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Abstract. In this paper, we derive rigorously a non-local cross-diffusion sys-
tem from an interacting stochastic many-particle system in the whole space.
The convergence is proved in the sense of probability by introducing an inter-
mediate particle system with a mollified interaction potential, where the mol-
lification is of algebraic scaling. The main idea of the proof is to study the time
evolution of a stopped process and obtain a Gronwall type estimate by using

Taylor’s expansion around the limiting stochastic process.
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1 Introduction

In this paper, we give a rigorous justification for the mean-field limit from an in-
teracting particle system to the population cross-diffusion system as the number
of particles goes to infinity. More precisely, we present the derivation of n-species
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cross-diffusion system as follows:

;

ot = div(uiVUl-) +0;Au;+div

Uu; in(Blj*u])] ’
j=1

i 1.1
— . 191]e (Old_z]/ ( )

where 0; > 0 are the constant diffusion coefficients, u = (u4,...,u,) stands for the
vector of population densities, U;(x)= —|x|?/2 represent environment potentials
and C(d,0;;) are constants depend on d and @;;. The transitions rates depend on
the densities by a nonlinear term f.

The aim of this paper is to rigorously derive the system (1.1) from the follow-
ing stochastic many-particle system. This system describes the movements of n
species of particles, with the particle numbers N; €N, i=1,...,n, according to the
given law. Without loss of generality, we let N=Nj, i=1,...,n. Let (), F, (Fi>0),PP)
be a complete filtered probability space. We consider d-dimensional F;-Brownian
motions (Wl-k(t))tzo, k=1,...,N,i=1,...,n which are assumed to be independent of

each other. We assume that ({;’f.‘), k=1,...,N,i=1,...,n are i.i.d. random variables,

independent of (WX(t));>0, and have common probability density function u?.
We use the notation Xf;] lfk(t) to represent the k-th particle of i-th species and the

dynamics of Xf?\] lfk(t) are governed by

Nk _
aXi =

s g0

+/20;dWE(t),
XNEO)=¢, i=1,..n, k=1..N,

(1.2)

where f,, is an approximation of f which can be constructed, for example in Re-
mark 1.1, and

U__{V’?*Bij, 0<0;j<d—2 _“(|x|)::{Bij(’xDr X[ =7
B

U\ V1B, ¢ j=d-2 i), lxl<n
Here V'I(x):=V(x/n)/4* with # >0 is a mollification kernel which means V >0
is a given radially symmetric smooth function such that [,V (x)dx=1.
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The problem considered in this paper dedicates to the understanding of dif-
fusion (and cross-diffusion) effects on the microscopic level. It belongs to the re-
search of mean-field limit for interacting particle system. There have been exten-
sive studies of the mean-field limit problems in the last decades. Many important
contributions have been made for problems with singular interacting potentials
such as the Coulomb potential in Keller-Segel systems. An extensive review of
this research field is out of the scope of this paper, we refer to [2,7,8,13] for more
detailed summary on the results and methods.

The convergence of moderate interacting system was introduced and proved
by Oelschldger in [10-12] in order to derive reaction-diffusion equations and
the porous medium equation. The authors [9] considered further the fluctua-
tion of this problem. This idea has been used to derive chemotaxis equation
from an interacting stochastic many-particle system in [15]. The derivation of
cross-diffusion type systems has only been studied in the last few years. It is
proved in [14] that the hydrodynamic limit of the empirical densities of two types
is the solution to the Maxwell-Stefan equation. The authors in [6] derived the
non-local Lotka-Volterra system with cross-diffusion from particle system. The
Shigesada-Kawasaki-Teramoto system was obtained from a microscopic many-
particle Markov process in [5]. Rigorous derivation of the degenerate parabolic-
elliptic Keller-Segel system from a moderate interacting stochastic particle sys-
tem was given in [2]. There are very few results for more than two species. In [4],
the authors established the global existence of weak solutions to cross-diffusion
systems for an arbitrary number of competing population species. The mean-
tield limit of a moderate interacting stochastic many-particle system for multiple
population species is obtained in [3] with the logarithmic scaling. Furthermore,
with the same scaling the authors in [1] derived population cross-diffusion sys-
tems of Shigesada-Kawasaki-Teramoto type from stochastic moderately interact-
ing many-particle systems for multiple population species. This paper is aimed
to derive (1.1) from (1.2) with algebraic scaling 7 =N —B for some B.

To precisely state the main results of this paper, we first give the general as-
sumptions on f.

Assumption 1.1. Let f € C?(R,;[0,00)), where R, =R+ U{0}, and for some m >0
it holds
Iflles-mpgy SM™ forany M>1.

Remark 1.1. A possible approximation f, € C3(IR+;[0,00)) of f can be given by

()= f(r),  0<r<1/(2y),
U F ), 1/ <
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It is obvious that the following estimate holds:

1

Iloom < Iflleag-y 1) < o

In order to prove the limit from (1.2) to (1.1), we introduce an intermediate
particle problem. This problem is formally viewed as a mean field limit N — oo in
the system (1.2) for fixed 7,7y >0, namely

n

dxk = | —VU;(XE) Z 3 (Bl (K5 ) ) | di+20dWE(),

(1.3)

Xl};,l(o):gf/ Z':11"'/;/[/ kzl,...,N.

Here u,, ; is the probability density function of Xf;, i which satisfies the following
cross-diffusion system:

atu,?,i = div(umivui) —|—0'1'Au;7,i +div

j= .
uyi(0)=ud(x), i=1,...,n.

In this paper, we focus on the derivation of (1.1) from interacting particle sys-
tem. To achieve this, we need the following assumptions of PDE solutions.

Assumption 1.2. Assume that u,,u € L®(0,T;L'NH*(R?)) (s >d/2+1) are solu-
tions of systems (1.1) and (1.4) respectively, furthermore it holds that

[t =y | oo 0,715 (R1Y) < €11, (1.5)
where C is a positive constant which is independent of 7.

Actually, (1.1) and (1.4) are parabolic systems. The above assumption can be
obtained at least for small initial data. Similar to [1], Assumption 1.2 directly
implies the wellposedness of SDE system (1.2) and the McKean-Vlasov problem
of (1.1), i.e.

n

— VUi (Xf) _va(BU*u](X ))

j=1
k(o) — ki _
X (0)=¢r, i=1,...,n, k=1,...,N,

dXk= dt++/20;dWK(t),

(1.6)
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where u; solves the limiting cross-diffusion system (1.1) and is the probability
density function of X¥. Namely, when additional Jga|x|?10(x)dx < oo, there ex-
ist unique square-integrable adapted stochastic processes with continuous paths,
which are strong solutions to systems (1.3) and (1.6), respectively. Therefore, (1.5)
provides directly the following estimate:

E (i sup max }Xk,i(s)_le'((s)"z)

iZ10<s<TI1<k<N

<CE (iélg}ixN/oT’Vui (X,];,i) (H)—VU; (XF) (t)lzdt>
+CE (liilg}ixN/oT ;Zl [foy (B?j*un,]' (Xil;z)> —-Vf (Bij*uj (Xf)ﬂ

T [ n 8
SC/ IE (Z sup max ]in(s)—f(f-‘(s)}2> dt+Cni,
0 7

i—10<s<t1<k<N

2

where C>0 is a positive constant independent of N and #. Combining it with the
Gronwall inequality, we have

& Y-
; Xy, (0-Xf0[* ) <cn . 17
(i;oil:gﬂgixz\r‘ (D) =Xi (1) ) =00 (1.7)

The main result of this paper is the following

Theorem 1.3. Let the Assumptions 1.1 and 1.2 hold, 0 <ug € L! (le), and
/ |21 (x)dx < 0.
R4

Assume that T>0, 7=N"F,y=N"B/" where B (0, (2(55up;; jc, 0j+6)) 1), then
for any arbitrary A >0, it holds

n
P ’XN’.kt—Xk.t’ —a | < C(AN?,
o (E s s

where

1
< =—pB(2 sup ¥;;+2
2 ﬁ( ety )

and C(A) is a positive constant independent of N.
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Combined with the estimate in (1.7), we obtain the mean field limit result on
the trajectory level and the propagation of chaos as a corollary

Corollary 1.1. Under the assumptions of Theorem 1.3, we have for any B < poij/2d

n - ~
P XNk Xk ()| >NP | <cN (BB,
OSSI:ET (i—zllg}cixN’ e (8) =X )’ -

Let 1 € N and consider an I-tuple (X;Zy\,]fl (t),...,X}Y\,[lfl(t)). We denote by Pﬁ'l(t) its joint
distribution. Then it holds that

Pﬁ.’l (t) converges weakly to Pl-®l(t) as N — oo,

where P;(t) is a measure which is absolutely continuous with respect to the Lebesgue
measure and has a probability density function u;(t,x).

The main result of this paper gives the same propagation of chaos result under
the algebraic scaling 77 ~1/NP. This result is obtained through the convergence
in the sense of probability on the particle level. The benefit of algebraic scaling
is that one can capture the singular interaction to some extend. To overcome the
difficulty originated from the singular interaction, a suitable stopped process is
established. Based on this, it is reduced to estimate the expectation of the stopped
process with the help of Markov’s inequality. A generalized version of Law of
Large Numbers is the key point when we study the expectation. Another diffi-
culty is caused by the nonlinear term. We have to find an approximate function
f+ and give explicit scaling between oy and N. Section 2 is dedicated to the proof
of the main theorem.

2 The proof of Theorem 1.3

We prove the convergence in probability on the particle level. Because of the sin-
gular interaction, one can not expect that under the algebraic scaling the conver-
gence can be obtained in the expectation sense. The convergence in probability
means that one allows that the particle trajectories are not always close, but the
probability that they are not close is very low. Actually we can prove that the
probability has a arbitrary convergence rate.

For any k €N, we define a stopping time 7,, a random variable S} and a set B,

n
7, (w):=infl te (0,T): )XNJ‘ H—Xk (¢ ‘>N‘“  wen,
(@) m{ O7): L max [X3EO-p, 0 2N @
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n K
k . Nk Tk
Sa(t) ._N”‘K;_llrgr}(ang‘Xmi (tAT) = X) (AT | <1

Ba(t):={weQ:Sy(t)=1}.

7

By Markov’s inequality, it holds

n
P (2 max ‘X%k(t)—}_(f;li(t)‘ 2N‘“>

1<k<N

n
Nk ek
SP(E@};"N)XWJ (M)~ XE(EAT)

:N_“> <E(S5(1)).

We notice that the introduction of parameter « is to increase the convergence rate.
Actually, the above Markov’s inequality works for arbitrary x. In order to com-
plete the proof of Theorem 1.3, we just need to show that for any A >0and T >0,
it holds IE(SX(t)) <CN~*, where the letter C appeared in this section is a generic
positive constant independent of N. To this end, we need the following Law of
Large Numbers, which can be found for example in [2].

Lemma 2.1. For ¢;; € L% (IRd), i,j=1,...,n, we define for arbitrary 6 € (0,1/2)

1
>W.

n N N

n 1 o o -

Ay 8):=U U {“JGQ:'NZQDZ']'(XZ;J(S)_XIZM(S))_qoij*un,]’(Xf;,i(S))
i,j=1k=1 I=1

Then for any m €N, it holds that

P(A269) <Clumsine-b

><( sup || @ijl|7% gay+ sup llgijxiy, i’li(w,mw))r Vs€[0,T].

1<i,j<n 1<i,j<n

Next we study the time evolution of the cut-offed process Sk (t). Notice that

K

N,k 5
}XW. (EAT) — KE (EAT)

tATy
§c/
0
ATy | 1 1 N n B
+C/0 , 1Vf7 <NIZ%BZ‘ (X%k_xjx},l)) _Z%m (B?j*uﬂ,j(x,’;li»
j= - -
=:JLi () + T ().

K
ds

VU (X1) = VU (X))

K

ds




50 Y. Li, L. Chen and Z. Zhang / Commun. Math. Res., 40 (2024), pp. 43-63
From the definition of U;(x) = —|x|? /2, we get

Ny max <C / E(Sy(s 2.1
( Z 11<k<N ]k ) 2.1)

For the second term | ,%i,

N*Y  max t
< le<k<N kil )>
EATy
<CE | N** Z max /

N
£ (sfmcsr-x)
g [T (X)) -V (R4 %,.)]

lel
e (s )
—f4< ZB”(Xk ))

1<k<N

K
ds)

11<k<N

1<k<N

tATy
+CE N”"‘Z max /

if’r( >|<u,7] Xk ))

11<k<N

tATy
+CE N“"Z max /

[ ZVB”(Xk ) VBU*u’?](Xk)

::]21 +]22+]23+]24‘ (22)




Y. Li, L. Chen and Z. Zhang / Commun. Math. Res., 40 (2024), pp. 43-63 51

The term J?! can be divided into two terms

n ATy
P<CE(N*). max [
0

=1<k<N

n

- Fr N VAN m.j
j=1 I=N
1 Y I
SAEHLICEED)

L [om () - vm(t, %)

K
ds)

aK - AT / 1 al Ui k )
+CE(N §1I<I}<a<)§\r/o ];f'y NZEVBU(XU,Z—XU,J
K
1 Nk NI ok ol
N E v () -ve (2-5,)] o)
— iy 2 2.3)

The term J?'! can be handled with

< f

1" HK
Y LOO(O,suplgi/]-Sn ||B

sup HVB’ZH';OO(W) sup HDZBZH;EOO(W)

I oo gay) 4 = ij
JILO(RY) T <j,j<n 1<i,j<n

ENTy n 2K
aK Nk __ <k
x /0 E (N ;llrg}&xN’XW Xk, )ds
"% —K(ﬂi'-i-l) —K(l9i‘+2)
SCvaHLoo(o,suplgw.Sn|BZ|LOO(W))12’1]}2H77 j 121]12”17 j
ATy
X N~ E(Sk(s))ds
0
t
<C sup NrIBRo+H-a] / E(S(s)) ds, 2.4)
0

1<i,j<n

where we have used the assumption 7= N~F and the fact that

L

o <NP.

I lesm <1 flesg

<
11
517]) -

With the help of

7

] ‘
Bij*”w

<
L((0,T)xRd) —
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we have
) <C.

/
||f’)/HLOO(O/suplgi,]'SnHB;]]'*MW/]‘HLOO((O,T)X]Rd) -

Therefore,

12 e AT,
J7“<CE| N E max
0

11<k<N

" N
LIRS

_fé( *uU](Xk ))
A E o (xx) -wm (%)

+CE <N“KZ max /tm if“r( Ly (X ))

11<k<N

ds)
ds)
Sk (s)ds)

K
ds)
DB (%5, %) (%))~ %,)

K
ds)
2K
ds)

2 IR 2B g NK[ﬁ(ﬂi;+3)—“]/0 E(S(s))ds. (2.5)

1<i,j<n

B [ (-) v (-

<clfr. sup %t

0 sup1<1]<n HBI]HLoo ]Rd)) 1<i j<Tl

INT, I i k 7 k

¥ E /0 i;lg% ZB (X - ) Byt (X))
+CE | N A
Z max/ Z N

1<k<N =

27 1 N,k <k
D] (%5-%3,) (-5,

x ENTy 1
+CE(N Z max/ Z N

11<k<N

EATy
DBl E / ax XNk X
+Cliuj}inH UHLw(]Rd) ( 0 N Zlg}(iXN i i

For J?'21, we split the domain

N, N \°
O=ayn,0(AN)
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and obtain

A< £ sup 5 *(%i+2)

IJHLoo ]Rd>)1<ij§n

tINT, 1
U k _ l 1 k
x]E(/O i;lg}ixN ZB (RE =X ) =Bl (%)

HLOO 0 Sup1<1]<nHB

K

XL, Nom S“(s)ds>

61,87

—I—CH sup 1~ x(8ij+2)

wmwmﬁﬁn

ZB” (R%i=%,;) —Blvuy (%5 )

HL“’ 0sup1<l]<n\|B

tINT, 1
xE / Z max

K

K
x]I(Aévl,Z;’i)cSa(s)ds>

<C sup NP (sup (8] gyt sup |8,

1<i,j<n 1<i,j<n <i,j<n

((o,T)led))

t ATy
/O]P(Aé\”éﬁ ds+C sup N*F(%+3)- 91}/0 E(Sy(s))ds

1<i,j<n

<C sup NKﬁ(wiiH)/ ]P(Agll’%ﬁ ds
O 7

1<i,j<n

t
+C sup N¥IB+3-61] / E(S5(s))ds, 2.6)
0

1<i,j<n

where we used
C

7’

more details can be found in [2]. For J?'23, we split again the domain

c
Nn Nn
Q= AO |D2B | (AO \DzBW\)

L<N/3

Ifrlleom) < <N, 1Bl mgme) < 7

and obtain

AT, 1
]2123<C]E NIXKZ max /
j=1

11<k<N

L D?B)| Xk, - X! K xN_xt "4
Nl;‘ ( ;7,]'> S‘llp} i fw'} S
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K

1 DB (%~ X! )~ [D2B}|suy (%)

X]IAN,n Sg (S)ds>

0,|D2B1|

K

1Y ok o i}
NIZ% |D2BY| (%E,— X!, ) — [D2B] |y, (X,

tAT, N
CE /
PR T
X]I(AN,}‘I )ng (S)dS)

0,|D2B7|

ATy
+C sup H|DZBZ"*”n,jH;zoo((o,T)de)/O E(Si(s))ds

1<i,j<n
t t
<C sup N0+ [p (4N, ) ds—Clny [ B(S5(s))ds 2.7)
1<ij<n 0 ’ 0

where we used the results that

C if 0<19,‘]‘<d—2,

2l .
||D*B}|+uy L°°((0,T)><]Rd)§{_cln;7 if &;—d—2,

more details can be found in [2]. Similarly, we can derive that

¢ t
P2 <C sup NKﬁ(ﬂijJrZ)/ ]p(AN'” )ds—l—C/ IE(Sy(s))ds, (2.8)
0 0

) 0,D2B"
1<i,j<n

where we used
|D*B!, <C

z]*u’Y,]'HLm((O,T)xIRd) -
Combining (2.3)-(2.8), we have

J2'<C sup (1 +1nN + N¥B20;+4)—a] | \jr[p(8;+3) —a] +NK[/3(1917+3)—91]>

1<i,j<n
t
x/ E(Sy(s))ds
0
xp(20;+3) [ ( AN
+C sup N i P Ay gy )ds
1<ij<n 0 v

t
+C sup NKﬁ(ﬁUH)/ ]P(AN’” )ds
0

. 0,D2B"
1<i,j<n
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t
Kﬁ(l91+2) N,n
+C1<s:1]1:inN j /0 IP(AO \DZBW\> ds. (2.9)

For J23, we split again the domain
__ aANn N,n €
Q=A% ()
and obtain
23
J <Clsu]anVB HL°° RY) If; HL“’ (0supy<; jcy B}

1,

Ty K
E N** B! (X}, —X, ) —B]} XEN T nn d
. </0 legixz\r Z ( ) *”’7]( ni) A S
C VB s
+ 181-1]an HL ]Rd H HL Osup1<1]<nHB,]HLoo IRd))
S 1 N ) .
oK - k l 1 k y
X]E< 0o i,jz—:ﬂgcagxz\l N;B <X X"’> ~Biyrnn (%) (Aévm) ds)
<C sup NKWMUHH“]/ I[’(Aé\”é )ds—l—C sup N€lB(Bij+2)+a=0] (2.10)
1<i,j<n 0 1<i,j<n
For J?*, we split again the domain
N,n N, ¢
Q=4 VB’7U(A6 nvm)
and obtain
K
J* <CN"™E /m f max ZVB’? (Xk —~ ) VBl (X))
- 0 Z1<k<N|N 2
x 1 n ds
Ag )
AT, 1 *
K “ n k n k
+CN ]E(/O ]lerg}(zixN ZVB (RE =X ) = VBl (%)
| PN
) S)
<C sup N¥BE+D+a / P (A ) ds+CNF ), (2.11)
0

1<i,j<n
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The term [?? can be divided into two terms
22 < CE | N** AT & 1" B77 Xk
J Z{1I<I}<a<XN/ ; T Z ( )
<N [ () o ()

ZVB’7 (%5-%,)

K

K
ds)

2K

K
ds)

tAT,
+CE | N*¢ max/
Z1<k<1\] 0 sup1<z]<nHB1]HLoo ]Rd))

%ﬁ 3 (00 ) B (%)
IRGICHREN

n
<)
j=1

— 2 22, (2.12)
For ]222,
222 - "
] _CHf HLoo Osup1<l]<n BIJHLOO Rd )1311]En||VB | L (RY)
tATy 2x
><]E</ N“"Z max [ XV X% ds)
0 11<k<N| T
<C sup N¥IBEo+H-a] / E(S(s)) ds. (2.13)
1<i,j<n 0
Now we focus on J?%1,

K

AT, 1
21 <CE N””‘Z max / Y |£
j=1

1<k<N

(1050
“|v

. [vay (51,2, %))

l
“IN

v (34,-%,,)| )

[ Mz
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+Clf; ) sup | VB|[}.

1]HLOO IRd) 1<1]
tATy 2x
K Nk <k
><1E</0 N };max XMk gk ds)
1" 1 k I
7( };B (%-%, ))

1<k<N
- (Ejon54)
X HVBZ.H?;(W max ‘X —X!

AT, 1
<CE N“KZ max/ Z
j=1

“d

J1<I<N ni| 49

1<k<N
K

2p1 (|
(RY) 21]15;””[) BinLoo(]Rd)

HL“’ Osup1<l]<n\|B

K

K

INT, 1
+CE (N“KZ max / Z

11<k<N

1 (' k
(Bl (X5,))

%Z’VB” (Kb =X ) | = [ VB ey (%)

_ K
x max [XM - X! | vagujw(mds)

1<I<NI M
K
d )
K

K
ds)

! Bn*u,” )’ “VB ]*u,”(Xk ) "

1<k<N

+CE (N”‘KZ max /H\ “i

N, . 1( %k 1 k
><113la<>§\]‘X;“ }‘ ZVB (K= ;) = VBl (X))

(Bl (%5)) | |1V B ey (K5

FAT, 1
+CE (N“KZ max / Z

11<k<N

N,I k
X@%V)XW ‘ )VB *u;”(X )

el NKB@+1)+B(0;+2)—df / tlE(SZ(s))dS
0

H Loo 0, Sup1<1]<n HB
. 72211 2212 | 72213
= AT

t t
+C / E(S5(s))ds+C sup N¥P2dj+4)—al / E(S5(s)) ds, (2.14)
0 0

1<i,j<n

ij HLoo IRd))
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where we used

HVB i <C.

L ((0,T) xIRA) "’HWB |*”77]HL°° (0,T)xRd) =

]2211

For , we split again the domain

N, Na \€
Q=AU (AN
and obtain

ATy 1
i< sp e [

1N _ _
N;B?j (X’éz _Xflm'>

K
I[AN,n SE (S)d5>

04,8

ELACTHE )

tNT, I
+C sup NPF%+3)E / ) max
0

1<i,j<n i m11<ksN|N

B”*u,ﬂ(Xk )

H(ANn )e SE(S)dS)

64,B"

t
309,+3 N,
<C sup N*PE%+ )/0]1’(1494,71;'7> ds

1<i,j<n

t
+C sup N¥IBY+3)-64 / E(S5(s)) ds. (2.15)
0

1<i,j<n

For J?212, we split again the domain

N,n N,n €
Q= AG ,| VB (A95,\VB’7\>

and obtain

EPZICAE]

tNT, I
22 <C sup NFBGHDE / Y max
1<ij<n 0 jZhlsksN|N

K
—|VB! ‘*”n](xl;;,z’) TN Sy (s)ds)

05,|VB|

B [

1<i,j<n 1,]‘:11§ka
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K

- WBZ” *Uy,j (Xlé,z')

05,V B'|

I[(AN,n )ySﬁ(S)dS)

t
<C sup NZKﬁ(ﬂifH)/ ]P(AN’” )ds
0

]_Sl,]gn 95,|VB’7|
t
+C sup NFIB(8;+1)=6s] / E(S(s)) ds. (2.16)
1<i,j<n 0
For J??13, we take 65 =0 and obtain
213 SR Lo (o _ 7 |
J* 7 <CE /O i;ﬂrﬁr}gN NI_ZIVBU' (Xn,i_Xw')_VBij*”n,i(Xn,z')
X]IA%BW Sg(s)d5>
EATy N 1N h ok ol " oF .
+cE( [ i;lg}{ixN N LVE] (%6~ )~ VBl xuy i (XE)
K
x]I(Ag,VHBU)CS,X(S)ds>
t t
<C sup N¥F@+D) / P (ANgp ) ds+C / E(S5(s)) ds. 2.17)
0 ' 0

1<i,j<n

From (2.12)-(2.17), it holds

J2<C sup (1+NK[/3(191»]»+1)—95}+NK[/3(219,-]-+3)—94}+NK{;3(319,-,-+4)—@>/t]E(Sz(S))dS
0

1<i,j<n
t t
+C sup NKﬁ(wiiH)/ I[’(Aé\]’%,,> ds+C sup NKﬁ(wierz)/ ]P(AéV'TVB,]‘)dS
1<ij<n 0 i 1<i,j<n 0 5
t
+C sup N+ / P (ANey,) ds. (2.18)
1<i,j<n 0 ’

Plugging (2.9)-(2.11) and (2.18) into (2.2), and combining (2.1) and Lemma 2.1, we
get

E(Sg(t))gc sup 1+11’1N+NK[,B(2191']'+4)—1X}+Nk[ﬁ(§ij+3)_(x}
1<i,j<n
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+ NE[Bi+3)=01] | Nx[B(9+1)—05]

+ NP3 . Np(a04) =] ) / E(S5(5)) ds
0

+ C sup NKﬁ(Zﬂij+3)+2m1(91— %-F,Bl?ij)-Fl

1<i,j<n

+C sup NKﬁ(l‘/’ij-Fz)-Fzmﬂ—%—i—ﬁ(ﬂij—i—z)}—i—l
1<i,j<n

+C sup N<B(Bij+2)+2ms[— 3 +B(8;+2)]+1
1<i,j<n

+C sup NKIB(203j+2)+a]+2ma (62— 5 +B0j) +1
1<i,j<n

+C sup NFAE+1)tal+2ms(0s—3+p(8+1))+1
1<i,j<n

+C sup NPGO;+3)+2ms(04—3+p0;)+1
1<i,j<n

+C sup NFB(20i+2)+2ms[05— 5 +B(9;+1)]+1
1<i,j<n

+C sup NFB(8ij+1)+2mg[— 3+ B(Bij+1)]+1
1<i,j<n

+C sup NFP@2+a0aly oNr(e=a), (2.19)
1<i,j<n

For a given 8, we choose « such that

sup B(38;+4)<a. (2.20)

1<i,j<n

To bound all the terms above, we need the following restrictions for the terms 6;:

1

sup B(9;j+3) <01 <5—pB sup ¥, (2.21)
1<i,j<n 2 1<i,j<n

1
0<5—B( sup ¥;+2), (2.22)

2 1<i,j<n

1
sup B(8;+2)+a<6r<5—pB sup 9, (2.23)
1<ij<n 2 T i<ij<n
1

oc<93<§—,3( sup 191-]'—1—1), (2.24)

1<i,j<n
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1
sup B(20;;+3) <6y <5—pB sup 9, (2.25)
1<i,j<n 2 1<i,j<n

1
sup B(8;j+1)<05<=—p( sup ;+1). (2.26)
1<i,j<n 2 1<i,j<n

By (2.20), (2.23) and (2.24), we derive that a should satisfy

1
B(3 sup 19i]'—i—4)§oc<§—ﬁ(2 sup 8;+2).
1<i,j<n 1<i,j<n

Therefore,  has to satisfy

1
2(5sup1§i’]§nz9ij+6)'

0<B<

We take x big enough to ensure that for any A >0 it holds

sup NK[,B(ﬂ,']'-‘rZ)-‘rIX—Gz] < N—}\, NK(D&—Gg) < N—;\
1<i,j<n

Then we choose m;-mg big enough such that

C sup NK‘B(2l9ij+3)+2m1(91—%4-,3191‘]‘)-"-1 +NKﬁ(ﬁij+2)+2m7[—%4-,3(19,‘]‘-1-2)}4-1

1<i,j<n 4 N*B(Bij+2)+2mg [—3+B(8;+2)]+1 + NK[ﬁ(Zﬂij“‘z)‘f‘“}+2m2(92_%+ﬁ19ij)+1
4 NKIB(By+1)+a)+2ms[0— 5+ B(8+1)|+1 | \jcB(36;j+3)+2my (04— 3 +p0;)+1
| NKB(283+2)+2ms[05— 5 +B(9;+1)]+1 +NK/s(ﬁij+1)+2m6[—%+/z(ﬂ,-,-+1)}+1>
<CN%.

As a consequence, we infer that
t .
E(S5(t)) <CInN / E(S5(s)) ds+CN~".
0

By means of the Gronwall inequality, we deduce that

n -~
sup P Z max )Xka(t)_Xsi(t)‘ >N < sup ]E(Sg(t)) < CN-MC),
o<t<T \/jisk<Nl T ’ OeteT
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Taking A=A+C(T), it holds

n
sup P max ‘Xka t)—XE (¢t ’>N_‘" < sup E(S5(t)) <CN~™
ogth (;1<k<N it (*) ’7/1( ) ogth ( ol ))

For any & <«, we have

n
P ’Xka =Xk (4 )>N—'7<
oorer (;12}{% pi (= Xy,(t)

n
Nk _ sk - —A
< sup P <i_2111<1}(a<xN’X;7’i (1) XW(t)’ >N ) <CN™".
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