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Abstract

In this paper, we consider a uniformly accurate compact finite difference method to
solve the quantum Zakharov system (QZS) with a dimensionless parameter 0 < ¢ < 1,
which is inversely proportional to the acoustic speed. In the subsonic limit regime, i.e.,
when 0 < £ < 1, the solution of QZS propagates rapidly oscillatory initial layers in time,
and this brings significant difficulties in devising numerical algorithm and establishing
their error estimates, especially as 0 < ¢ < 1. The solvability, the mass and energy
conservation laws of the scheme are also discussed. Based on the cut-off technique and
energy method, we rigorously analyze two independent error estimates for the well-prepared
and ill-prepared initial data, respectively, which are uniform in both time and space for
€ € (0,1] and optimal at the fourth order in space. Numerical results are reported to verify
the error behavior.

Mathematics subject classification: 35Q55, 66M06, 656M12, 65M15.
Key words: Quantum Zakharov system, Subsonic limit, Compact finite difference method,
Uniformly accurate, Error estimate.

1. Introduction

Consider the quantum Zakharov system (QZS) for describing the nonlinear interaction

between high-frequency quantum Langmuir and low-frequency quantum ion-acoustic waves
12,17,

iES + AFE° — N2A?E° = N°F°,

e2N5, — AN® + \?A%N°® = A|E° %, reRY t>0, (1.1)

Ef(z,0) = Eo(x), N°%(2,0) = N§(z), 0N°(x,0)= Ni(z), zeR%
where i2 = —1, B¢ : R¥! — C denotes the slowly varying envelope of the rapidly oscillatory
electric field, N¢ : R¥! — R represents the low-frequency variation of the density of the ions.
The dimensionless parameter € € (0, 1] is inversely proportional to the speed of ion sound, the
quantum effect A > 0 is the ratio of the ion plasma and the temperature of electrons, and
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Eo(z), N§(z), and N§(x) are given initial datum. The QZS are deduced from a multiple time-
scale method applied to a set of quantum hydrodynamic (QHD) equations under quasineutral
assumption [17]. Tt extends the classical Zakharov system (A = 0) [31] to the quantum realm.
When either the ion-plasma frequency is high or the electrons temperature is low, the quantum
effect is non-negligible and can be characterized by the fourth-order perturbation with a quan-
tum parameter \. It can be applied for quantum decay and four-wave instabilities with relevant
changes of the classical dispersion [12], or for the enhancement of modulational instabilities due
to combination of partial coherence and quantum corrections [20]. We refer to [12,16, 20] for
more background in physics.

For the case ¢ = O(1), in recent years, there are many results on the QZS (1.1) from
the physical and mathematical points of view [8,10,15-18,22-24,30]. Particularly, Haas and
Shukla [17] pointed out that the quantum corrections induced qualitative and quantitative
changes, inhibiting singularities and allowing for oscillations of the width of the Langmuir
envelope field. Misra et al. [22] revealed that the system is destabilized via a supercritical hopf-
bifurcation, and periodic, chaotic, and hyperchaotic behaviors of the Fourier-mode amplitudes
are identified by the analysis of Lyapunov exponent spectra and the power spectrum. For the
well-posedness, the QZS is locally well-posed in L? data for dimension up to eight and globally
well-posed for 1 < d <5 [8], which is different from the classical ZS, while the local and global
well-posedness of the corresponding Cauchy problem is known only for 1 < d < 3 [11,13].
Moreover, the QZS is globally well-posed for initial data (Eo, N§, N5) € HX x Hk=1 x HF=3
with & > 2 and d = 1,2,3 without any size constraints on the initial data [15]. This suggests
that including some more physical effects in the equations which results as a more complicated
system may make the mathematical understanding much easier.

For the numerical part, there are few results for the QZS (1.1). Xiao et al. [29] developed
a conservative finite difference scheme for the modified ZS with high-order space fractional
quantum correction. Recently, Baumstark and Schratz [3] presented a new class of asymptotic
preserving trigonometric integrators for QZS, and the scheme converges to the classical ZS in
the limit A — 0 uniformly in the time discretization parameter. In [32], we proposed and
analysed a highly accurate conservative method for solving the QZS, which is fourth-order
accurate in space and second-order accurate in time. Zhang [33] developed a fully explicit
and efficient method by applying a time splitting technique and an exponential integrator for
time integration combined with the Fourier pseudospectral method in space for the QZS. Some
interesting dynamical phenomena was also included.

For the QZS (1.1) in the subsonic limit regime, i.e., € — 07, Fang et al. [11] proved the so-
lution of the corresponding fourth-order Schrédinger part converges to the solution of quantum
modified nonlinear Schrédinger equation (QM-NLSE)

{iatE (A +NAHE+ L(EP)E=0, z€RY t>0, 12)

E(z,0) = Ep(z), r € RY

and E¢(z,t) — E(x,t), where Iy = (I — A2A)~! and I is the identity operator. Convergence
rates of the subsonic limit regime from the QZS (1.1) to the QM-NLSE (1.2) and initial layers, as
well as the propagation of oscillatory waves, have been rigorously investigated in the literatures
[6,7,9,15]. Fang et al. [9] studied the existence and the stability of the standing waves of the QZS
(1.1) for 1 < d < 3. The low-regularity global well-posedness of the subsonic limit and its semi-
classical limit (A — 0) were studied in [6]. Particularly the solution of the QZS exhibits highly
oscillatory initial layers caused by the incompatibility of the initial data. This high oscillation
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in time brings significant difficulties in devising numerical algorithms and establishing their
error estimates, especially when ¢ < 1.

Along the numerical part of QZS in the subsonic limit regime, extensive numerical studies
have been carried out for the ZS, i.e., when the quantum effect is absent (A = 0). Cai and
Yuan [4] developed a linearly-implicit conservative finite difference scheme to the classical ZS
in the subsonic regime, and obtained the e dependent error bounds. Bao and Su [1] designed
a uniformly accurate finite difference method and established rigorously its uniform error bounds
for the classical ZS with ¢ € (0,1]. In [2], they further proposed a time splitting combined with
exponential wave integrator sine pseudospectral method for the classical ZS with ¢ € (0, 1].

The aim of this paper is devoted to developing and analysing a conservative linearly-implicit
fourth-order compact difference scheme for solving the QZS (1.1), whose efficiency has been
widely verified in solving a large number of equations [5,19,26,28,34]. The proposed method
is efficient to implement and only two independent linear systems are solved at each time step,
which is very efficient. Furthermore, the scheme preserves the mass and energy which is of vital
importance for long-time dynamics and stability.

An outline of this paper is as follows. In Section 2, we present a linearly-implicit compact
difference scheme for the QZS (1.1). The conservative laws of the scheme are given in Section 3.
In Section 4, the detailed error analysis of the scheme are discussed. Numerical experiments
are given in Section 5 to demonstrate the accuracy of the scheme. Finally, a brief conclusion is
drawn in Section 6.

2. Numerical Methods

For the simplicity of notation, we only deal with the scheme and analysis in one space
dimension, i.e., d = 1 and extensions to higher dimensions are straightforward. The original
problem is truncated on a bounded interval @ = (a,b) with zero Dirichlet boundary condition

10 E° (x,t) + Ope B (2, 1) — N2O2E® (2,t) — N°(x,t)E°(2,t) =0, x€Q, t>0,

20N (z,1) — Ope N (2, 1) + N2ON (2, 1) — Opu |E*(2,8)]° =0, z€Q, ¢>0,
Ef(x,0) = Eg(z), N(x,0) = Nj(z), 0:N°(x,0)= Ni(x), x €qQ, (2.1)
Ef(a,t) = E5(b,t) =0, N°%(a,t) = N°(b,t) = 0,

Ovn % (a,t) = 0pp 5 (b, 1) =0, 0,0 N%(a,t) = 0pe N¥(b,t) = 0.

We suppose the problem (2.1) possesses a unique solution which is smooth enough and the
initial data N§ satisfies the compatibility condition [14]

b M
/N‘f(x)dxzo, ZNf(a—i—k:h)zO for h>0 with Mh=b—-a, MeN. (2.2)
@ k=1

It is well-known that the QZS (2.1) conserves the mass

1B ()l 2 2=/Q|EE($at)|2dl’=/Q|E0($)|2dl’= IE= (5 0)l 2 » (2.3)

and the energy

E(t) = /Q (|6ZE€(x,t)|2 N )| B ) 5 (210.0%, 0 + NG 1))
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2 5 2 )‘2 £ 2 —
V205 B (1) 2 + 5|0, N (2, D] ) dr = £(0) (2.4)

with the potential function U® := U®(xz,t) € R is defined by
—0,2U° = N, UFlyq =0. (2.5)

In the subsonic limit regime, i.e., € = 0T, the QZS (2.1) reduces to the following QM-NLSE:

(2.6)

i E(z,t) + ANE(z,t) + (I\|E(z,t)°) E(z,t) =0, z€Q, t>0,
E(z,0) = Ey(z), x €,

where Ay = 0, — A?0% and I, = (I — A\?0,,)~'. Suppose that the initial data N§ and N§
satisfy
N§(z) = —Ix|Eo(@)[* + e“wo (), a>0, ze€Q,

Ni(x) =21, (Im (A,\EO(ZL')M)) + sﬂflwl(z), B8>0, zeq, 2.7)

where «, 8 > 0 are non-negative parameters describing the consistency between the initial
data of QZS (2.1) and the initial value of QM-NLSE (2.6). Moreover, the initial data are
usually classified into well-prepared initial data (a > 2, § > 2), less-ill prepared initial data
(1 <a,B < 2) and ill-prepared initial data (0 < a, § < 1).

To achieve the difference scheme, choose time step 7 := % and mesh size h := bfv" with J,
M two positive integers. Denote the time steps and grid points as

tp:=kr, k=0,1,...,J, z;:=a+jh, j=0,1,...,M.

Let Ej’-“, Ejfk and N; * be the numerical approximations of the exact solutions E(zj,tr),
E¢(zj,t;) and N°¢(zj,t), respectively. Denote E¥, E=* and N=* by the corresponding nu-
merical solution vectors at time ¢ = ;. As usual, we introduce the following finite difference

operators:
1 PRt k-1
+.k _ k+1 k -k _ s+ k kE_ j J 2.k _ sts— k
0¢ vj __(Uj —v5), Gy =8 vy, b T T dpvj =06, 0; v,
T T
kL g k —k _ s+ k kU1 — Vi 2.k _ sts— k
Oy =3 (Vi —v5)s Ogvf =07vily, Gpuf = ==, Gy = 070,
FLok = §2(520%) ka% 1 (,Uk Jrvk—1) oF — 1 (Uk-i-l +,Uk—1)
x¥j — Yx\MzVj5 /) 7 - 9 j ' 5 i = ) i b .

Define Vj, := {v = {v;} | 0 < j < M,v9 = vy = 0}. Furthermore, we set 82v9 = 82vp = 0
for v € V;, when involved in view of the boundary conditions in (2.1). For any grid functions
u,v € Vp, denote the inner product and the norms as

N[

M—-1

M—-1
_ 2
wod=h X wmy ol = (Al | ol =, s ol
J= J=

where 7; is the complex conjugate of v;.
As shown in [19,28,32], the standard spatial fourth-order compact finite difference operator
A is defined as

h? 1
k _ 2 k _ k k k
Avi = (I - —126z) V=15 (v 4+ 100] + v, y) .
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One can see that Avy,(zj, ;) = 62v(zj, tx) + O(h*) for v(-, t;) € C%([a,b]). The corresponding
matrix of the operator A is A = 5(10I + S), where

01 0 -+ 0 0
10 1 -+ 0 0
S = Lo
00 -+ 1 0 1
00 -+ 0 1

(M—=1)x(M—-1)
and similarly H = A~', D = 75(S — 2I) correspond to the operator A~! and 62 defined on
Vi, respectively. The linearly-implicit compact finite difference scheme of QZS (2.1) reads for
k>1as

B = (A ) B (i

J J ’
2

1<j<M-1,

207N = A*légvaE — A% (A7162) Nj’E + A2 1<j<M-1, (28)

e,k
E;

)
ek _ ek ek _ Atk 2 e,k _ (2 ek 2 a7k _ 2876,k
EO - EIV[ =0, NO - NIV[ =0, 51EO - 61EIV[ =0, 6mNO - 51NIV[ =0,

ie., we find Nok, ESF psFk ¢k ¢ V), such that

07 BSF = (— HD + N*H2D? 4 N*F=35)E=F=3 > 1, (2.9a)

262N* = (HD — N*H’D?) N°* + HD|E=*|*, &k >1, (2.9b)

where we have used the property that HD = DH. From now on, we use the notation

Xv = X(vy,...,op_1)7 for X € CM-1x(M=1) and v € V,. Furthermore, we set the ini-
tial conditions

B = Bo(ay),  N7° = Ng(e;) = ~I(Eol) () + ewo (). (2.10)

To implement the three-level scheme (2.9), we need to fix the value N1 at the first step.
According to Taylor expansion, we get

7_2

Ne(xj,7) ~Ng (v;) + TN; (5,0) + ENE(%,O)
2

-
=N§(x;) + N7 (z;) + ?th(acj,O), (2.11)

where

Ni(z;) = 21, (Im (A\Eo Eo)) (x5) + €7 1wy (x),
1
0N (25,0) = =5y ((1 — X20,,)N*(2;,0) + | E=(;, 0)|2) = 22 A wo(z;).
€
This approximation suggests that |NJ€ ’1| ~ 1Pl 4 722272 which requires very small 7 to
bound the value of N*! when ¢ < 1 and 0 < 8 < 1 or 0 < a < 2. To remedy this, replacing
7/e in (2.11) by the trigonometric functions sin(7/¢), which is uniformly bounded for all 7 and

e € (0,1], we get a modified approximation for N¢(z;,7) by N;’l
—_ . T
N;’l = N;’O + 2715 (Im (AXEo Ep)) (z;) + 7 sin (E) wy(z;)

+ 2¢“ sin? (2%:) Aywo(xj). (2.12)
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Noticing that the scheme (2.9) is efficient to implement, and it suffices to solve two linear
systems at each time step. Moreover, it is easy to derive the uniqueness of the solution by
standard analysis [14].

Remark 2.1. To get v = I (u) in (2.10) and (2.12), we can solve the linear equation v—\?v,,, =
u with homogeneous boundary condition by sine pseudospectral method, which results as an ap-
proximation with spectral accuracy, or replace the operator Iy by a fourth-order approximation
6= —XNHD)™ %

3. Conservative Properties

In this section, we present the conservation properties for the difference scheme (2.9). We
start with the following lemmas.

Lemma 3.1. For any grid function u,v € Vy,, it holds that
<5iua ’U> = <D’LL, ’U> - - [5:’“5 5;_’U>,
where [p,q) = h Zﬁglqu_j.

Lemma 3.2 ([5]). The matrix —HD is symmetric positive definite and for any grid function
u,v € Vy,, we have

—(A7162u,v) = —(HDu,v) = (Ru, Rv), ((A710%)%u,v) = (A716%u, A 5%0),
where R is obtained by Cholesky decomposition for —HD, denoted as —HD = RTR.
Lemma 3.3. For any v € V},, we have
_ _ 3
l6Fvll* < —(AT 650, 0) = [ Rol|* < 2[l550]%, (ol < A7 0]l = [Hol < el (3.1)
where ||0 0] = [0 v, 07 v) = h Y15 60,2

Proof. Denote the eigenvalues and the corresponding eigenvectors of S by )\fé and 17,
respectively. It is well known that A}, = 2cos(jm/M) for j =1,..., M — 1. Hence, by definition
of D and H, we have the eigenvalues of D and H as

T K N
D — - 9

h2 h2
12 6
C 10+ AL, 5+ cos(jm/M)’
24 sin® (jm/2M)
h2(5 + cos(jm/M))

N

Jo_— N\

Aup = AgAp =

with the same eigenvectors /. Noticing that
J J J

2Ap < Agp < A,

D and HD share the same eigenvectors, we get D — HD and HD — 2D are both symmetric
positive definite matrices. Thus for any v € V},, we have

(Dv,v) > (HDv,v) > (2Dv,v),
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which leads to the first inequality of (3.1) by applying Lemmas 3.1 and 3.2. The second
inequality can be easily derived by noticing that 1 < \}; < % and the fact that H is symmetric
positive definite. |

Denote U;’IH% (1<j<M-—1,k>0) by the solution of

1 1
—ATI2UTNTE = 6FNTE e, — HDUSME = 5 N (3.2)

with boundary condition US’kH/Q = Uf\/’[kH/Q

follows that

= 0. Based on the discrete Sobolev inequality, it
oo 5 floruesed ) < o) 33)
Theorem 3.1. The difference scheme (2.9) conserves the mass
k] = =0, k2 34
and energy
£t = [REH " 4 [REH| 32 (A 82554 | A 62E4) + 2 U=+

2
b2 (IR P e ?) 4 A (RN )

+ (NRH e Bk = 0, k1 (3.5)

Proof. Computing the inner product of (2.9a) with E=F=3 and taking the imaginary parts,
we get

o R L e i |

Computing the inner product of (2.9a) with E* — E&*~1 applying Lemma 3.2 and taking the
real parts yields

1 2 1 a2 22 B 2 22 3 2
5 |REH|" = S| RE" 4 T A 258 | - 5 ATt sz
Pt ) o

which indicates

1 2 1 a2 A 2 A2, 12
Ujrpesesf - Ljrpess o X e X aigzpea)

T % <N€,k+%, ‘Es,k+1‘2 _ ‘Es,k‘2> 4 % <Ns,k7%7 |Es,k|2 _ |Es,k71‘2> —0. (3.7)
Taking the inner product of 7(U=F~2 4+ U=F*2) with (2.9b), and making use of (3.2), we get

g2 HRUE’H% ’ — g2 HRU&’C—% H2 + % HNa,k+1H2 . HNa,k—lHQ

1
2
2 2
+ % HRNe,kHHQ _ % HRNe,k—1H2 + <’Ee,k’2 ,Na,k-i-l _ Na,k—1> -0 (3.8)
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Finally, (3.7)+1 - (3.8) yields that
2 2
SIRER? 4 2 A2t P 4 S RUSA P 4 1 [N

A2 2 1 1 2 2
+ZHRNs,k+1H +§<Ns,k+§,}Es,k+1} +}Es,k}>

. 2y X 2, € _1 1 112
= 5 [RE* + A2k 1" 4 S| RUSAE P 4 £ e
2
+ )\I HRNs,k71||2 + % <Ns,k7§, ‘Eg’k‘2 T ‘E&k,1|2>7
ie., &F = £F~1. The proof is complete. -

4. Error Analysis

Let T* be the maximum common existence time for the solution (E*(z,t), N¢(x,t)) to the
QZS (2.1) and the solution E(x,t) to the QM-NLSE (2.6) with homogeneous Dirichlet boundary
conditions. For 0 < T' < T™, suppose that the exact solutions (E®(z,t), N¢(z,t)) and E(z,t)
are smooth enough. More precisely, according to the results in [21,25], we assume

BN oo (0, 73w10.00 (02)) + 1B lyyrr.oe o, 77,780 ()
+ & 7N B yya.eo 0,1 w0 (2)) T g2’ IE= s, o, r1sw2. () S 1
(4) HNallL%([O,T];Wva(Q)) +elm HNEHWLOC([O,T];W&N(Q))
e N lyy2.00 (0, 7707520 (02)) T =o' N llyya.00 (0, 77,200 ()

4—af 5—af
T Nl o, pwroe ey €T INT s o,ppe () <1

with the convergence

1+a™ 2 ot
(B) 1B = Ell oo o112 00 S €T ||N®+ L E| ||L°°([0,T];H1(Q)) St
as well as the initial data
(©) [ Nollwz.e )y + 1 Eollyace o) + [[wollyace ) + l[will o) S 1,
where
o =min{l,a,8}, of =min{a,s,2}. (4.1)

In view of (2.12), (3.6), Taylor expansion and assumption (C), we can easily prove that
elofu=s] Selly N S 1 [N+ [N < 1,
and
IRE=® 4+ 22 At o2 B2t P 4 (=3, | B=1))
= [|RE=|* + 32 || A2 02B50|* + (N°%, [E20") 5 1,

which suggests that £¥ = £9 is bounded. Thus, in one space dimension, the a priori bounds for
E** can be established by a standard argument [32],

1B e < /21 B4 105 B=H]| < (/2| B=H[|[RESH] < Cu, k> 0. (4.2)
Denote the error functions

eF = Bz, te) — ESF, 5" = Ne(ay,te) = N7F, 1<5 <M. (4.3)
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4.1. Main results

We present the corresponding error estimates of the difference scheme (2.9)-(2.12).

Theorem 4.1. Under the assumptions (A), (B) and (C), there exist hg > 0 and 19 > 0 indepen-
dent of € € (0,1] such that, when h € (0, ho] and 7 € (0,79], the difference scheme (2.9)-(2.12)
with well-prepared and less-ill-prepared initial data (o, f > 1) satisfy the following two error

estimates:
2
leF )+ [Re=* || + AJAT62e% || + = + A RnsH| S B+ 5 —,  0<k< L @
g« T
T
e || + || Re™ || + Trozenv ||+ |InT ||+ n- + 77+, <k<-—. .
e,k Rak )\Aléiak e,k )\Rak §h4 2 af 0< k< 4.5
-
Furthermore, by taking the minimum, we obtain the e-independent convergence rate
51+ [|Re™F || + M A~ 52e= || + [[n**|| + X[ Rn="||
2af T
Sh4r, 0<k<— (4.6)

T

Theorem 4.2. Under the assumptions (A), (B) and (C), there exist hg > 0 and 19 > 0 indepen-
dent of € € (0,1] such that, when h € (0, ho] and T € (0,70], the difference scheme (2.9)-(2.12)
with ill-prepared initial data (o, B € [0,1)) satisfy the following error estimate:

e+ 1o 4 A= 8265]  [ln=* ]+ A |

ht 72 T
< - <k<—. 4.
~ gl-a* + g3—a*’ 0<k< T ( 7)

In the subsequent discussion, we will prove the convergence of the developed scheme for
solving the QZS (2.1). Denote

-1 1

(W); 2 = = (vlaj, te) +o(zj,teer)), (0D =

=3 (’U(:L'j,thrl)#*’U(:L'j,tk,l)).

N |

Define the local truncation error 7% (5% € V), of the scheme (2.9)-(2.12) for £ > 1 and
1<j< M as

ok =isy B (g, 1) + ATNO2 (BTN TR - A2(AT162) P (B E T — (V)R (B,

J

J
7 — (4.8)
G = 0PN (g, i) — ATLINDS + X (A1 62) (VDS — A0 B )]
Lemma 4.1 (Local truncation error). Under assumption (A), we have
2
M+ R+ A 82 4] + R o+ o, 1< L
k h* 72 T (4.9)
€,
||5t§ ||§€1—O¢* +€37—O¢T7 QSkS;fl

Proof. Using Taylor expansion, we derive

) 1 0 s
n?’k — i/ / / 8t3E€ ($j7 or —+ tk—l) dodsdf
/ 8 Jo Jo J-s 2 2

7'2 ! 0 202 e ST
+§/0 /_eatazE (acj,?—i-tk_%)dsde
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n A—152([E5D’?*% _ ([32E8D’?*%

T / / a2a4E€ 2 Tt ) dsdd

- (A-%inij o qaiEfo*%)

T2 ! 0 ST
2

16

(N¥(xj,th—1) + N°(xj,t)) / / O?E* (xj, 5 +tk7,)dsd9.
Noticing that
A (A_l(SiEE (xj, tk) — azEa(.Tj, tk))

= 02E°(zj, 1) — ADZE® (x;,t5) = —magEa(gj, tr),

for some &; € (zj-1,2,41), one easily obtains

k-3

A1 a20EeD; T - (02ED; | S W NOSES L o,

S hHOSES | Lo (r)-

A=2s L) - (oiEe)h
Using assumption (A) and Lemma 3.3, we derive that

411 2 (R e+ 2 0557, )

[P

(7Bl + [|0202E7 | + N2 | 0201E7 |
N e 92| + 1190 e (92N )
< pt 4 7’
~ g2—at”’

Similarly, we have

fs'r//// OfNe(xj,ty + 27)dzdodsdd

—T—/ / OFO2N® (x4, 87 + ty,)dsdf
2 0 J—6
- (./47152([]\78])%- _ anNsDJE)
2/\2 94
(9 O, N*(zj, sT + ti)dsdf
+2% (A ( —253([N8])§ ~ (@iN°D})

_ (A’lcﬁ B (2, t)|* — 02 | ¥ (5, tk)ﬁ) ’

+

and

+ N\ || 05 Ne

I

=41 < e (loene

z|E€|2HL°¢)

| +|
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+ 72 (52 ||821N€
2

e + 102OZN]| o + X 07027 )

Sht+

EQ—aT ’

Applying 6 and 4; to n;’k and ¢5F respectively, we get

Jain ) <t (OTE"| o + X[, )

+|OFR B o + N (07027

+ 7 (1P

N e 1Bz el e + 1B e 1Nzl Lo
H N oo 1B oo + 1B oc IIthIILoo)

7_2

g2—at’

o= 5 1 (Jlobs

Sht+

e + A2 OENE | e + 0205 12| )
+72 (2| 0P NE | . + || 0P 02N
h4 7_2

~ cl-a* + gd3—at’

| + 2 |070E N )

hence we get,
72
527(!(

162 n°" || < 5" +
by using (3.1). Similarly, we obtain the estimates for [|0275F| and |67 ¢%*||, hence for

L A=15205F|| and ||R¢S*| by noticing (3.1). O

Lemma 4.2. Under the assumptions (A) and (C), the first step errors of the scheme (2.9)-
(2.12) satisfy
72

3
In!ll S mare 0] <

e (4.10)

Proof. Tt follows from (2.11), (2.12) and Taylor expansion that

2 -3
n, = NOE(:T]) + TatNE(.Tj,O) + ?8,5,5N€(:z:j,0) + F
— |N§(z) + 271 (Im (ANEoEp)) (z;) + €’ sin (g) wi (2) + 26 sin? (2LE) 5>\w0(xj)}

a?NE(‘Tj’Sj)

3 2

= %8t3N5(:cj, s5) + &P (sin (g) - g) wi(xj) + (25”‘ sin? (215) - %5”‘2> Awo(zj)
73 73 cos(s) 4.

= 5 OIN (), 85) — Tufﬂ Swi(x) -

73 sin(6)

6 EO‘?BA)\U}O(Z‘]‘),

where s; € (0,7) and 5,0 € (0,7/¢). This together with the assumptions (A) and (C) yields
(4.10). O

As we know, the boundedness of the solution plays an essential role in deriving the error
estimates. As was shown in (4.2), || E*|« is uniformly bounded in 1D. However, for d = 2, 3,
the Sobolev inequality involves ||§2E%F||, whose bound is inversely proportional to A. Thus
we can only get an a prior bound for ||E®*| s which is decreasing with respect to A. When
A is very small, this bound can be large. In order to give a uniform error estimate which is
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independent of A < 1, we apply the cut-off technique to the nonlinear terms in QZS (2.1) as
was done in [1,4]. Choose a smooth function p(s) € C* (R) such that

1, Is| < 1,
p(s) =q€l0,1], |s| <2, (4.11)
0, |s] > 2.

For all € € (0,1], let My be a uniform upper bound of E¢(x,t) and E(x,t) on Qp = Q x [0,T],
ie.,

My = max { G sup 1B D ey DB O

where C, is defined as (4.2) and is missing in this definition for d = 2,3. For s € R, define

Fo) = sp(s/B). B= M+ 1P, gw) = [ 1y (01l + 1= 0)P) . (@12

Set E50 = =0, Ne0 = N=0 Nel = No1 and E5* Ne*+1 are the solutions to the following
equation:

07 B = [~ A0 4 0% (A7162)" + N (B5* Bt )] ol

J

252N = (A—l(s; — A2 (A—15§)2) NEE 4 A2 (]Ej»kf) . k>1 (4.13)

Actually (E=*, N©*) is a pair of another approximation of (E*(z, t;), N¢(z,t;)). Noticing that
fi(+) is bounded, this means fp and g are Lipschitz functions. Thus, it can be clearly seen
that (4.13) have unique solution for sufficiently small time step 7.

Next, we turn to prove the error estimates in Theorems 4.1 and 4.2 for (Eavk, ]\75”“), respec-
tively.

4.2. Proof of (4.4) type estimates for (E=*, NF)

=,k "E,k

Define the error functions e as
k ko ek Seok )
€ :Ea(xj,tk)fEé , ny" = N(xj,t8) = N7°, 1<j< M, (4.14)
and the local truncation error 7° ,C &k reads as

it = id; EBF (w, )
_ _ k—1 k—1
A8 (A7) — DS R (B g ), B )| (5D
G = 262N (2, 1) — ATL62(NEDE + N2 (A7102)* (VE)E
AT (1E7 (101 (4.15)
In view of the definition of fp and g, it is easy to check that

9(B* (w5, 00), B (s o)) = 1, i (1B (5,00 ) = |E= (o ta)

which implies nsﬁk = ’f and (E k

Ej Thus (4.9) holds for ﬁ\;’k and Ejk For analyzing the
error of the scheme (2.9), let u® be

k=3 the solution to the equation

~ek—3

_1 _1
—ATIRETNTE = RS, 1<j<M—1 with ay* =47 =0, (4.16)
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Subtracting (4.13) from (4.15), we get

i,k = — A2 TR N2 (A1) N TR W 4, (4.17a)
2820 = AT - N2 (AT162) sk A2l 4 O (4.17b)
with
k=1 k=1 Ak Bek—1y pek—1
WE = (N*)} %9 (B (g ta), B (i) (BF)S 2 = NIM 72 g(BSF BSFNESAE (418)
Pj = fo(|E=(x;,t)1%) — fB(1ES"P). (4.19)
Then Wf can be rewritten as
fok- ko pek—1y pek— Sek pek—1\ k-3
WE =7 (EE ESFNES : +(Ne)ET (Ej. o A
~ ~ 7. k—1
+ (N} 2(9<E€<xj,tk>,E (2, te1)) = (BN BN ) (B9 2. (4.20)

Denote ge(z1,22) = g(z1,22)(21 + 22) for z1,20 € C. Employing the nice property of g and
fB(+), it is easy to check that [1,4]

lge (B5 " EFF S 1, |BF| < VO],

}g( z]atk> Eg(xjvtkfl)) 7g(E]E‘1k’EJ§7k71)| S }é\?| + }é\.l;_l}’

|ge (B= (25, th), B (25, t1)) — ge (B5 " ESFN) | S || + ]@f‘ll, (4.21)
k
68 (0 (B (a0 B ter) — 0o (B B D) £ 3 (8 4 [ + a2,
l:k—l
k
92 0 (P a3t B i) — e (B B € 92 (8 |+ o2 + 1928,
l=k—1

where Cp > 0 is a positive constant depending on My and p(-). It follows from (4.21) that

Wil s A

e k— 1/2

Multiplying 27he; on both sides of equality (4.17a), summing together for 1 < j < M

and taking i 1mag1nary parts yields

6|7 = [[e=*1|* = 27 T (Wk 2=k ) - 20 T (e 2=k, (4.23)

Multiplying h7d; j’ on both sides of equality (4.17a), summing together for 1 < j < M, using
Lemmas 3.1 and 3.2 and taking the real parts, we have

2
3 (IR = ree =) 4 o ((lamtazes - lactazes 1 )
+ Re (WF ek —goh1) = Rehkafk ek, (4.24)

,+2+A6k 2)

Multiplying Th( on both sides of equality (4.17b), summing together for 1 <

j < M, making use of (4. 16) we obtain

€2||Ra5,k+% 12 - &2|| ra® k7—||2 1 (Hﬁs,k+1”2 _ Hﬁg,kAH?)
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2
= (Irasst A )

= —r (R @t Lk, (4.25)

+ <Pk’ﬁe,k+1 o ﬁa,k—1> +

Combining 3Cp - (4.23) 4+ 4 - (4.24) + (4.25), one can derive that
Sk _ gh-1 67Cp Im <Wk,’é57k_%> +67C5Im <7’7\€,k,/€\e,k—%>
S B (G BT
42 <Pk _ ph1, ﬁfﬂ’“*%> — 4Re (W ok —geh-1y (4.26)
where
e L
2 (e k1 ~ek A e k41 ~e.k k e ktd
b (R 4 e P) + 2 (st P+ et ) 42 (b, ekt )

Next we estimate each term in (4.26) separately. Firstly by applying the Cauchy inequality,
it is easily derived that

k
tm (W, e 2 5 ST ([ )
l=k—

1

Im <ﬁs,k,é\s,k—1/2>‘ < Hﬁs kH 4= 1 (He k||2+ H«és,lc—1||2)7 (4.27)

(Prast2) < |1PHF+ (||AE’“|| A=)
Furthermore, using (4.17a), one gets
[Re (7% 2 — 1)
k—
J

= [rm (i, A 2e T a2 (A 102) %

: k
P w4+

k
S0 (I + (R + ([ 4+ 22 A oz )
I=k—1

+ 7

(I + 77 + JA-iaza ). (129
To estimate the other terms appearing in (4.26), we need the following lemma.

Lemma 4.3. Under assumption (A), for 1 <k < %, we have

‘<Pk o Pk717ﬁ€,k 4 ,ﬁs,k71> — 4Re <Wk,’é€,k o ’é\s,k71>’

k
57(W”HQ+ S2 (AP + e + e P+ a7 A~ a2 )) (4.29)

l=k—1
and
k
—~ 1 g1
7 E <Cs,l7 us,l+2 + us,l 2>

=1
-1

1
T AE ~€ 2 &, nE,
< 330 (Cla@ P + [=!1F) + 3 (I P + 5 1=

=1 1=0

g
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k+1

#3 ( P g e, (130

where C' is a number independent of h, T and ¢.

Proof. For (4.29), in view of the definition of W¥, P¥ Lemma 4.1 and the Cauchy inequality,

¥, PF,
we find
2(PF = PR g Re (Wh ek gk
— 2Re <ﬁ5’k‘%G’;, EE (- ) — EF (-,tk_1)>
—Re ((N® (-, t5) + N° (-, t5_1)) GE, &k —g=h=1) (4.31)
where

Gls = gG(EE ('7tk) ) E* ('a tkfl)) - ge(Ee,k, E&k_l)'
According to (4.21), we see that
IGell < ekl + [le= 1.
Using (4.17a), (4.21), (4.22) and assumption (A), we obtain
’Re <ﬁ5’k‘%G§, E° (1) — E° (., tk_1)>‘
SN0 E (0l (JIRH] + 175 P4 e+ o= )

SR (o e R o e R DR

and

’Re <(N8 (yte—1) + N° (-, tx)) Glga ook _ gg,k_1>’
= T‘Im<(N€ (- th—1) + N° (.,tk»Glg, (7‘/47155 +/\2(A715§) )gskfé LWL Ask>‘

57(\!775”“HQ+ 5
=

which immediately gives (4.29). For (4.30), based on the Cauchy inequality, (4.16) and (3.3),

we derive

(A= + N + (e P+ a2 Aoz ))

-1

k k
o ~ 1 ~]—1L o ~ ~ ] —
— T § <Ca,l, ua,l+2 + ua,l 2> _ § : < 62 ACE,Z’ ne,l—i—l o na,l 1>

=1 =1
k+1

AZE,I+1,ﬁ€,l> _ Z <(_5§)*1 AZE,Zfl’ﬁs,l>

=k

k—1 1

20 3 (b0 (-02) T A ) +

k—
<3 (o P + =) + ( [+ 5 )

= 1=0

=0

[N~}

,_.
|

[

k+1

#3 (alE P g ).

where (' is a constant independent of €, h and 7. This completes the proof of Lemma 4.3. O
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Proof of (4.4) for (€%, 7%%). Tt follows rom (4.21) and (4.27) that
|(Pr k1) < o [ + é (I (" =+ ffa==+11%)
which implies
§* > Cp II? FIP 2 R 4 202 (AT o2e k| 4 | Ra i E
+7 (l[rRs=+11* + || RAs| )+1 (A=) + ] 1*)
Combining (4.26)-(4.29), and applying (3.1), we are led to
Sk G141 <E€1k,a€1k+% + afﬂ’“*%>
S (8% + 8N o ([ R + R+ LA )
Summing together for k = 1, ..., m, applying (4.30), Lemmas 4.1 and 4.2, we yield
587 <8 — 2 (1A + e )
S (;—:+€;—2M)Q+T§§Z, 1<m gg
Applying the discrete Gronwall inequality, for sufficiently small 7 > 0, we conclude that

N 4 2\ 2
Sk<(h_+7_), 1§k§z
-

~ \ egl-a~ gd3—af
which immediately yields

€] + [} 2= ] + Al A7 oze= |+ f[a=F ] + A [ RA=

ht T2 T

S *+&:3,7—M, 0<k<

N&-l—oz

]
T

and the proof is completed.

4.3. Proof of (4.5) type estimates for (=% ,n°")

Proof. Define the error functions

oy Sek ek ek .
e;" = E(xj,ty) — By, 07" = N(xj,t,) — N, 1<j< M,

(4.32)

(4.33)

where E(z,t) is the solution of the QM-NLSE (2.6) and N(x,t) = —I,|E(z,t)|?. Let u®k~2

satisfy

AT — Rk, 1< i< M1

)

—e,k— k-1 . ~ e
with ug’ =1u,; ° = 0. Introduce the local truncation errors nek, 5 as

(4.34)

ﬁjk =10, E(xj,tk) + (A_léi — 2% (A 162) - ([N]) ( (‘rjatk)aE(xjatk—l)))([ED?_%,

éjk = 267N (z),t)) — (A715§ -\ (A7162) )([NDk 15§fB( |E(zjvtk)|2)-

(4.35)
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Employing similar arguments in Lemmas 4.1 and 4.2, the local truncation errors and the initial
errors satisfy

17551+ 7= (| + 177" | < h* + 72,

- - - 4.36
IG5 I+ N18eC=* 1 + N1 CF ) S b+ 72 + €2, 430
a0 < e, At S Tht 7 4 ef 4 e,
12571 S S (437)
la=2 | S 1167 7| S Bt 7+ 77 e, '
Subtracting (4.13) from (4.35), we get the error equations
1~
i,k = — (A—l(sg Y (A—153)2) NI L WE it (4.38)
25750 = (A*éﬁ Y (,4*153)2) RS 4+ 62P 4 (o (4.39)
with
e k—1 k—1 k—1 ~ ~_ L k—1
WF=(N); *g(E(zj,t), E(wj, te1)) (E); 2 = N; 2g(EF ESM N E] 2, (0.40)

Pf = 1 (1B 1)) — 1 (|BS*7).
Denote
3 = 30 [} + 2 [Rew | 4 202 A 02| 4 ¥R
L ekt ~e k|| \? ~e,k+1]|2 ~e k|2 k ~ek+l _ ~ek
43 (P + [ + 5 (IR + [ Rack]) + (b oot ey,

Applying similar arguments as used in the above subsection, we obtain for sufficiently small 7,

T

§k§ (h4+72+50‘+55+52)2, 1<k<—
=

which implies
&[] + [ Re=® | + Al AT azee | + [[a= ]| + A R

T
Sh24 72 4P e 42 0<k<=—.
T

This together with assumption (B) yields
6 e e
< [|e* )+ 1Re= | + A AT 5 | + 2117 ta) = B ()
+2XN||E° (- t) — E (-, tk)HHZ
SH2 472 4 el
2=+ A [ 7|
< A7) A RASF] 4 INF G t) = N G ) e
F2A[NT o) = N (G te) |
<K+ 4+ e’ (4.41)

The estimate is established. O
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4.4. Proof of Theorems 4.1 and 4.2

Proof. In view of (4.32) and (4.41), it suffices to show that |[E=*||, < Mg + 1, in which
case (E=F Ne*) are identical to (E<*, N**) and Theorems 4.1-4.2 are established.

Following the proof of Theorem 3.1 (see also [32]), we can derive the a priori bound of
(E=k, N=*), and the scheme (4.13) conserves the mass ||[E=¥|| and energy

gk _ (HREa,kHH? 4 HREa,kHQ) gy (HA—léiEe,kHH? 4 HA_léiE&kHQ) +€2||Rﬁe,k+%||2
o~ o~ 2 o~ o~
+ % (=417 4 257 + % (RN 4 | RE=)*)
+ (NoREL pp(|BR1 ) + fp (| B4 ) ) = €7, (4.42)

where UsF+1/2 = (—§2)~15,7 N=*. Noticing fp(s) < s(s > 0), similar to (4.2), we could obtain
the same bound for E=¥,
[E*|loe < Ca < Mo+1, k>0.

This implies the modified scheme (4.13) reduces to the scheme (2.10), (E=*, N=*) agree with
(E=*, N*¥) and (4.4)-(4.5), (4.7) hold. Furthermore, (4.6) can be derived immediately by
taking the minimum of (4.4) and (4.5) when «, 5 > 1. O

Remark 4.1. For d = 2,3, to get an error estimate independent of A, instead of bounding the
solution || E€*|| by the conservation laws and Sobolev inequality, we estimate the solution via
the error function

~ 1
IES oo < 1B (2, ti) | e + 187" o0 < Mo +

=~ ’k”Hla
Ca(h)

le®

and we use the discrete Sobolev inequality [4,27,32] to control the [°°-norm as

{1/|1n<h>|, d=2,

1
< — 1, Cq(h) =
Hl/’hH ||1/’hHH d( ) h%, d=3,

o™~ Cy(h)

where 1)y, is the mesh functions over 2 with zero at the boundary. Therefore, by assuming
the extra conditions with h = 0(¢?/7),7 = 0(3/2Cy4(h)"/?) for ill-prepared initial data, 7 =
0(Ca(h)3/?) for less-ill-prepared initial data, and 7 = o(Cy(h)3/*) for well-prepared initial data,
one easily find the same error bounds as those in Theorems 4.1 and 4.2.

5. Numerical Examples
The purpose of this section is to test validity of the scheme (2.9)-(2.12) for solving the QZS
(2.1), and the corresponding numerical results will be shown in Tables 5.1-5.7.

Example 5.1. Consider the QZS (2.1) with the periodic boundary condition and the initial
data

N

2 2

x x _z

Ey(x)=e"2, wo(x)=e 1, wi(zx)=axe 1, (5.1)
and the parameters o and § in (2.7) are chosen as:
Case 1. Well-prepared initial data, « = 2 and g = 2.

Case 2. Less-ill-prepared initial data, « =1 and g = 1.
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Case 3. Ill-prepared initial data, a = 0 and g = 0.

The problem is fixed to A = 0.01, Q = (=200, 200), such that the error due to the truncation
is negligible. Since the exact solution is not known, the ‘exact’ solution (E°(z,t), N°(z,t))
obtained by the proposed compact difference scheme with mesh size h = 1/160 and time step
7 =278 In order to measure the numerical error, we use the following error functions:

€ () = e + 1R | + AJAT 62655, () o= ([0 ]| + N[ Rn™ |

with e5% = E¢(.,t3) — ESF and n®% = N°(-, ;) — N&F,
To testify the spatial accuracy, we take a tiny time step 7 = 27'® such that the temporal
error is negligible. Tables 5.1-5.3 list the spatial errors of the compact finite difference method

Table 5.1: Spatial error at time ¢ = 1 for well-prepared initial data Case I, i.e., « =2 and 8 = 2.

e® h=04 | h/2 h/2? h/23
e=1/2 | 2.81e-3 | 1.64de-4 | 1.0le-5 | 6.27e-7
rate - 4.10 4.03 4.01
e=1/2* | 2.80e-3 | 1.6de-4 | 1.01le-5 | 6.27e-7
rate - 4.09 4.02 4.01
e=1/2° | 2.81e-3 | 1.64e-4 | 1.0le-5 | 6.29e-7
rate - 4.10 4.02 4.01

n® h=04 | h/2 h/2? h/23
e=1/2 | 2.64e-3 | 1.54e-4 | 9.48e-6 | 5.90e-7
rate - 4.10 4.02 4.00
e=1/2" | 4.60e-4 | 3.22e-5 | 1.99e-6 | 1.24e-7
rate - 3.84 4.02 4.00
e=1/2° | 3.88¢-4 | 2.4le-5 | 1.50e-6 | 9.47e-8
rate - 4.01 4.00 3.99

Table 5.2: Spatial error at time ¢ = 1 for less-ill-prepared initial data Case II, i.e., « = 8 = 1.

e h=04 | h/2 h/2? h/2?
e=1/2 | 2.96e-3 | 1.73e-4 | 1.07e-5 | 6.65¢-7
rate - 4.09 4.02 4.01
e=1/2" | 2.80e-3 | 1.64de-4 | 1.0le-5 | 6.26e-7
rate - 4.09 4.02 4.01
e=1/2% | 2.81e-3 | 1.64e-4 | 1.0le-5 | 6.29¢-7
rate - 4.10 4.02 4.01

n® h=04 | h/2 h/2? h/2?
e=1/2 | 2.63e-3 | 1.54e-4 | 9.45¢-6 | 5.89-7

rate - 4.10 4.02 4.00
= 1/24 4.80e-4 | 3.32e-5 | 2.06e-6 | 1.28e-7
rate - 3.85 4.01 4.00

5:1/26 4.11e-4 | 2.55e-5 | 1.59e-6 | 1.00e-7
rate - 4.01 4.00 3.99
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Table 5.3: Spatial error at time ¢ = 1 for ill-prepared initial data Case III, i.e., « = 8 = 0.

ef h=04 | h/2 h/2? h/23
e=1/2 | 3.29¢-3 | 1.91e-4 | 1.18e-5 | 7.32e-7
rate - 4.11 4.02 4.01
e=1/2* | 2.80e-3 | 1.65¢-4 | 1.01le-5 | 6.32¢-7
rate - 4.08 4.02 4.01
e=1/2% | 2.81e-3 | 1.6de-4 | 1.01e-5 | 6.29e-7
rate - 4.10 4.02 4.01

n® h=04 | h/2 h/2? h/23
e=1/2 | 2.71e-3 | 1.58e-4 | 9.76e-6 | 6.09e-7
rate - 4.10 4.02 4.00
e=1/2% | 2.85¢-3 | 1.69e-4 | 1.04e-5 | 6.49e-7
rate - 4.07 4.02 4.00
e=1/2% | 1.50e-3 | 9.69e-5 | 6.0le-6 | 3.75e-7
rate - 3.95 4.01 4.00
e=1/2* | 2.21e-3 | 1.38¢-4 | 8.57e-6 | 5.35¢-7
rate - 4.01 4.00 4.00
e=1/2° | 4.27e-3 | 2.6de-4 | 1.65e-5 | 1.03e-6
rate - 4.02 4.00 4.00
e=1/2% | 8.48e-3 | 5.24e-4 | 3.27e-5 | 2.04e-6
rate - 4.02 4.00 4.00

(2.9)-(2.12) for the QZS with Cases I, II, III, respectively. It can be clearly observed that
the scheme is uniformly fourth order accurate with respect to € € (0, 1] for well-prepared and
less-ill-prepared initial data (i.e., Cases I and II), which agrees with the theoretical estimate
in Theorem 4.1. For ill-prepared initial data (i.e., Case III), Table 5.3 shows the error of the
scheme depends on € as O(h?*/e) for N¢, which confirms the result in Theorem 4.2.

For the temporal errors, we set the mesh size h = 1/160 such that the spatial error can
be ignorable. The temporal errors of the compact finite difference method (2.9)-(2.12) for the
QZS with Cases I, II, III are shown in Tables 5.4-5.6, respectively. From Tables 5.4-5.6, we
clearly observe that our numerical method is convergent at the second order in time for any
fixed 0 < ¢ <1 for all cases of initial data when the time step is small enough. Specifically, the
upper triangle parts of Tables 5.4-5.6 (for n®) suggest that for each fixed 0 < & < 1, the error
of N¢ behaves like O(72/¢), O(7%/?) and O(1?/&3) for well-prepared Case I, less-ill-prepared
Case II, and ill-prepared Case III initial data, respectively. While the lower triangle parts of
Tables 5.4-5.6 show the error of N¢ at O(72 +¢£?), O(7% + ¢) and O(72 +£°) for well-prepared,
less-ill-prepared and ill-prepared initial data, respectively. The uniform convergence order is
attained when the two types of estimates are compatible, which is confirmed by the degeneracy
of the error estimates listed in Table 5.7 as 72 ~ 3 for well-prepared and less-ill-prepared initial
data. Furthermore, the corresponding temporal convergence rate degenerates as (9(74/ 3) and
(9(72/ 3), respectively. These numerical results verify the theoretical estimate in Theorems 4.1
and 4.2.



Uniform Error Bounds of a Conservative Compact Finite Difference Method

Table 5.4: Temporal errors at time t = 1 for well-prepared initial data Case I, i.e., « = 8 = 2.

e® T0=1/16 | 70/2 /2% | T0/2° | /2% | 10/2° | 70/2°
e=1/2 6.70e-3 | 1.99e-3 | 5.05e-4 | 1.27e-4 | 3.17e-5 | 7.91e-6 | 1.95e-6
rate - 1.75 1.98 2.00 2.00 2.00 2.02
e=1/2" | 6.56e-3 | 1.88e-3 | 4.74e-4 | 1.19e-4 | 2.96e-5 | 7.38¢-6 | 1.82¢-6
rate - 1.81 1.99 2.00 2.00 2.00 2.02
e=1/2° | 6.5138¢-03 | 1.87e-3 | 4.74e-4 | 1.18e-4 | 2.96e-5 | 7.38¢-6 | 1.82¢-6
rate - 1.80 1.98 2.00 2.00 2.00 2.02
n® T0=1/16 | 79/2 10/2% | 10/2° | T0/2" | 10/2° | 70/2°
e=1/2 7.30e-3 | 1.89e-3 | 4.76e-4 | 1.19e-4 | 2.98¢-5 | 7.43e-6 | 1.83e-6
rate - 1.95 1.99 2.00 2.00 2.00 2.02
e=1/2* | 1.86e-2 | 6.05e-3 | 1.61e-3 | 4.06e-4 | 1.02e-4 | 2.54e-5 | 6.27e-6
rate - 1.62 1.91 1.98 2.00 2.00 2.02
e=1/2% | 1422 | 4.65¢-3 | 2.02e-3 | 6.07e-4 | 1.55e-4 | 3.86e-5 | 9.55¢-6
rate - 1.61 1.20 1.74 1.97 2.00 2.02
e=1/2" | 1.07e-2 | 5.34e-3 | 1.96e-3 | 6.60e-4 | 2.39e-4 | 6.32e-5 | 1.57e-5
rate - 0.99 1.45 1.57 1.47 1.92 2.01
e=1/2" | 4.78¢-3 | 3.04e-3 | 1.86e-3 | 8.36e-4 | 2.65e-4 | 1.0le-4 | 2.96e-5
rate - 0.65 0.71 1.15 1.66 1.40 1.76
e=1/2°| 4.97e-3 | 1.26e-3 | 8.33e-4 | 5.90e-4 | 3.23e-4 | 1.21e-4 | 3.90e-5
rate - 1.98 0.59 0.50 0.87 1.42 1.63

e T0=1/16 | 7190/2 T0/22 0/2% | 10/2" | 10/2° 70,28
e=1/2 7.54e-3 2.12e-3 | 5.37e-4 | 1.34e-4 | 3.36e-5 | 8.37e-6 | 2.07e-6
rate - 1.83 1.98 2.00 2.00 2.00 2.02
e=1/2* 6.71e-3 1.90e-3 | 4.78e-4 | 1.19e-4 | 2.98e-5 | 7.42e-6 | 1.83e-6
rate - 1.82 1.99 2.00 2.00 2.00 2.02
e=1/2° 6.82e-3 1.93e-3 | 4.81e-4 | 1.20e-4 | 2.98e-5 | 7.42e-6 | 1.83e-6
rate - 1.82 2.00 2.01 2.01 2.01 2.02

n® T0=1/16 | 70/2 /2% | 10/2° | T0/2" | 710/2° | 710/2°
e=1/2 8.61e-3 2.21e-3 | 5.56e-4 | 1.39e-4 | 3.48e-5 | 8.68e-6 | 2.14e-6
rate - 1.96 1.99 2.00 2.00 2.00 2.02
€= 1/22 2.49e-2 7.39e-3 | 1.93e-3 | 4.86e-4 | 1.22e-4 | 3.03e-5 | 7.50e-6
rate - 1.76 1.94 1.99 2.00 2.00 2.02
= 1/23 6.10e-2 1.72e-2 | 4.71e-3 | 1.23e-3 | 3.10e-4 | 7.73e-5 | 1.91e-5
rate - 1.82 1.87 1.94 1.99 2.00 2.02
= 1/24 1.13e-1 5.23e-2 | 1.60e-2 | 4.15e-3 | 1.06e-3 | 2.65e-4 | 6.56e-5
rate - 1.11 1.71 1.94 1.97 2.00 2.02
e=1/2° 8.20e-2 6.88e-2 | 4.08e-2 | 1.49e-2 | 4.02e-3 | 1.02e-3 | 2.52e-4
rate - 0.25 0.76 1.45 1.89 1.99 2.01
€= 1/26 4.72e-2 4.26e-2 | 3.91e-2 | 2.78e-2 | 1.31e-2 | 3.92e-3 | 9.90e-4
rate - 0.15 0.13 0.49 1.08 1.74 1.99
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Table 5.5: Temporal errors at time ¢t = 1 for less-ill-prepared initial data Case II, i.e., « = f = 1.
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Table 5.6: Temporal errors at time t = 1 for ill-prepared initial data Case 111, i.e., a = = 0.

e T0=1/16 | 70/2 70/2? T0/23 /2" | 10/2° | T0/2°
e=1/2 | 9.16e-3 | 2.56e-3 | 6.47e-4 | 1.62e-4 | 4.04e-5 | 1.0le-5 | 2.49¢-6
rate - 1.84 1.99 2.00 2.00 2.00 2.02
e=1/2> | 147e-2 | 3.86e-3 | 9.6le-d | 2.40e-4 | 5.98¢-5 | 1.49e-5 | 3.68e-6
rate - 1.93 2.01 2.00 2.00 2.01 2.02
e=1/2% 1.16e-2 3.30e-3 8.68e-4 | 2.13e-4 | 5.31e-5 | 1.32e-5 | 3.26e-6
rate - 1.82 1.93 2.03 2.01 2.01 2.02
e=1/2" | 1.26e-2 | 3.22¢-3 | 8.38e-4 | 2.14e-4 | 5.4le-5 | 1.36e-5 | 3.38¢-6
rate - 1.96 1.94 1.97 1.98 1.99 2.01
e=1/2° 2.94e-2 4.83e-3 1.17e-3 3.05e-4 | 7.85e-5 | 1.99e-5 | 4.95e-6
rate - 2.61 2.05 1.93 1.96 1.98 2.00
e=1/2°| 9982 | 1.45e-2 | 2.16e-3 | 5.1le-d | 1.34e-4 | 3.46e-5 | 8.70e-6
rate - 2.79 2.75 2.08 1.93 1.96 1.99

n® T0=1/16 | 710/2 70,/2? 70/2% 10/2" | 10/2° | T10/2°
e=1/2 | 124e-2 | 3.14e-3 | 7.89e-4 | 1.98e-4 | 4.94e-5 | 1.23e-5 | 3.04e-6
rate - 1.98 1.99 2.00 2.00 2.00 2.02
e=1/2% | 6.72e-2 | 1.76e-2 | 4.47e-3 | 1.12e-3 | 2.8le-4 | 7.00e-5 | 1.73e-5
rate - 1.93 1.98 1.99 2.00 2.00 2.02
e=1/2° | 4.60e-1 1.28e-1 | 3.29e-2 | 8.27e-3 | 2.07e-3 | 5.16e-4 | 1.28e-4
rate - 1.84 1.96 1.99 2.00 2.00 2.02
e=1/2* | 1.77e4+0 | 8.17e-1 | 2.48e-1 | 6.40e-2 | 1.61e-2 | 4.02e-3 | 9.93¢-4
rate - 1.12 1.72 1.95 1.99 2.00 2.02
e=1/2" | 2.60e+0 | 2.19e+0 | 1.29e+0 | 4.72e-1 | 1.27e-1 | 3.19e-2 | 7.89e-3
rate - 0.25 0.76 1.45 1.90 1.99 2.01
e=1/2° | 2.96e+0 | 2.72e+0 | 2.49e+0 | 1.77e+0 | 8.35e-1 | 2.49e-1 | 6.28e-2
rate - 0.12 0.13 0.49 1.09 1.75 1.99

Table 5.7: Degeneracy of temporal error at time ¢ = 1 for n®. The convergence orders are calculated
with respect to time step 7.

a=28=2|1=1/8¢c=1/2 | 70/2% c0/2% | 70/2% €0/2" | 70/2°,€0/2°
n® 2.51e-2 2.02¢-3 1.01e-4 5.01e-6
rate - 3.63/3 4.33/3 4.33/3

a=1,8=1|1=1/8e0=1/2 | 710/2% €0/2% | 70/2% €0/2" | 70/2°,€0/2°
n® 3.08e-2 4.71e-3 1.02e-3 1.88e-4
rate - 2.71/3 2.21/3 2.43/3

6. Conclusions

We proposed and analyzed a conservative linearly-implicit compact finite difference scheme
to solve the quantum Zakharov system (QZS) with a dimensionless parameter ¢ € (0, 1] which
is inversely proportional to the acoustic speed. This method is very efficient in implementation
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since one only needs to solve two independent linear system at each time step. When 0 <
€ < 1, there exist highly oscillatory initial layers in the solution, and the error estimates of
the conservative linearly-implicit compact scheme, especially the dependence of spatial and
temporal errors on the mesh size h and the time step 7 as well as the parameter € are analysed
rigorously. Several numerical simulations are reported to test the error behavior from the
theoretical analysis.
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