− δ
√
1 + 2c1

,

C2 = 2

[(

√
2 + max

{

λ

√

s2
s1

,
1

λ

√

s1
s2

}

)(

2δc1 +
√

[
√
1 + 2c1 − δ(1 + 2c1)]δc1√

1 + 2c1 − δ(1 + 2c1)

)

+

(

max

{

1, λ

√

s2
s1

}

+max

{

1

λ

√

s1
s2

, 1

}

)]

,

and δt1s1, t2s2 denotes as δ for the sake of simplicity.

Theorem 3.3 provides a new bound on the (t1s1, t2s2)-RIP under which stable signal recovery

can be obtained via the minimization program JPDN with a parameter λ, i.e. (1.9). To make

the modified RIP condition weakest, we need to make the right-hand side of (3.4) largest by

adjusting the extra parameter λ to make c1 as small as possible. If t1 = t2 = 2, then c1
becomes ĉ1 = max {s1, λ2s2}

min{s1, λ2s2} . In this special case, the best choice of λ is λ2 = s1
s2
, then ĉ1 = 1

and δ(2s1,2s2) <
√
3
3 .

Remark 3.1. If λ = 1, the optimization problem (1.9) exactly is JPDN. Let λ = 1 in Theo-

rem 3.3, we obtain the recovery guarantee for JPDN.

If λ = 1 and t1 = t2 = t > 1, the sufficient condition (3.4) for the recovery guarantee reduces

to

δ(ts1,ts2) <
1

√

1 + 2c′1
(3.5)

with c′1 = max {s1, λ2s2}
(t−1)min{s1, λ2s2} and the sufficient condition given by Cai and Zhang [6] can be

reformulated as

δt(s1+s2) <

√

t− 1

t
. (3.6)

Even though
√

t−1
t

> 1√
1+2c1

, we also have δt(s1+s2) > δ(ts1, ts2), so these two results are

mutually exclusive.

By the result developed in Theorem 3.3, we easily obtain the following sufficient conditions

for the exact recovery of all (s1, s2)-sparse signals in the noiseless case.
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Corollary 3.1. Suppose that y = Ax+Bf , where x ∈ R
n is an s1-sparse signal and f ∈ R

l is

an s2-sparse corruption vector. If the matrix [A B] satisfies the RIP condition (3.4) for t1 > 1

and t2 > 1, then the minimizer (x̂, f̂) of (1.9) with ε = 0 recovers (x,f) exactly.

Comparing Theorem 3.3 with two known representative results Theorems 3.1 and 3.2 leads

to the following conclusions.

Remark 3.2. For t1 = t2 = 2, the condition (3.4) reduces to

δ2s1, 2s2 <
1√

1 + 2ĉ1
, (3.7)

where ĉ1 = max{s1, λ2s2}
min{s1, λ2s2} . We show that any s1-sparse vector x ∈ R

n and any s2-sparse vector

f ∈ R
l can be recovered if the RIP condition holds. By computing directly, we can see that

1

18
<

1√
1 + 2ĉ1

always holds under the condition (3.2) for any s1, s2 6= 0. This implies that our condition (3.7)

is always weaker than the RIP condition (3.1). Specifically, if λ =
√

s1
s2
, then ĉ1 = 1, one gets

1

18
<

1√
1 + 2ĉ1

=
1√
3
.

If 1
2

√

s1
s2

6 λ <
√

s1
s2
, i.e., s1 > λ2s2, then ĉ1 = s1

λ2s2
, we have

1√
1 + 2ĉ1

=
1

√

1 + 2s1
λ2s2

>
1

√

1 + 2s1
s1
4s2

s2

=
1

3
>

1

18
.

If
√

s1
s2

< λ 6 2
√

s1
s2
, i.e., s1 < λ2s2, then ĉ1 = λ2s2

s1
, we have

1√
1 + 2ĉ1

=
1

√

1 + 2λ2s2
s1

>
1

√

1 +
8s1
s2

s2

s1

=
1

3
>

1

18
.

Remark 3.3. For t1 = t2 = 2, the condition (3.4) reduces to (3.7). And we infer that

1
√

1 +
(

1
2
√
2
+
√
η
)2

<
1√

1 + 2ĉ1

for any s1, s2 6= 0,

6
√
2− 4

7

√

s1
s2

< λ <
2 + 3

√
2

4

√

s1
s2

and η =
s1 + λ2s2

min{s1, λ2s2}
,

which means our condition (3.7) for B = I is weaker than the RIP condition (3.3).

In particular, if λ =
√

s1
s2
, then ĉ1 = 1 and η = 2, there holds

√
2c1 =

√
2 <

1

2
√
2
+
√
η =

1

2
√
2
+
√
2.
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If λ <
√

s1
s2
, i.e., s1 > λ2s2, then ĉ1 = s1

λ2s2
and η = s1+λ2s2

λ2s2
. We observe that

√
2c1 <

1

2
√
2
+
√
η =⇒ λ >

6
√
2− 4

7

√

s1
s2

.

If λ >
√

s1
s2
, i.e., s1 < λ2s2, then ĉ1 = λ2s2

s1
and η = s1+λ2s2

s1
. We have that

√
2c1 <

1

2
√
2
+
√
η =⇒ λ <

2 + 3
√
2

4

√

s1
s2

.

From what has been discussed above, we have

1
√

1 +
(

1
2
√
2
+
√
η
)2

<
1√

1 + 2ĉ1
for any

6
√
2− 4

7

√

s1
s2

< λ <
2 + 3

√
2

4

√

s1
s2

(s1, s2 > 0).

Now, we prove Theorem 3.3 by using Lemmas 2.1-2.3. The proof of Theorem 3.3 is not

a trivial consequence of [6, 40]. The novelty of the proof technique is how to concatenate the

two sparse representations obtained by applying Lemma 2.2 to x and f respectively. This leads

to the sum of the coefficients of the new sparse representation is 2 instead of 1 as in Lemma 2.2.

Therefore, we obtain a new Eq. (3.14) which induces different choices of other parameters from

the classical cases. For example, c = 1 in our proof instead of 1/2 in classical case.

Proof. Without loss of generality, we first assume that t1s1 and t2s2 are integers. Suppose

that z = x̂− x, h = f̂ − f , we have

∥

∥

∥

∥

[A B]

[

z

h

]∥

∥

∥

∥

2

6

∥

∥

∥

∥

y − [A B]

[

x

f

] ∥

∥

∥

∥

2

+

∥

∥

∥

∥

∥

y − [A B]

[

x̂

f̂

]∥

∥

∥

∥

∥

2

6 2ε (3.8)

and the following cone constrained inequality by Lemma 2.1:

‖z−max(s1)‖1 + λ‖h−max(s2)‖1 6
∥

∥

∥

∥

[

zmax(s1)

λhmax(s2)

] ∥

∥

∥

∥

1

+ 2

∥

∥

∥

∥

[

x−max(s1)

λf−max(s2)

]∥

∥

∥

∥

1

.

Define

β =

∥

∥

∥

∥

[

zmax(s1)

λhmax(s2)

]
∥

∥

∥

∥

1

+ 2

∥

∥

∥

∥

[

x−max(s1)

λf−max(s2)

]
∥

∥

∥

∥

1

and

α1 =
‖z−max(s1)‖1

s1
, α2 =

‖λh−max(s2)‖1
s2

.

Next, we divide

[

z−max(s1)

λh−max(s2)

]

into two parts, i.e.,

[

z−max(s1)

λh−max(s2)

]

=

[

z(1)

λh(1)

]

+

[

z(2)

λh(2)

]

,

where

z(1) = z−max(s1) · 1{i||z−max(s1)(i)|> α1
t1−1}, λh(1) = λh−max(s2) · 1{i||λh−max(s2)(i)|> α2

t2−1},

z(2) = z−max(s1) · 1{i||z−max(s1)(i)|6 α1
t1−1}, λh(2) = λh−max(s2) · 1{i||λh−max(s2)(i)|6 α2

t2−1}.
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Let

|supp(z(1))| = ‖z(1)‖0 = m1, |supp(λh(1))| = ‖λh(1)‖0 = m2.

We have

‖z(1)‖1 6 ‖z−max(s1)‖1 = s1α1, ‖z(1)‖1 > m1
α1

t1 − 1

and

‖λh(1)‖1 6 ‖λh−max(s2)‖1 = s2α2, ‖λh(1)‖1 > m2
α2

t2 − 1
.

Then m1 6 s1(t1 − 1) and m2 6 s2(t2 − 1). Therefore, we derive that

‖z(2)‖1 = ‖z−max(s1)‖1 − ‖z(1)‖1
6 s1α1 −m1

α1

t1 − 1

= [s1(t1 − 1)−m1]
α1

t1 − 1
,

‖z(2)‖∞ 6
α1

t1 − 1
,

‖λh(2)‖1 = ‖λh−max(s2)‖1 − ‖λh(1)‖1
6 s2α2 −m2

α2

t2 − 1

= [s2(t2 − 1)−m2]
α2

t2 − 1
,

‖λh(2)‖∞ 6
α2

t2 − 1
.

Now, we respectively obtain a combination of sparse vectors of z(2) and λh(2) by applying

Lemma 2.2. Then

z(2) =

N1
∑

i=1

λz
iu

z
i ,

where every uz
i is (s1(t1 − 1) − m1)-sparse and ‖uz

i ‖1 = ‖z(2)‖1, ‖uz
i ‖∞ 6 α1

t1−1 , supp(u
z
i ) ⊆

supp(z(2)), ‖uz
i ‖2 6

√

‖uz
i ‖0‖uz

i ‖∞ 6
√

s1
t1−1α1. And

λh(2) =

N2
∑

i=1

λh
i λu

h
i ,

where every uh
i is (s2(t2−1)−m2)-sparse and ‖λuh

i ‖1 = ‖λh(2)‖1, ‖λuh
i ‖∞ 6 α2

t2−1 , supp(u
h
i ) ⊆

supp(h(2)), ‖λuh
i ‖2 6

√

s2
t2−1α2. Furthermore, one has

N1
∑

i=1

λz
i ‖uz

i ‖22 6
s1

t1 − 1
α2
1, (3.9)

N2
∑

i=1

λh
i ‖λuh

i ‖22 6
s2

t2 − 1
α2
2. (3.10)
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Since

[

zmax(s1)

λhmax(s2)

]

+

[

z(1)

λh(1)

]

is (s1t1, s2t2)-sparse,

〈

[A B]

([

zmax(s1)

hmax(s2)

]

+

[

z(1)

h(1)

])

, [A B]

[

z

h

]〉

6

∥

∥

∥

∥

[A B]

([

zmax(s1)

hmax(s2)

]

+

[

z(1)

h(1)

])∥

∥

∥

∥

2

∥

∥

∥

∥

[A B]

[

z

h

] ∥

∥

∥

∥

2

6 2ε
√

1 + δs1t1.s2t2

∥

∥

∥

∥

[

zmax(s1)

hmax(s2)

]

+

[

z(1)

h(1)

]
∥

∥

∥

∥

2

, (3.11)

where the second inequality is due to (2.2) and (3.8). In order to take advantage of the RIP of

the matrix [A B], let

ẑ =

[

z(2)

0

]

=

N1
∑

i=1

λz
i

[

uz
i

0

]

=

N1
∑

i=1

λz
i û

z
i ,

ĥ =

[

0

h(2)

]

=

N2
∑

i=1

λh
i

[

0

uh
i

]

=

N2
∑

i=1

λh
i û

h
i .

Then

[

z(2)

h(2)

]

= ẑ + ĥ =

N1+N2
∑

i=1

λiui, (3.12)

where

ui =

{

ûz
i , i 6 N1,

ûh
i−N1

, N1 + 1 6 i 6 N1 +N2,

λi =

{

λz
i , i 6 N1,

λh
i−N1

, N1 + 1 6 i 6 N1 +N2.

Note that
∑N1

i=1 λ
z
i = 1 and

∑N2

i=1 λ
h
i = 1, which implies that

∑N1+N2

i=1 λi = 2. Suppose that

X = ‖zmax(s1) + z(1)‖2 + ‖hmax(s2) + h(1)‖2, P = 2

∥

∥

∥

∥

∥

[x−max(s1)√
s1

f−max(s2)√
s2

]
∥

∥

∥

∥

∥

1

.

By (3.9), (3.10) and (3.12), we have

N1+N2
∑

i=1

λi‖ui‖22 =

N1
∑

i=1

λz
i ‖uz

i ‖22 +
N2
∑

i=1

λh
i ‖uh

i ‖22

6
s1

t1 − 1
α2
1 +

s2
λ2(t2 − 1)

α2
2

=
1

s1(t1 − 1)
‖z−max(s1)‖21 +

1

λ2s2(t2 − 1)
‖λh−max(s2)‖21

6
1

min{s1(t1 − 1), λ2s2(t2 − 1)}
(

‖z−max(s1)‖21 + ‖λh−max(s2)‖21
)

6
1

min{s1(t1 − 1), λ2s2(t2 − 1)}β
2
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=
1

min{s1(t1 − 1), λ2s2(t2 − 1)}

(∥

∥

∥

∥

[

zmax(s1)

λhmax(s2)

] ∥

∥

∥

∥

1

+ 2

∥

∥

∥

∥

[

x−max(s1)

λf−max(s2)

] ∥

∥

∥

∥

1

)2

6
1

min{s1(t1 − 1), λ2s2(t2 − 1)}
(√

s1‖zmax(s1)‖2 + λ
√
s2‖hmax(s2)‖2

+ 2‖x−max(s1)‖1 + 2λ‖f−max(s2)‖1
)2

6
max {s1, λ2s2}

min{s1(t1 − 1), λ2s2(t2 − 1)}(X + P )2

, c1(X + P )2.

Now suppose µ > 0 and c > 0 which are to be determined. Denote

βi =

[

zmax(s1) + z(1)

hmax(s2) + h(1)

]

+ µui,

we obtain

N1+N2
∑

j=1

λjβj − cβi = (2 − µ− c)

[

zmax(s1) + z(1)

hmax(s2) + h(1)

]

− cµui + µ

[

z

h

]

. (3.13)

Notice that βi and
∑N1+N2

j=1 λjβj − cβi − µ

[

z

h

]

are both (t1s1, t2s2)-sparse vectors.

The following identity holds in l2 norm:

N1+N2
∑

i=1

λi

∥

∥

∥

∥

[A B]

(N1+N2
∑

j=1

λjβj − cβi

)
∥

∥

∥

∥

2

2

−
N1+N2
∑

i=1

λi

(

2− c
)2
∥

∥

∥

∥

[A B]βi

∥

∥

∥

∥

2

2

+
(

2− 2c
)

∑

16i<j6N1+N2

λiλj

∥

∥

∥

∥

[A B](βi − βj)

∥

∥

∥

∥

2

2

= 0. (3.14)

Set c = 1, µ =
√
1+2c1−1

c1
and substitute (3.13) into (3.14), we get

0 =

N1+N2
∑

i=1

λi

∥

∥

∥

∥

[A B]

(

(1− µ)

[

(zmax(s1) + z(1))

(hmax(s2) + h(1))

]

− µui + µ

[

z

h

])∥

∥

∥

∥

2

2

−
N1+N2
∑

i=1

λi

∥

∥

∥

∥

[A B]βi

∥

∥

∥

∥

2

2

=

N1+N2
∑

i=1

λi

∥

∥

∥

∥

[A B]

(

(1− µ)

[

(zmax(s1) + z(1))

(hmax(s2) + h(1))

]

− µui

)∥

∥

∥

∥

2

2

+ µ2
N1+N2
∑

i=1

λi

∥

∥

∥

∥

[A B]

[

z

h

]∥

∥

∥

∥

2

2

+ 2µ

N1+N2
∑

i=1

λi

〈

[A B]

(

(1− µ)

[

(zmax(s1) + z(1))

(hmax(s2) + h(1))

]

− µui

)

, [A B]

[

z

h

]〉

−
N1+N2
∑

i=1

λi

∥

∥

∥

∥

[A B]

([

zmax(s1) + z(1)

hmax(s2) + h(1)

]

+ µui

)
∥

∥

∥

∥

2

2

=

N1+N2
∑

i=1

λi

∥

∥

∥

∥

[A B]

(

(1− µ)

[

(zmax(s1) + z(1))

(hmax(s2) + h(1))

]

− µui

)
∥

∥

∥

∥

2

2

+ 2µ(2− µ)

〈

[A B]

[

(zmax(s1) + z(1))

(hmax(s2) + h(1))

]

, [A B]

[

z

h

]〉
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−
N1+N2
∑

i=1

λi

∥

∥

∥

∥

[A B]

([

(zmax(s1) + z(1))

(hmax(s2) + h(1))

]

+ µui

)∥

∥

∥

∥

2

2

6 (1 + δ)

N1+N2
∑

i=1

λi

(

(1− µ)2
∥

∥

∥

∥

[

(zmax(s1) + z(1))

(hmax(s2) + h(1))

] ∥

∥

∥

∥

2

2

+ µ2‖ui‖22
)

+ 4µ(2− µ)ε
√
1 + δ

∥

∥

∥

∥

[

zmax(s1) + z(1)

hmax(s2) + h(1)

] ∥

∥

∥

∥

2

− (1− δ)

N1+N2
∑

i=1

λi

(
∥

∥

∥

∥

[

(zmax(s1) + z(1))

(hmax(s2) + h(1))

]
∥

∥

∥

∥

2

2

+ µ2‖ui‖22
)

=

N1+N2
∑

i=1

λi

{

[

(1 + δ)(1 − µ)2 − (1− δ)
]

∥

∥

∥

∥

[

(zmax(s1) + z(1))

(hmax(s2) + h(1))

]
∥

∥

∥

∥

2

2

}

+ 2δµ2
N1+N2
∑

i=1

λi‖ui‖22

+ 4µ(2− µ)ε
√
1 + δ

∥

∥

∥

∥

[

zmax(s1) + z(1)

hmax(s2) + h(1)

]
∥

∥

∥

∥

2

6
N1+N2
∑

i=1

λi

{

[

(1 + δ)(1− µ)2 − (1− δ)
]

(

‖(zmax(s1) + z(1))‖22 + ‖(hmax(s2) + h(1))‖22
)}

+ 4µ(2− µ)ε
√
1 + δ

(

‖zmax(s1) + z(1)‖2 + ‖hmax(s2) + h(1)‖2
)

+ 2δµ2
N1+N2
∑

i=1

λi‖ui‖22. (3.15)

By the definitions of X and P , the inequality (3.15) can be written as follows:

0 6 2

{

[

(1 + δ)(1− µ)2 − (1 − δ)
]

X2 + 2µ(2− µ)ε
√
1 + δX + δµ2c1(X + P )2

}

= 2

{

[

µ2 − 2µ+ δ(2 − 2µ+ µ2 + c1µ
2)
]

X2

+ (2δc1µ
2P + 2εµ(2− µ)

√
1 + δ)X + δc1µ

2P 2

}

=

[

1 + 2c1 − (1 + c1)
√
1 + 2c1

c21
+ δ

(

(1 + 2c1)(1 + c1)− (1 + 2c1)
√
1 + 2c1

c21

)]

X2

+

(

(1 + c1)−
√
1 + 2c1

c1
2δP + 2ε

√
1 + δ

(1 + c1)
√
1 + 2c1 − (1 + 2c1)

c21

)

X

+
1 + c1 −

√
1 + 2c1

c1
δP 2

=
1 + c1 −

√
1 + 2c1

c21

[

(

δ(1 + 2c1)−
√
1 + 2c1

)

X2

+
(

2δc1P + 2
√

(1 + δ)(1 + 2c1)ε
)

X + δc1P
2
]

. (3.16)

By solving this second-order inequality (3.16) for X , we obtain

X 6
{

(δc1P +
√

(1 + δ)(1 + 2c1)ε) +
[

(δc1P +
√

(1 + δ)(1 + 2c1)ε)
2

+ (
√
1 + 2c1 − δ(1 + 2c1))δc1P

2
]

1
2
}

·
(√

1 + 2c1 − δ(1 + 2c1)
)−1
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6
2
√
1 + δ

1− δ
√
1 + 2c1

ε+
2δc1 +

√

(
√
1 + 2c1 − δ(1 + 2c1))δc1√

1 + 2c1 − δ(1 + 2c1)
P. (3.17)

Since

‖z−max(s1)‖1 + λ‖h−max(s2)‖1
6 ‖zmax(s1)‖1 + 2‖x−max(s1)‖1 + λ(‖hmax(s2)‖1 + 2‖f−max(s2)‖1),

we have

‖z−max(s1)‖1 6 ‖zmax(s1)‖1 + λ1,

where

λ1 = 2‖x−max(s1)‖1 + λ‖hmax(s2)‖1 + 2λ‖f−max(s2)‖1
6 λ‖hmax(s2)‖1 +max {√s1, λ

√
s2}P.

Then we have the following inequality by Lemma 2.3:

‖z−max(s1)‖22 6 s1

(‖zmax(s1)‖2√
s1

+
λ1

s1

)2

=

(

‖zmax(s1)‖2 + λ
‖hmax(s2)‖1√

s1
+max

{

1, λ

√

s2
s1

}

P

)2

. (3.18)

Similarly,

λ‖h−max(s2)‖1 6 λ‖hmax(s2)‖1 + λ2,

where

λ2 = ‖zmax(s1)‖1 + 2‖x−max(s1)‖1 + 2λ‖f−max(s2)‖1
6 ‖zmax(s1)‖1 +max {√s1, λ

√
s2}P.

Then Lemma 2.3 implies that

λ2‖h−max(s2)‖22 6 s2

(

λ‖hmax(s2)‖2√
s2

+
λ2

s2

)2

=

(

λ‖hmax(s2)‖2 +
‖zmax(s1)‖1√

s2
+max

{√

s1
s2

, λ

}

P

)2

. (3.19)

Furthermore, from (3.18) and (3.19), we have

‖z‖2 =
√

‖zmax(s1)‖22 + ‖z−max(s1)‖22

6

√

‖zmax(s1)‖22 +
(

‖zmax(s1)‖2 + λ
‖hmax(s2)‖1√

s1
+max

{

1, λ

√

s2
s1

}

P

)2

6
√

2‖zmax(s1)‖22 + λ
‖hmax(s2)‖1√

s1
+max

{

1, λ

√

s2
s1

}

P, (3.20)

and

‖h‖2 =
√

‖hmax(s2)‖22 + ‖h−max(s2)‖22

6

√

‖hmax(s2)‖22 +
(

‖hmax(s2)‖2 +
‖zmax(s1)‖1

λ
√
s2

+max

{

1

λ

√

s1
s2

, 1

}

P

)2

6
√

2‖hmax(s2)‖22 +
‖zmax(s1)‖1

λ
√
s2

+max

{

1

λ

√

s1
s2

, 1

}

P. (3.21)
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Combining (3.17), (3.20) and (3.21), one has

‖z‖2 + ‖h‖2 6
√
2(‖zmax(s1)‖2 + ‖hmax(s2)‖2) + λ

‖hmax(s2)‖1√
s1

+max

{

1, λ

√

s2
s1

}

P

+
‖zmax(s1)‖1

λ
√
s2

+max

{

1

λ

√

s1
s2

, 1

}

P

6
√
2X +max

{

λ

√

s2
s1

,
1

λ

√

s1
s2

}

X +max

{

1, λ

√

s2
s1

}

P +max

{

1

λ

√

s1
s2

, 1

}

P

6

(

√
2 + max

{

λ

√

s2
s1

,
1

λ

√

s1
s2

}

)

×
(

2
√
1 + δ

1− δ
√
1 + 2c1

ε+
2δc1 +

√

(
√
1 + 2c1 − δ(1 + 2c1))δc1√

1 + 2c1 − δ(1 + 2c1)
P

)

+

(

max

{

1, λ

√

s2
s1

}

+max

{

1

λ

√

s1
s2

, 1

}

)

P. (3.22)

When t1s1 and t2s2 are not integers, we observe that t1 < ⌈t1s1⌉
s1

and t2 < ⌈t2s2⌉
s2

. Further-

more, let t′1 = ⌈t1s1⌉
s1

and t′2 = ⌈t2s2⌉
s2

, then we have

δ⌈t1s1⌉, ⌈t2s2⌉ = δs1t1, s2t2 <
1

√

1 + 2 max {s1, λ2s2}
min{s1(t1−1), λ2s2(t2−1)}

<
1

√

1 + 2 max {s1, λ2s2}
min{s1(t′1−1), λ2s2(t′2−1)}

,

which finishes the proof. �

4. Numerical Experiments

In this section, we verify the reliability of the model (1.9) with numerical simulations. Let

s1 = ‖x‖0, s2 = ‖f‖0. In each experiment, we fix n = 500,B = I and ‖e‖2 = 0.001 for the noisy

case. We generate A ∈ R
m×n randomly drawn from i.i.d standard Gaussian distribution. The

position of the nonzero entries of x and f are randomly generated, while the values of nonzero

elements of the original vector x and f are generated from a standard Gaussian distribution.

In order to compare the average recovery error of each experiment, CVX package [18, 19] for

MATLAB was used. For every point on each graph, 100 repetitions were performed.

In Fig. 4.1, we fix s1 = 10, s2 = 15, and vary ‖f‖2 and λ. We use solid point and circle

to represent ‖f‖2 = 0.05 and ‖f‖2 = 0.3, respectively. For noiseless case (a), we observe that

the average error of BPDN does not decay to zero no matter how large m we set. As m/n

increases, each of the solid lines reaches a minimum value greater than zero and does not decay

further. In contrast, when λ is 1 or 1.5, JP with the parameter λ reaches exact recovery in all

tests. For noisy case (b), the average error of BPDN does not decay to a very small number

but JPDN with λ = 1, 1.5 does.

In Fig. 4.2, we show the effect of the balance parameter λ on the recovery error. Fix s1 = 10,

s2 = 30, and let the l1-norm of f be three times the l1-norm of x. From these two figures, we

can see that the balance parameter λ has an obvious effect on the recovery error. When the

l1-norm of f is several times the l1-norm of x, λ = 0.7 presents the best recovery performance.
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(a) (b)

Fig. 4.1. Comparison of the average recovery error ‖x − x̂‖2 between BPDN and JP (JPDN) with

a parameter λ under different values of m/n. In both (a) and (b), we fix s1 = ‖x‖0 = 10 and

s2 = ‖f‖0 = 15. The solid points and circles indicate that the l2 norm of f is 0.05 and 0.3, respectively.

(a) In the case of y = Ax+ f , we compare the average errors of BPDN and JP with λ = 1, 1.5. (b) In

the case of y = Ax+ f + e, we compare the average errors of BPDN and JPDN with λ = 1, 1.5.

(a) (b)

Fig. 4.2. Fix s1 = 10, s2 = 30, and let the l1-norm of f be three times the l1-norm of x.

5. Conclusions

In this paper, we investigated the signal recovery from measurements corrupted by a com-

bination of interference and measurement noise. A new restricted isometry constant bound on

δt1s1,t2s2 (t1 > 1, t2 > 1) for the exact and stable recovery of sparse signals is proposed and the

proposed RIP condition improves the existing representative results. This was accomplished

by adapting a crucial sparse decomposition technique to the analysis of the Justice Pursuit

method.
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